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Abstract

Splicing systems were introduced by Tom Head (1987) as a formal model of
a recombination process between DNA molecules. The existing literature on
splicing systems mainly focuses on the computational power of these systems
and on the properties of the generated languages; very few applications based
on splicing systems have been introduced.

In this paper we show a novel application of splicing systems: we use them
to build an automatic music composer. The proposed system can be seen
also as a new valid bio-inspired strategy for automatic music composition.
It is tailored on 4-voice chorale-like music. We define a new music represen-
tation based on words, which extends an earlier splicing approach and uses
additional music information to produce music in a quick and effective way.

A performance study shows that our composer outperforms other meta-
heuristics by producing better music according to a specific measure of qual-
ity evaluation. Moreover, the composition is carried out in a shorter time
and using less memory with respect to a previous approach.

Keywords: Splicing systems, Automatic music composition, Music formal
model.

1. Introduction

Music is one of the arts that in many aspects have benefited from the
use of computers: sound synthesis and design, digital signal processing, au-
tomatic composition, and so on. One of the most interesting challenges for
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the use of computers in the field of music, is the so-called algorithmic music
composition, i.e., the problem of composing music by means of a computer
program with no (or minimal) human intervention. In this work we face this
problem.

The most meaningful examples of music composition systems start from
the ILLIAC suite [24, 25], and arrive to more recent efforts [7, 8, 9, 17, 18,
35, 36, 37]. In [34], several techniques and tools to define algorithms for mu-
sic composition have been discussed: evolutionary algorithms, bio-inspired
algorithms, formal grammars, cellular automata, machine learning. In this
work we investigate the use of a bio-inspired approach, specifically splicing
systems, with the aim of defining efficient automatic music composers.

Splicing systems [19] represent a model of a recombination process be-
tween DNA molecules. Splicing occurs in two steps. In the first one, restric-
tion enzymes (proteins) recognize a specific pattern in a DNA sequence and
then cut the molecule in a specific point inside the recognized pattern. The
shape of these cut points are specific to each enzyme. Since DNA is double
stranded, the cutting phase may produce blunt or staggered ends. This is
caused by cleavage patterns which are blunt or not. If no sticky ends match,
no fragment previously cut may be pasted. Clearly, if such staggered ends
are close to each other, the two original molecules may be re-associated, but
this is not of particular interest. Nevertheless, it is also possible that two new
hybrid molecules will be formed. In the second step, ligase enzymes paste
together properly matched fragments, under chemical conditions (related to
cleavage patterns structure and complementary laws).

This mechanism can be viewed as a formal language operation on words,
by abstracting double strands into single strands: starting from two words,
the splicing operation generates new words by concatenating a prefix of one
string with a suffix of the other string. The concatenation is performed un-
der some conditions (abstraction of the enzymes’ behavior), represented as
a (splicing) rule. As a consequence we can consider a system based on this
operation. Given a finite alphabet A, a splicing system S is specified by an
initial language I (a set of words) and by a set R of splicing rules. Starting
from I, and applying the rules in R to the pairs of words previously gener-
ated, S generates a language L(S), called the splicing language generated by
S. A natural research area is the investigation of the computational power
of such formal systems, which mainly depends on the level of the Chomsky
hierarchy that I and R belong to. For instance, all finite languages can be
generated when I and R are both finite sets (finite splicing systems). The
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class of finite splicing systems can generate only a proper subclass of regu-
lar languages [21, 48]. Splicing systems theory is still a challenging field of
theoretical research, as shown by recent literature [5, 6, 20, 30].

Contribution of this work. In this paper we (1) show a novel application
of splicing system; in this regard we are extending our earlier work [10] in
order to make improvements in terms of both efficiency and efficacy, and (2)
we propose the music splicing approach as a new valid bio-inspired approach
for automatic music composition, in alternative to other widely studied au-
tomatic composers based on meta-heuristics strategies [33]. Meta-heuristics
are intelligent strategies used to design and improve very general heuristic
procedures with a high performance, and have been already used for several
other problems. It is worth to note that, the genetic algorithms represent
the most largely used meta-heuristic strategy for automatic music composi-
tion [3, 4, 12, 14, 27, 28, 29, 47].

We focus our attention on 4-voice chorale-like music and we build a sys-
tem based on a splicing system, defined as follows: an initial set of Bach’s
chorales (initial set of words) and a set of well-established rules in classical
music composition (set of splicing rules) obtained by extracting information
about the notes, chords, and tonalities. The generated language contains
words that represent pieces of “new” chorales in Bach’s style. Similarly as
in [10], our basic idea is to treat music compositions as words and to view
the music compositional process as the result of operations on words. The
representation proposed in [10], that in this work we name Note representa-
tion, only takes into account information about each single note. Our idea in
this work is to extend it with a new representation, named Tonality-degree
representation, by considering additional music information, i.e., the tonality
and the degree of each single note.

The Tonality-degree representation enables to model the music composi-
tion rules (modulations, chords passages, and so on) in a more natural and
effective way with respect to composers based on well-known meta-heuristics
strategies, heavily used for music composition. The composition process em-
ulated by composers based on such a representation, is closer to the human
attitude, in terms of application of music rules. This holds, in particular,
when reproducing the style of a specific composer, as confirmed by our ex-
perimental results.

We show that the use of the Tonality-degree representation can improve
splicing systems based on the Note representation in terms of music quality

3



of the produced compositions and performance (execution time and memory
consumption). As aforementioned, there exists a broad variety of tools and
techniques that can be used to design an algorithmic composer. In this paper
we compare the music produced by the composer based on the Tonality-
degree representation with the earlier Note representation and with music
produced by several well-known meta-heuristics strategies. Results of our
comparisons are discussed in detail in Section 7. An example of a comparison
of a different strategy with the same meta-heuristics can be found in [1].

In general, to evaluate the produced music, automatic composition sys-
tems implement an objective function, according to either existing rules from
music theory [2, 16, 22] or by learning from a corpus of existing music [39].
Although every musical genre has its own rules, these are usually not well-
defined, and this represents a barrier to the applicability of the former ap-
proach [38]. The latter strategy can be used to overcome this problem, by
defining style rules that can be learned automatically from existing music.

In this work we propose a hybrid approach: we define an evaluation
function that, on one hand, adheres to the classical music rules, and on the
other hand, extracts statistical information from a corpus of existing music,
to assimilate a specific composers style. Specifically, we extracted statistical
information from a large corpus of J.S. Bach’s chorales, which represents a
formidable example of chorale music.

The proposed composer, implemented in Java, is totally automatic since
it does not require any human intervention. Finally, some chorales generated
by this composer can be found online2, in MIDI format.

The rest of the paper is organized as follows. In Section 2 we discuss
some relevant works in this field. In Section 3 we introduce important no-
tions used through the paper. In Section 4 we briefly describe the Note
representation while in Section 5 we introduce its enhancement, represented
by the Tonality-degree representation. In Section 6 we provide details about
the implementation of our system. A comparison between our approach with
similar strategies is presented in Section 7. Finally, in Section 8 we conclude
with some final remarks and future directions.

2http://www.di.unisa.it/~delmal/research/usability/Splicing
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2. Related Work

Several automatic composers of chorale music, based on different ap-
proaches, have been already proposed in previous works: rules and expert-
systems [15, 45], systems based on a combination of formal grammars, anal-
ysis and pattern matching techniques [7, 9], cellular automata [40], neural
networks [31]. In [23] it is built a system that generates bagana music, a tra-
ditional lyre from Ethiopia, based on a first order Markov model. The paper
proposes a method that allows the enforcement of structure and repetition
within music, thus handling long term coherence with a first order model.
Also, it proposes different ways in which low order Markov models can be used
to build quality assessment metrics for an optimization algorithm. Examples
of automatic composers that use a Markov model for 4-voice harmonizations
can be found in [46]. In a different work [39] the authors trained hidden
Markov models for harmonizing Bach chorales.

Several automatic composers are based on meta-heuristics, specifically on
genetic algorithms [3, 4, 12, 13, 14, 27, 28, 29, 47]. The problem of composing
4-voice music has been addressed also in [32, 43, 47]. Other works have been
proposed for different musical genres or problems: thematic bridging [28],
Jazz solos [3], interactive genetic algorithm [29], harmonization of chords
progressions [27], monophonic jazz composition given a chord progression [4],
harmonization of a figured bass [14], harmonization of an unfigured bass [12]
and bass functional harmonization [11].

3. Background

We assume that the reader is familiar with the basics of music and formal
languages, more specifically splicing systems. However, in this section we
provide the basic notations used throughout the paper. The notation is
summarized in Table 1.

3.1. Music notions

In this section we provide, briefly and in a simplified way, the basic music
notions needed to understand the rest of the paper.

Our work is based on the tempered music system, conventionally used
among western musicians. This system models the musical notes by using a
reference sound (a given frequency, normally 440 Hz) and defining octaves as
the ranges of frequencies between those sounds obtained by doubling/halving
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Table 1: Notations used through the paper.

Notation Description

Splicing systems

A Alphabet

I Initial set of words

R Set of splicing rules

S Splicing system S = (A, I,R)

ε Empty word

w A word

| Special separator symbol (/∈ A)

$ Special separator symbol (/∈ A)

r A splicing rule

site A site of a splicing rule

`r Application of the rule r

γ′(L) Language obtained by applying all rules of R on words of L

Music Splicing systems

AV Voices alphabet

AN Notes alphabet

AO Octaves alphabet

AT Tonalities alphabet

AQ Qualities alphabet

Anmss Note representation alphabet (AV ∪ AN ∪ AO)

Atdmss Tonality-degree representation alphabet (AV ∪ AN ∪ AO ∪ AT ∪ AQ)

Inmss Initial set of words for Note representation

Rnmss Set of splicing rules for Note representation

Snmss Note music splicing system Snmss = (Anmss, Inmss,Rnmss)

Itdmss Initial set of words for Tonality-degree representation

Rtdmss Set of splicing rules for Tonality-degree representation

Stdmss Tonality-degree music splicing system Stdmss = (Atdmss, Itdmss,Rtdmss)

→ Chord passage

fh Harmonic objective function

fm Melodic objective function

the reference sound. To explain the organization of the musical notes we will
use the piano keyboard as reference: each key of the piano corresponds to a
specific pitch (note) and there are 88 notes, divided into octaves. The piano
keyboard has roughly 7 octaves, usually numbered from 1 to 7, which contain
the 88 keys (12 ∗ 7 = 84 keys in 7 octaves plus 4 extra keys); notes outside
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this range are hardly used because their frequencies are too low or too high
to be pleasantly perceived by our ear. Each octave is divided in 12 equally
spaced notes, which constitute the chromatic scale. These notes are denoted
by the letters A, A# or B[, B C, C# or D[, D, D# or E[, E, F , F# or
G[, G, G# or A[.

This system is based on tonalities. Western music considers two kinds of
tonalities: major and minor. For each note we can build a major tonality and
a minor tonality, for a total of 12 major tonalities and 12 minor tonalities.
A tonality is associated to a sequence of notes, called scale. A scale is an
ordered set of musical notes included in the range of an octave. For example,
the scale of the C major tonality is C,D,E,F ,G,A,B,C, while the scale of
the tonality D Major is D,E,F],G,A,B,C],D. Given a tonality and the
corresponding scale, the notes that do not belong to such a scale are called
non-harmonic tones. Non-harmonic tones can be classified in: passing tones,
auxiliary tones, appoggiatura tones and suspension tones (see, for example,
[41] for more details). Each music composition has its own main tonality.

Music comes in a huge variety of forms. In this work we focus on a specific
form: 4-voice chorale music. In a chorale there are 4 voices called bass, tenor,
alto and soprano. Each voice has an admissible range of notes, and overall
the 4 voices cover from octave number 2 (partially) to octave number 6, with
reference to the organization of the octaves of the piano. Formally, a chorale
is a sequence of measures. In each measure there are beats whose number
may vary, but usually is fixed for the entire composition according to a fixed
meter of the composition. Although the following is a simplification of the
reality, we assume that in each beat, each voice plays a single note (at the
end of Section 6 we will describe how to overcome this simplification and
add extra notes). The 4 notes played by the 4 voices in a given beat create a
chord. Chords are built on the degrees of the scale of the tonality used. To
abstract from the specific tonality used, the degree of the scale is indicated
with roman numerals: I, II, III, IV, V, V I, V II. Commonly, major chords
are indicated with capital letters and minor chords are indicated with small
letters. As an example, given a scale, if the chord on the first degree is major
then we use the notation I, on the contrary, if the chord on the first degree
is minor then we use the notation i (see [41] for details). We remark that
the chord built on the seventh degree of a major or minor scale, and on the
second degree of a minor scale, is a special minor chord, which is named
diminished chord and is denoted with vii◦.

The sequence of chords used to compose music is obviously decided by
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the composer. However there are rules established by the theory of harmony.
According to these rules, there are some chords combinations that work bet-
ter than others, and there are specific chord sequences (e.g., cadences) that
have specific musical functions. For our system, we consider the following
musical cadences: V → I, II → V, VI → II, V → VI, IV → V,IV → I and
III → VI. For each cadence we will define several splicing rules, detailed in
Sections 4 and 5. Beside rules about chord sequences, there are also rules
about melodic lines.

Classical music theory established strict rules about the movement of
melodic lines. These rules concern both the movement of a single line (jump)
and the relationship between the movements of two different lines. Such rules
are based on intervals, i.e., the distance between two notes of two different
melodic lines. The interval between two notes is the number of halftones
between the notes. For example, between C3 and G3 there is a fifth interval
(7 halftones), between C3 and C4 there is an octave interval (12 halftones)
and between C3 and C3 an unison interval (0 halftones).

A single line should move by using the notes of the tonality of the compo-
sition, and each jump from note to note creates an interval. Since there are
intervals preferred to others, there are jumps preferred to others. As an ex-
ample, jumps greater than one octave are less preferable than to those within
an octave. Hence, since the movements of a single line are quite straight-
forward to check, we focus our attention on the rules about the relationship
between the movements of two different lines. According to what dictated by
music theory rules, for any given pair of lines, some specific patterns should
be avoided: (1) two lines that move by creating two consecutive unisons; (2)
two lines that create two consecutive octaves or fifths; (3) two melodic lines
that intersect.

3.2. Splicing systems

In his seminal work [19], Tom Head described the biochemical phenomenon
of splicing as an operation on words. Subsequently, some variants of this op-
eration were introduced [42, 44]. Here we will use the splicing operation as
introduced by Păun and described below.

Let A be a finite alphabet. A word (or string) over A is a finite sequence
of symbols from A. We denote by A∗ the set of words over A and by ε the
empty word, i.e., the word containing no symbols.

A rule r is a word of the form u1|u2$u3|u4, where u1, u2, u3, u4 are words
over A and |, $ are two symbols which are not in A. The rule specifies
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two positions where we cut two input strings and how we can glue these
fragments.

More formally, let x and y be two words and let r = u1|u2$u3|u4 be a rule.
If x contains u1u2, i.e., x = x1u1u2x2, and y contains u3u4, i.e. y = y1u3u4y2,
the rule r applies to x and y and produces the words w′ = x1u1u4y2 and w′′ =
y1u3u2x2 as a result. This operation is often denoted by (x, y) `r (w′, w′′).
The words u1u2 and u3u4 are called sites of r. Clearly, if a site occurs more
than once, the splicing operation is applied for each occurrence of it. The
words x1, x2, y1, y2 can be the empty word.

Example 1 Let r = a|b$c|d and consider x = fabf and y = ggcdh. Then
fadh and ggcbf are generated by splicing. If we consider x = fabfgabf and
y = ggcdh, then fadh, ggcbfgabf , fabfgadh and ggcbf are generated.

As mentioned in Section 1, splicing systems are formal models for gen-
erating languages, i.e., sets of words. We start with an initial set of words
and we apply to these words the splicing operation by using rules in a given
set. The set of generated words is joined to the initial set and the process
is iterated on this new set until no new word is produced. The language
generated by a splicing system is the collection of all these words.

Formally, a splicing system is a triple S = (A, I,R), where A is a finite
alphabet, I ⊆ A∗ is the initial language and R ⊆ A∗|A∗$A∗|A∗ is the set of
rules, where |, $ 6∈ A. A splicing system S is finite when I and R are both fi-
nite sets. Let L ⊆ A∗. We set γ′(L) = {w′, w′′ ∈ A∗ | (x, y)`r (w′, w′′), x, y ∈
L, r ∈ R}. The definition of the splicing operation is extended to languages
as follows:

γ0(L) = L,

γi+1(L) = γi(L) ∪ γ′(γi(L)), i ≥ 0,

γ∗(L) =
⋃
i≥0

γi(L). (1)

Definition 1 Let S = (A, I,R) be a splicing system. We denote by L(S) =
γ∗(I) the splicing language generated by S. We say that L is a splicing
language if there exists a splicing system S such that L = L(S).

The interested reader can refer to [26] for a detailed study of the theory
of formal languages, and to [19, 48, 44] for supplementary material on the
theory of splicing systems.
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4. Note Representation

In this section we briefly describe the representation defined in [10], called
here Note representation. The enhancements made on this representation will
be discussed in the next section.

We define a music splicing system using the Note representation as a Note
Music Splicing System Snmss. Such a system is defined by an initial ground
data set of Bach’s chorales, represented as words (initial set of words Inmss
on the alphabet Anmss), and a set of well-established rules in classical music
composition (set of splicing rules Rnmss) obtained by extracting information
about the notes. The language generated contains words that represent pieces
of “new” chorales in the Bach’s style. Formally, a Note Music Splicing System
is a triple Snmss = (Anmss, Inmss,Rnmss). Among the generated words we
choose the best solution according to the evaluation function that we will
define in Section 6.1.

The alphabet Anmss is used to specify the notes. We set Anmss =
AV ∪ AN ∪ AO, where AV = {β, τ, α, σ} is the voices alphabet (β, τ, α, σ
refer to bass, tenor, alto, and soprano); AN = {C, C#, D[, D, D#, E[, E,
F , F#, G[, G, G#, A[, A, A#, B[, B} is the notes alphabet and AO =
{2, 3, 4, 5, 6} is the octaves alphabet. Using Anmss we can represent 4-voice
chorale-like music as words. Given a 4-voice composition C = (c1, . . . , cn),
each ci is a chord which can be represented as a word wi over Anmss, for
each 1 ≤ i ≤ n. Specifically wi = βxiτyiαviσzi, where xi, yi, vi, zi ∈ ANAO,
for each 1 ≤ i ≤ n. So, the composition C = (c1, ..., cn) is represented as
w(C) = w1w2 · · ·wn.

Example 2 Let us consider the chorale fragment C (from Bach’s Chorale
BWV 32.6) shown in Figure 1. The fragment consists of 4 chords: C =
(c1, c2, c3, c4). We have: w1 = βG3τB3αD4σG4, w2 = βF#3τA3αD3σA4,
w3 = βG3τG3αD4σB4, w4 = βD3τG3αD4σA4, therefore:

w = βG3τB3αD4σG4βF#3τA3αD4σA4βG3τG3αD4σB4βD3τG3αD4σA4.

To define Inmss, we consider the ground set G containing 10 Bach’s
chorales3. Each one of these 10 chorales was transposed in every tonality.

3The 10 chorales in the ground set G are BWV 3.6, BWV 10.7, BWV 11.6, BWV 12.7,
BWV 13.6, BWV 14.5, BWV 20.7, BWV 20.11, BWV 31.9 and BWV 32.6.
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Figure 1: Note representation. Fragment of the Bach’s Chorale BWV 32.6.

For each obtained chorale C = (c1, . . . , cn), given the corresponding word
W (C) = w1 · · ·wn, we inserted wi in Inmss, for each 1 ≤ i ≤ n.

The aim is to define rules that generate good music patterns. So the
chorales in G have been first analyzed, and then single chords have been
extracted so that we can generate music that is closer to that in G. During the
chord extraction, we also attached information about the degree of the scale
on which the chord is built to the extracted chord. This information will be
crucial in re-arranging the chords, by means of splicing rules, so that specific
sequences of chords (e.g., cadences) will be produced. As done for the initial
set, we have transposed each extracted chord in all 12 tonalities. We call
Chords(G) the set of these chords. For each extracted chord c ∈ Chords(G),
we denote with Degree(c) the degree of c. The set of words associated with
Chords(G) is W(Chords(G)).

We decided to define the splicing rules exploiting the most used musical
cadences; additionally, we also impose that a composition starts and ends
with a chord built on the I degree of the scale, since this is what normally
happens. Thus we can partition all the rules in three groups:

Group 1 (forcing I to start). For each c1, c4 ∈ Chords(G)), such that Degree(c1) =
I, we define a rule r = w1|ε$ε|w4 , where w1 is the word associated to c1 and
w4 is the word associated to c4. Moreover we also insert w1 in Inmss.

Group 2 (forcing cadences). For each c1, c2, c3, c4 ∈ Chords(G), such that
Degree(c1) → Degree(c4) and Degree(c3) → Degree(c2) are cadences, we define
r = w1|w2$w3|w4 where wi is the word associated to ci, for i = 1, 2, 3, 4.

Group 3 (forcing I as ending). For each chords c1, c4 ∈ Chords(G), such that
Degree(c4) = I, we define r = w1|ε$ε|w4 where w1 is the word associated to
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c1 and w4 is the word associated to c4. The word w4 is also inserted into
Inmss.

Using the 10 chorales in G we have obtained 2160 chords. The above set of
rules, applied to the ground set G, yields a total of 1, 658, 880 rules in Rnmss.

4.1. Limitations

The Note representation suffers from some limitations; on one hand, the
quality of the music is lower compared to the Tonality-degree representation
because the former uses less information about the music; moreover it is
also not efficient with respect to both space and time complexity. Indeed an
empirical evaluation has shown that the system based on the Note represen-
tation is quite slow and uses a lot of memory. From an analytical point of
view, this can be justified by the fact that in such a representation, there is
no information about the tonality and degree of the chords. This means that,
in order to define the rules, we have first to transpose all the chords extracted
in all the tonalities, and then we have to build the rules by considering all
possible combinations. This involves for a lot of memory usage and conse-
quently time consumption. Formally, given an initial set of chorales G, the
time and space complexities of the Note music splicing system are quadratic
in |Chords(G)|, i.e., O(|Chords(G)|2).

In Section 7, we report the results of some experiments in which execution
time and memory consumption, for very large initial sets and executions with
many iterations, can significantly increase.

5. Tonality-degree Representation

In order to overcome the limitations described in Section 4.1, we intro-
duce the Tonality-degree representation and then we build a Tonality-degree
music splicing system (Stdmss for short). The basic idea is to increase the
musical information in the Note representation by also considering music
degree information for each beat of the composition. The use of more infor-
mation allows the automatic composer to produce better quality music using
less time and space.

Similar to what defined in Section 4, we build an initial set of words
starting from a ground data set of Bach’s chorales. Then, we apply the
splicing rules on the set of initial words repeating it many times; among
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the generated words we choose the best solution according to an evaluation
function that we will define in Section 6.1.

The splicing system Stdmss consists of three components: Atdmss is the
alphabet of the symbols, Itdmss is the initial of words and Rtdmss is the
set of rules. In the following we will describe such components in order to
define the system Stdmss = (Atdmss, Itdmss,Rtdmss).

5.1. The alphabet Atdmss
For the Tonality-degree representation we use the voice alphabetAtdmss.

We set Atdmss = AV ∪AN ∪AO∪AT ∪AQ where AV is the voices alphabet,
AN is the notes alphabet andAO is the octaves alphabet, as defined in Section
4. Additionally, we introduce the tonalities alphabet AT = {C, C#, D[, D,
D#, E[, E, F , F#, G[, G, G#, A[, A, A#, B[, B}, the qualities alphabet
AQ = {M,m} (where M stands for major tonality and m for minor tonality),
and the degree alphabet AD = {1, 2, 3, 4, 5, 6, 7}.

As explained in Section 4 an entire composition C = (c1, ..., cn) is rep-
resented as w(C) = w1w2 · · ·wn. Given a set of chorale-like compositions
C = {C1, . . . , Ck}, the set of resulting words is W(C) = {w(C1), . . . , w(Ck)}.
We will also refer to C as the set of 4-voice compositions associated toW(C).

Example 3 Let us consider again the music fragment C (from the Bach’s
Chorale BWV 32.6) shown in Fig. 1. To use the Tonality-degree representa-
tion, we need to observe more information about the composition. In partic-
ular, the fragment is in G major tonality, that is denoted with GM. There
are 4 chords and the sequence of degrees is I − V − I − V . The I degree is
denoted with 1 and the V degree is denoted with 5. Such information are
encapsulated in the new representation as follows:
w1 =GM1βG3τB3αD4σG4GM1, w2 =GM5βF#3τA3αD4σA4GM5,
w3 =GM1βG3τG3αD4σB4GM1, w4 =GM5βD3τG3αD4σA4GM5, so
w = w1w2w3w4.

5.2. Initial set and rules definition

The initial set was described in Section 4. We want to emphasize that the
definition of the rules is crucial because they determine the language being
generated. Similar to the Note representation, we start from the ground data
set G obtained by analyzing a set of Bach’s chorales, and we model the set
of splicing rules by using the theory of music harmony. However, in the Note
representation system we built the rules by considering all the combinations
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of the extracted chords. With the Tonality-degree representation system,
instead, we directly integrate the degree and the tonality of the chord in the
word representation of each chord. The advantage is that we do not need to
transpose each chord in all 12 tonalities since to define a rule we only need to
use extracted chords having specific tonalities and degrees. This guarantees
a considerably smaller number of rules. In addition, with the Tonality-degree
representation we directly extract the rules for the modulations.

As a consequence, given an initial set of chorales G, and the set Chords(G)
of chords extracted by G, the time and space complexities of the Tonality-
degree music splicing system are linear in |Chords(G)|, i.e., O(|Chords(G)|).

As proposed in [10] we define splicing rules on the basis of the classical
harmonic rules (see Section 3.1). Furthermore, we impose that a composition
starts and ends with a I degree of the scale, since this is what usually happens
in chorales music. Hence, we partition all the rules in four sets:

Group 1 (forcing I to start). For c1, c4 ∈ Chords(G), satisfying Degree(c1) = I
and Tonality(c1) = Tonality(c4), we construct the rule r = w1|ε$ε|w4 where,
w1 and w4 are the word associated to c1 and c4, respectively. We also add
w1 to Itdmss.

Group 2 (forcing cadences). For c1, c2, c3, c4 ∈ Chords(G), if Degree(c1) →
Degree(c4), with Tonality(c1) = Tonality(c4) is a cadence, and Degree(c3) →
Degree(c2), Tonality(c3) = Tonality(c2), is also a cadence, we define r =
w1|w2$w3|w4 where wi is the word associated to ci, for i = 1, 2, 3, 4.

Group 3 (forcing I as ending). For c1, c4 ∈ Chords(G), satisfying Degree(c4) =
I and Tonality(c1) = Tonality(c4), we define r = w1|ε$ε|w4 where w1 and w4

are the words associated to c1 and c4, respectively. The word w4 is also
inserted into Itdmss.

Group 4 (forcing modulations). Let ci, ci+1 ∈ Chords(G) be consecutive chords
such that Tonality(ci) 6= Tonality(ci+1). Let cj, cj+1 ∈ Chords(G) be two
other consecutive chords, such that Tonality(cj) 6= Tonality(cj+1). Then we
define r = wi|wi+1$wj|wj+1 where wk is the word associated with ck, for
k = i, i+ 1, j, j + 1.

The ground set G, containing 10 Bach’s chorales, produced 138 chords. The
above set of rules, applied to these 138 chords yields a total of 8, 598 rules
in Rnmss. We want to emphasize that both the number of chords and the
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number of rules are significantly reduced compared with those of the Note
representation.

6. Implementation details

We now give details about the implementation of the automatic composer
based on the Tonality-degree representation.

In general, given a splicing system S = (A, I,R), the corresponding
generated language L(S) is an infinite set of words. Moreover, we recall that
L(S) = γ∗(I) =

⋃
i≥0 γ

i(I) (Definition 1 and Eq. 1). In this equation the
number i of iterations of the splicing operation is unbounded.

Of course, for practical reasons, when we consider the splicing language
L(Stdmss) generated by the music splicing system Stdmss we need to fix
bounds for both these parameters (cardinality of the set and number of itera-
tions). Thus, we fix a number k of iterations and a maximal cardinality pmax.
We also define k languages as follows. We set L0 = Itdmss = γ0(Itdmss).
For any i, 1 ≤ i ≤ k, we consider L′i = Li−1 ∪ γ′(Li−1), which corresponds to
enlarge Li−1 by an application of all the rules in Rtdmss to all possible pairs
of words in Li−1. If Card(L′i) ≤ pmax, then Li = L′i. Otherwise, Li is ob-
tained from L′i by erasing the Card(L′i)−pmax words in L′i that are the worst
with respect to two functions, namely the harmonic function, i.e., the quality
of the sequence of chords in the chorale, and the melodic function, i.e., the
appropriate placement of the notes within each chord. Therefore, to measure
the quality of the compositions and choose the better solutions we consider a
multi-objective function. Notice that since we use a multi-objective function,
the best solutions are given by those in the Pareto front, that represents the
set of all non-dominated solutions. Finally, we define L(k, pmax) = ∪1≤i≤kLi

as the (k, pmax)-language generated by Stdmss. We remark that L(k, pmax)
is the language considered during the experiments described in Section 7.

In the following section we describe the multi-objective function.

6.1. The multi-objective evaluation function.

As said in Section 1, in this work we define an evaluation function that,
on one hand reflects the classical music rules, and on the other hand ex-
tracts statistical information from a corpus of existing music. Specifically we
extracted statistical information from a set of Bach’s chorales.
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The multi-objective evaluation function is composed of two objective
functions: an harmonic function fh and a melodic function fm. Both func-
tions have the following general form:

f =
∑
i

aiwi (2)

where ai are coefficients and wi are weights.
The weights wi are used to express the objective part of the evaluation

while the coefficients are used to express a subjective component. The coeffi-
cients ai are normally obtained with a statistical analysis of Bach’s chorales.

The harmonic function. The harmonic function fh(C), is defined as fol-
lows:

fh(C) =
n−1∑
i=1

aiwi, (3)

evaluates the harmonic quality of a chorale C = (c1, . . . , cn) by considering
all pairs of consecutive chords ci, ci+1. The objective is to maximize fh(C).
In our approach the coefficients represent the style of Bach while the weights
represents well known rules from the theory of harmony. More specifically
we consider the following three possible cases:

1. ci and ci+1 are chords in the same major tonality

2. ci and ci+1 are chords in the same minor tonality

3. ci+1 is identified as a modulation change, that is ci belongs to the
previous tonality while ci+1 belongs to a new tonality (regardless of the
mode, major or minor).

For each of these cases, we have defined a set of coefficients and weights.

• Weights. We relied upon well-known rules from the theory of harmony.
We used as reference the description of the major harmonic progressions
given by ([41], page 17). The following table summarizes the “rules”
for chord passages in a major tonality.

To compute the weights wi we need to define a distribution for the
classes “often”, “sometimes” and “seldom” defined in Table 2. So, given
a specific chord ci, the weight for the next chord will be a function of
the preceding one according to such a distribution. More precisely, we
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Major Cadence

Degree often sometimes seldom never

I → I, IV, V vi ii, iii vii◦

ii→ ii, V IV, vi I, iii vii◦

iii→ iii, vi IV I, ii, V vii◦

IV → IV, V I, ii iii, vi vii◦

V → I, V IV, vi ii, iii vii◦

vi→ ii, V, vi iii, IV I vii◦

vii◦ → I, iii, vii◦ vi ii, IV, V −

Table 2: Typical harmonic chord passages in a major tonality (see [41]). The
symbol − means that for a given degree there is no chord in the corresponding
class.

Major Degree

Degree I ii iii IV V vi vii◦

I → 0.266 0.025 0.025 0.266 0.266 0.150 0.002

ii→ 0.025 0.400 0.025 0.075 0.400 0.075 0

iii→ 0.016 0.016 0.400 0.150 0.016 0.400 0.002

IV → 0.075 0.075 0.025 0.400 0.400 0.025 0

V → 0.400 0.025 0.025 0.075 0.400 0.075 0

vi→ 0.050 0.266 0.075 0.075 0.266 0.266 0.002

vii◦ → 0.400 0.016 0.016 0.400 0.016 0.150 0.002

Table 3: Weights for chord passages in a major tonality

set a probability distribution (Xoften, Xsometimes, Xseldom) and we assign
the weight as follows: ci+1 will be one of the chords in the “often” class
the Xoften percentage of the times, one of the chords in the “sometimes”
class the Xsometimes percentage of the times and one of the chord in the
“seldom” class the Xseldom percentage of the times.

To choose the best distribution we have used the following approach.

We denote by d the distribution used, k the number of iterations and by
pmax the maximum cardinality of a generated set of solutions. We fix
the distribution d ∈ Dist, where Dist is a set of distributions (Xoften,
Xsometimes, Xseldom), built according to personal considerations about
the meaning of often, sometimes and seldom. We remark that in our
experiments, we have |Dist| = 50.

Furthermore, we fix the number of iterations k ∈ K = {10, 50, 100,
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500, 750, 1000, 2500, 5000, 7500, 10000}, and the max size pmax ∈ P
= {10, 50, 100, 500, 750, 1000}.
For each triple (d, k, pmax) we run 5 executions of the music splicing sys-
tem based on the Tonality-degree representation and we choose the best
solution Cbest, according to the evaluation function described in this sec-
tion. In order to choose the best distribution we observed the structure
of the generated solutions. In our approach we say that a chorale is
well-formed whether it starts with a I degree and ends with the cadence
V − I. This is a typical condition of well composed chorales. Thus, we
compute the average number of music compositions well-formed. As
better results, we have obtained that with d = (80, 15, 5), 87% of the
solutions are well-formed, with d = (85, 10, 5), 81% are well-formed,
with d = (70, 20, 10), 76% are well-formed, with d = (60, 25, 15), 73%
are well-formed, and with d = (50, 40, 10), 69% are well-formed.

So, we set as (Xoften, Xsometimes, Xseldom) = (80, 15, 5) the distribution
used for the experiments which will be described in Section 7.

For example, if ci is chord I, then the coefficient for ci+1 will be 0.8/3 '
0.26 for each one of I, IV and V , it will be about 0.26 for vi and
0.05/2 = 0.025 for ii and iii. Table 3 shows all the weights for chord
passages within a major tonality.

Similarly, we obtain the weights for chord passages within a minor
tonality. Table 4 summarizes the typical chord passages suggested
by [41]. The passages are very similar to the ones in a major tonality
with some difference due to the possibility of using the V II chord in a
minor tonality. Table 5 shows the corresponding weights. Notice that
for the row the chord vii◦, there are no chords in the “sometimes” class;
hence for this row we use a split of 95%-5% among the “often” and the
“seldom” class.

To assign the weights for consecutive chords when a change of tonal-
ity occurs, we used the distance in the circle of fifths (see Figure 2),
between the starting and the ending tonality. More specifically the
weight wModulation(S,E) is the length of the shortest path from the
starting tonality S to the ending tonality E. For example, the distance
between D major and C minor is 5 because we can go from D major
to C minor either counterclockwise using 5 steps or clockwise using 7
steps. As before, the weights for the chord passages are computed by
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Minor Cadence

Degree often sometimes seldom never

i→ i, iv, V V I ii◦, III, vii◦ V II

ii◦ → ii◦, V IV, V I i, III vii◦

III → III, V I iv i, ii◦, V vii◦

iv → iv, V i, ii◦ III, V I vii◦, V II

V → i, V IV, V I ii◦, III vii◦, V II

V I → ii◦, V, V I III, iv i vii◦, V II

vii◦ → i − vii◦ −
V II → III, V II V I iv i, ii◦, V, vii◦

Table 4: Typical harmonic chord passages in a minor tonality (see [41]). The
symbol − means that for a given degree there is no chord in the corresponding
class.

Minor Degree

Degree i ii◦ III iv V V I vii◦ V II

I → 0.266 0.016 0.016 0.266 0.266 0.150 0.016 0

ii◦ → 0.025 0.400 0.025 0.075 0.4 0.075 0 0

III → 0.012 0.012 0.400 0.150 0.120 0.400 0 0.120

iv → 0.075 0.075 0.025 0.400 0.400 0.025 0 0

V → 0.400 0.025 0.025 0.075 0.400 0.075 0 0

vi→ 0.050 0.266 0.075 0.075 0.266 0.266 0 0

vii◦ → 0.950 0 0 0 0 0 0.050 0

V II → 0 0 0.400 0.050 0 0.150 0 0.400

Table 5: Weights for chord passages in a minor tonality.

defining a distribution for the classes often, sometimes and seldom, and
so the values are always between 0 and 1. The weights for the modu-
lations, instead, are computed as the distance on the circle of fifths of
the tonalities. Thus, in order to maintain such weights in a compara-
ble range with the weights for chord passages (between 0 and 1), we
normalize the above distance over the maximum possible value, that
is 6. For example, the (normalized) harmonic distances from C to G,
D and A are, respectively 1/6, 2/6 and 3/6; the (normalized) harmonic
distances from C to B[,E[ and A[ are, 2/6, 3/6 and 4/6 respectively;
the (normalized) harmonic distances from A[ to B[ minor, D] minor
and G] minor are, 1/6, 2/6 and 3/6 respectively.
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Figure 2: Circle of fifths.

• Coefficients. The coefficients have been obtained by performing a sta-
tistical analysis over a large corpus of Bach’s chorales. In details, we
have written a program that analyses chorales and that extracts in-
formation from the used harmonization. In particular, we looked for
adjacent chords and we counted the percentage of passages from one
chord to the subsequent one. We analyzed a corpus of Bach’s chorales,
ranging from chorale BWV 253 through chorale BWV 306 and from
chorale BWV 314 to chorale BWV 438.

Tables 6, 7, and 8 summarize the result of the analysis. Notice that the
sum of all the percentages in Tables 6, 7 is smaller than 100 because
there have been cases where our program was not able to identify the
chords; those cases have not been classified, but simply ignored. In
Table 8 many entries are not specified because those specific changes
of tonality were not encountered.

As an example, let us consider the music fragment shown in Figure 1.
Thus, the harmonic value: fh(C) = fh(I, V ) + fh(V, I) + fh(I, V ) =
18.5 ∗ 0.266 + 22.5 ∗ 0.4 + 18.5 ∗ 0.266 = 22.7706 = 18.842.

The melodic function. The melodic function fm(C) evaluates the melodic
quality of a chorale C by performing an “exception analysis” to identify stylis-
tic anomalies and errors. Each exception has an associated severity level that
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Major Degree

Degree I ii iii IV V vi vii◦

I 8.1 2.5 0.5 0.7 18.5 1.7 0.3

ii 0.9 0.6 0.4 0.2 10.4 0.2 0.2

iii 0.9 0.3 0.6 0.5 0.8 0.6 0.1

IV 0.6 0.5 0.1 0.3 5.3 0.1 0.2

V 22.5 0.6 1.5 0.8 10.8 2.0 0.1

vi 0.4 0.6 0.6 0.4 2.2 0.7 0.1

vii◦ 0.3 0.0 0.0 0.1 0.1 0.1 0.1

Table 6: Coefficients for consecutive chords in the same major tonality.

Minor Degree

Degree i ii◦ III iv V V I vii◦ V II

I 17.1 0.7 1.4 6.4 15.6 1.4 2.1 1.4

ii◦ 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0

III 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

iv 2.3 0.2 0.2 1.4 9.5 0.4 0.3 0.3

V 22.6 0.0 0.0 0.8 8.0 0.0 0.0 0.1

V I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

vii◦ 0.5 0.0 0.1 0.2 0.4 0.0 0.0 0.0

V II 1.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Table 7: Coefficients for consecutive chords in the same minor tonality

indicates its relative importance: “warning” and “error”. A warning excep-
tion is intended to highlight a feature that might be stylistically unusual; an
error exception indicates a problem that should be corrected. We assign the
weights to an exception on the basis of his severity level: 2 for errors and 1
for warnings.

We consider two exception classes: motion exceptions and voicing excep-
tions. For each class we define a certain number of subtypes (see Table 9).
Many other categories and subtypes are possible and the rule system adopted
by our algorithm can be easily expanded.

The coefficients have been obtained with a statistical analysis of a large
corpus of Bach’s chorales, as done for the harmonic function.

Given a chorale C, its melodic value is given by:

fm(C) =
∑
i

aiwi,
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C C# D D# E F F# G G# A A# B Cm
C#m

Dm
D#m

Em Fm
F#m

Gm
G#m

Am
A#m

Bm

C - 0.1 2.95 4.6 0.1 1.48
C# -

D - 3.2 2.4 1.15
D# - 1.85

E - 1.9
F - 2.7

F# 2.4 - 1.1
G 4.5 2.9 - 1.65

G# - 1.2
A 2.87 -

A# 2.5 - 1.6
B 1.9 -

Cm -
C#m -
Dm -

D#m -
Em 1.7 -
Fm -

F#m -
Gm 1.4 -

G#m -
Am 1.5 -

A#m -
Bm 1 -

Table 8: Coefficients aModulation for change of tonalities. Major tonalities are
shown in red bold.

where the index i runs over all errors and the values of ai and wi are reported
in Table 9.

Exception Class wmel amel Meaning

Motion exceptions
parallel octaves 2 0.05 consecutive octaves, same two voices
direct octaves 1 0.01 octaves by similar leap, any two voices
parallel fifths 2 0.14 consecutive fifths, any two voices
direct fifths 1 0.02 fifths by similar leap, any two voices
parallel unisons 2 0.01 consecutive unisons, any two voices
direct unisons 1 0.01 unisons by similar leap, any two voices

Voice exceptions
voice jump 1 6.90 average motion, any voice
voice crossing 1 0.19 voice above/below adjacent voice, any pair
voice overlap 1 0.04 voice above/below previous adjacent note
voice range 1 0.08 voice out of normal vocal range
voice spacing 1 0.14 wider that an octave, upper voices

Table 9: Single voice and two voices errors: weights and coefficients.

The aim is to minimize fm(C) (notice that since fm(C) ≥ 0 the minimiza-
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tion problem can be easily turned into a maximization problem by considering
the value of −fm(C); in the implementation we exploit this observation).

6.2. The rhythmic transformation of the voices.

We remark that when a chorale is generated, it only represents a se-
quence of chords organized in tonalities areas. In order to make it a musical
composition by inserting rhythmic variations, we need to set some rhythmic
parameters. Specifically, we need to set the meter (see Section 3) of the com-
position and to assign to each note a duration. Thus, we apply an operator
which:

1. Set the meter value, by choosing randomly one of the following values:
2
4
, 3

4
, 4

4
, 6

8
, 9

8
and 12

8
.

2. Set the duration of the notes. Initially, the duration of each note is
assumed to be equal a beat duration. Then the operator inserts, in
each chord ci, non-harmonic tones (see Section 3.1). Let Bi, Ti, Ai, Si

be the lists of notes for ci, for each note nj with a uniform distribution
of probabilities, the operator (if possible) adds a non-harmonic tone n′j
in the list, after nj. Notice that, the insertion of n′j after nj involves
a redistribution of the original duration of nj, which we split evenly
between the two notes nj and n′j (half to each).

7. Experimental analysis

In this section we report the results of a set of tests that we carried out
to assess the validity of the proposed Tonality-degree representation. Specif-
ically, we analyzed both the music quality of the produced compositions, as
well as the performance of the system in terms of execution times and mem-
ory consumption. Moreover, with regard to the music quality assessment, we
analyzed the compositions from a subjective point of view by interviewing
music experts, and by an objective point of view by examining the harmonic
and melodic values of the generated music compositions.

In our experiments we compared the composer that leverages the Tonality-
degree representation, with our earlier system that exploits the Note repre-
sentation, and with four other composers that implement meta-heuristics:
(1) Multi-Objective Genetic Algorithm, (2) Tabu Search, (3) Simulated An-
nealing, and (4) Particle Swarm Optimization.

Notice that we have used the chromosome representation to implement
the meta-heuristic composers, the organization of the initial population, and
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the operators as defined in [12]. We remark that each strategy takes as input
a figured bass line and produces a complete 4-voice harmonization of the bass
line.

7.1. Configuration of the experiments

As defined in Sections 4 and 5, we denote by Snmss and Stdmss the music
splicing systems based on the Note representation and the Tonality-degree
representation, respectively. We denote by k the number of iterations and
by pmax the maximum size of a generated language. We fix the number k
of iterations in the set K = {10, 50, 100, 500, 750, 1000, 2500, 5000, 7500,
10000}, and the max size pmax in the set P = {10, 50, 100, 500, 750, 1000}.

For each pair (k, pmax) we performed the following steps:

1. We run 10 executions of both Snmss and Stdmss. For each of these
two systems, among the obtained solutions, we choose the best solution
Cbest, according to the evaluation function described in Section 6.1. The
bass line of Cbest will be used in the next step.

2. We run 10 executions of each composer implementing one of the meta-
heuristics. Each composer takes as input: (1) the bass line of Cbest, (2)
k the number of generations, (3) pmax the size of the initial population,
(4) the chromosome definition given in [12], and (5) the evaluation
function described in Section 6.1 as the fitness function.

3. For each experiment and for each composer we computed the aver-
age harmonic and melodic values, the average execution time and the
average memory consumption.

In total, we have |K| × |P | experiments and in the following section we
report the obtained results.

7.2. Results

Results of this study are summarized in Figs. 3 and 5. As aforementioned,
we report results about both music quality and performance.

7.2.1. Music quality

The quality of music produced by our system has been evaluated quan-
titatively, by using the corresponding harmonic and melodic analysis, and
qualitatively, by interviewing music experts.
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Harmonic and melodic analysis. As shown in Figures 3(a) and 3(b), the
Tonality-degree music splicing system generates better solutions in terms
of the average harmonic and melodic values. We have observed that for the
harmonic function the systems reached a stable behavior after approximately
10000 generations. In fact after 10000 generations the Tonality-degree music
splicing system always generates better solutions, and the average value of
the better solutions produced by every approach remains substantially the
same. Thus, we decided to show the behavior of the composers up to 10000
generations. About the melodic function: while we have to maximize the
harmonic function, we have to minimize the melodic function. Hence, the
better solutions are those that have a lower melodic value (in terms of melodic
quality). For each approach the corresponding function is decreasing. Fur-
thermore, we have observed that for the melodic metric, the systems reached
a stable behavior after approximately 1000 generations. Indeed, after 1000
generations the Tonality-degree music splicing system always generates bet-
ter solutions, and the average melodic value of the better solutions produced
by every approach remains substantially the same. Thus, we decided to show
the behavior on the corresponding composers up to 1000 generations.

Music experts interview. It is well-known that the quality and the listen-
ability of a musical composition is a subjective judgment. This means that
any evaluation may deeply depend on several factors, such as music exper-
tise, personal preferences, and so on. Moreover, the individual’s judgments
may vary according to several metrics, such as, lyrical content, arrangement,
instrumentation, engagement, innovation, emotion, and so on.

However, in order to derive some insights about the quality and the lis-
tenability of the compositions produced by our composer against the quality
and the listenability of the compositions produced by composers based on the
other meta-heuristics, we interviewed a small sample of people with music
backgrounds. Specifically, we recruited five domain experts among conserva-
tory’s teachers and professional musicians. All participants had more than
20 years of experience in the music field.

We defined a list of MIDI files by selecting, for each system, the best 4
solutions produced during the experiments, for a total of 24 music composi-
tions. Each composition was long about 64 measures. The list was submitted
to the experts in a random order. In our music subjective evaluation test, we
asked participants to listen to such music pieces and respond to the following
questions: (1) “How do you rate the quality of the composition?”, and (2)
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Figure 3: Performance results in terms of harmonic and melodic metrics.

“How do you rate the listenability of the composition?” (where rating is on
a 7-point Likert scale). The quality metric is solely based on some melodic
and harmonic rules. The listenability metric is based solely on the musical
perception of the interviewee (not on the resemblance of the music to the
original by Bach). We also asked participants to provide a motivation about
their judgments (open-ended optional questions).

We remark that during the test, participants were not aware of the har-
monic and the melodic values of the music compositions.
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As shown in Fig. 4, results of test revealed that compositions produced
by the Tonality-degree music splicing system have the best rating in terms
of both “quality” and “listenability”. Participants were highly impressed
about the soundness of the compositions produced by the Tonality-degree
music splicing system, especially by considering that music was automatically
produced by a computer. Moreover, all participants agreed about the fact
that such compositions seemed to adhere to the harmonic and melodic rules,
and that the generated music seemed never dissonant, and in particular 2
compositions seemed to fully reflect Bach’s style. These positive results are
due to the fact that our composer is able to start with fragments extracted
by Bach’s chorales, and through the application of splicing rules, is able to
generate music whose structure appear coherent with the Bach’s style.

0 1 2 3 4 5 6 7

Tonality-degree

Swarm optimization

Simulated annealing

MO Genetic

Note

Tabu search

Listenability Quality

Figure 4: Results about the average quality and listenability metrics of the best
solutions.

Furthermore, we measured whether a correlation existed between the har-
monic and melodic values and quality and listenability subjective metrics,
respectively.

As we can see in Table 10, a positive correlation exists between harmonic
values and quality and listenability parameters, while we found out a negative
correlation between melodic values and the subjective parameters. During
the splicing process, the quality of the produced solutions increases thanks
to the application of the splicing rules. In our case, the splicing rules are
designed according to the harmonic rules. Therefore, during the splicing
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Table 10: Correlation coefficients between Harmonic and Melodic values against
Quality and Listenability metrics. Correlations significant at .01 level (∗∗), and at
0.05 level (∗).

Quality Listenability

Harmonic values .932∗∗ .930∗∗

Melodic values -.467∗ -.488∗

process, the harmonic improvement is more evident than the melodic one.
The perception of the quality and of the listenability by music experts may be
influenced by this behavior, and so the relation between quality and harmonic
values may be stronger than the relation between listenability and melodic
values.

Both the best produced compositions and the questionnaire submitted to
music experts are available online4.

7.2.2. Performance

In terms of average execution time, when the number of generations is
less than 5000, all systems show comparable behaviors (with except for the
Note representation). For a number of generations greater than 7000, the
Tonality-representation produces results in a shorter time.

In terms of average memory consumption, as reported in Fig.5(b), within
750-1000 generations the results of all strategies are very similar. For a
number of generations greater than 750-1000 generations, the Tonality-degree
representation produces results by consuming less memory.

Similar to the harmonic function analysis, about the execution time and
the memory consumption, after approximately 10000 generations, the behav-
ior of the systems and the average values for each approach, remain substan-
tially the same, with the Tonality-degree music splicing system that produces
always better solutions in a shorter time and by consuming less memory.

In summary, the Tonality-degree music splicing system outperforms the
other analyzed approaches by allowing to obtain high quality results. In par-
ticular, we observed that the production of high music quality solutions is car-
ried out in a shorter time and using less memory, with respect to the other ap-

4http://www.di.unisa.it/~delmal/research/usability/Splicing/
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Figure 5: Performance results: execution time and memory consumption.

proaches. In a further analysis5, out of the scope of this paper, we performed
a user evaluation with a sample of students having skill in music and evo-
lutionary methods. Results showed that the Tonality-degree representation
allowed participants to produce code with better quality and quicker. More-

5http://www.di.unisa.it/~delmal/research/usability/Splicing/

UserEvaluation.pdf
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over, participants were satisfied about the easiness of the Tonality-degree
representation.

8. Conclusion

Various bio-inspired processes have been used to define algorithms for
automatic music composition: evolutionary algorithms, bio-inspired algo-
rithms, formal grammars, cellular automata, machine learning. In this work
we provided a new system for automatic music composition based on the
splicing model, a mechanism for generating words inspired by the biological
recombination of the DNA.

Starting with the approach proposed in [10], we have defined an aug-
mented representation approach in which additional musical information is
incorporated into the word representation of the chords. We have showed
that the use of this representation improves musical splicing system in terms
of time and memory performance, and in terms of harmonic and melodic
quality. Also, in this paper we compared the music produced by the system
based on the Tonality-degree enhanced representation with the earlier Note
representation and several meta-heuristics. The results show that the music
splicing approach is a new valid bio-inspired approach for automatic music
composition, in alternative to the widely studied automatic composers based
on meta-heuristics strategies.

Some future work on classical music include: (1) an investigation of the
behavior and the efficacy of a music splicing system by using the corpus of
chorales of a different composer than Bach, (2) a statistical analysis on a
very general corpus of chorales composed by the main classical composers, to
compute an objective distribution for the weights used to evaluate the com-
positions. We remark that to build such a corpus is a very arduous task, due
to the lack of the needed quantity of significant music materials in electronic
format. Additionally, a further investigation could analyze the efficacy of
a splicing system on different types of music genres such as contemporary
music.

In this paper, in order to assess the quality of the produced music we
exploited only considerations about the melodic and harmonic aspects. There
are several other aspects that could be considered, such as, the structure of
the composition, the overall logical coherence, the rhythmic aspect, and so
on. Considering all these other facets will probably lead to composition that
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are much closer to a Bach’s original. The current output is certainly not
close to being similar to a Bach’s composition but represents a first step.

It would be also interesting to investigate other applications of splicing
systems based on the approach proposed in this work. By leveraging the
application of the combinatorics on words and formal languages in differ-
ent fields, including bioinformatics, data compression and algorithms, one
can investigate whether splicing system strategies are able to produce better
results with respect to meta-heuristics already used in those fields.
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