GANT: Gaze analysis technique for human identification
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ABSTRACT

Anatomical biometric recognition is widely used in a large number of civilian and government
applications, within well-tested biometric parameters. New sensors and matching algorithms have led
to the deployment of soft biometrics, which may provide a fast and reliable identity finding procedure.
These traits are physical or behavioral human characteristics like skin color, eye color, and gait, used by
humans to recognize their peers, presenting distinctiveness and permanence to identify an individual
uniquely and reliably. This paper regards a novel Gaze ANalysis Technique, namely GANT, exploiting a
graph-based representation of fixation points obtained by an eye tracker during human computer
interaction. The main goal is to demonstrate the conjecture that the way an individual looks at an image
might be a personal distinctive feature, i.e. a soft biometric application. A novel dataset acquired through
the Tobii 1750 remote eye tracker has been used to demonstrate GANT accuracy in soft biometry, in
terms of Receiver Operating Characteristic Curve (ROC), Equal Error Rate (EER) and Cumulative Match

Curve (CMC).

1. Introduction

Eye-based biometrics has received growing attention in the last
few years. On the one hand, this may be due to the increasing
availability of eye trackers, i.e. devices able to measure eye data
such as gaze direction and pupil size. On the other hand, eye
features and behaviors are more and more regarded as potentially
safer authentication methods, especially when used in combina-
tion with traditional identity verification techniques.

In fact, most eye-based approaches pertain to the so-called
“soft biometrics” category [1]. This means that, rather than finding
a one-to-one matching between certain eye characteristics and a
subject, these methods can provide a probability that specific
features are associated to a certain person. Employed together
with usual authentication solutions, such as those exploiting PINs
or passwords, soft biometrics can increase security while not
burdening the user with additional difficult-to-remember secret
codes.

To date, the iris is probably the most studied eye feature for soft
biometrics [2], used as a potential predictor for ethnicity (e.g. [3]),
gender identification (e.g [4]) or to obtain a small subset of
identities where actual recognition will be performed (e.g. [5,6]).
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However, while iris-based identification techniques analyze static
aspects of the human eye, an alternative approach is to use
information connected to eye movements (measured through an
eye tracker), to infer biometrically significant anatomical charac-
teristics of the oculomotor plant [7].

Eye tracking technology has greatly improved in the last few
years [8], and it is now possible to reliably find the user's gaze
direction (typically on a screen) using devices almost indistin-
guishable from ordinary LCD monitors. Embedding gaze detection
functionalities even into portable devices such as laptops and
tablets (which has already been done—see for instance [9,10]), can
enable the exploitation of eye movement data, making the so-
called gaze-based identification a potentially ubiquitous biometric
approach.

Eye movements occur as very fast, almost instantaneous,
saccades (whose duration is usually less than 100 ms), alternated
to fixation periods of about 100-600 ms (characterized by a
relative stability of the eye). These movements usually take place
in response to specific stimuli or mental processes. For example,
research has been carried out to discover relationships between
eye behaviors and emotional states (e.g. in the context of
e-learning [11,12]) or to analyze the cognitive processes in a
variety of tasks (e.g. in reading subtitles [13]). The so-called Eye-
Mind Hypothesis [14], in particular, states that there is a direct
correspondence between the user's gaze and his or her point of
attention, Some experiments [15] have indeed demonstrated that
while it is possible to move one's attention without shifting the
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gaze, the opposite is more difficult. According to Hoffman [16], on
the other hand, visual attention is always a little (100-250 ms)
ahead of the eye, and when attention moves to a new position, the
gaze is also moved there [17]. Apart from the different attention
theories developed to date, however, what is certain is that
attention is strictly correlated to eye behavior.

The vision process can occur both overtly and covertly, and it is
just this last “vision modality” that is strictly connected to a
person's cognitive and psychological processes [18]. Potentially,
proper eye parameters can thus be exploited for soft biometry, at
least to identify groups of possible persons or classes of cognitive
and emotional states.

A scanpath is the sequence of fixations detected by an eye
tracker during both overt and covert vision processes, and is also
one of the main sources of information for eye-based biometrics.
For instance, some kinds of authentication require the user to
explicitly fixate specific screen areas in sequence, while others
allow free observations of the displayed stimulus, such as a
photograph or a video [19].

In this paper we examine dynamic aspects of eye behaviors,
with the purpose to assess the relevance of eye movement
patterns as a soft biometry. The purpose of our paper is specifically
to verify the conjecture that the way an individual looks at an
image—in particular, at a face—might be a personal distinctive
feature, albeit possibly a weak one.

Another important aspect of this work is the creation of a
database suitable for gaze analysis. It is the first of this kind and it
is composed of the fixation point sequences recorded from the eye
movements of individuals while they were looking at different
images. As images used are all faces, with the same basic set of
features, in the same canonical geometry, we believe that the
differences between different observations were limited - because
all people usually look approximately the same areas of the face,
even if in a slightly different way - and we expect that using
images very different from each other (such as landscapes and
abstract images) will improve the recognition rate of the system.

The paper is structured as follows. Section 2 will briefly
describe some representative works that exploit eye characteris-
tics and activities for biometric purposes. Section 3 will describe
the database composition and the methods used for feature
extraction and matching. Section 4 illustrates the experimental
protocol and results. Finally in Section 5 we present our conclu-
sions, Section 6 lists the bibliography.

2. Related works

As said in the Introduction, different eye features and behaviors
can be employed to implement biometric systems.

In a relatively old work, Kasprowski and Ober [20] analyzed eye
movements (the gaze point coordinates) of subjects while following a
jumping point on the screen. After collecting data, a set of features
were extracted and analyzed through the Cepstrum technique (the
inverse Fourier transform of the logarithm of the power spectrum of a
signal). Different classifying algorithms were then used, namely k-
Nearest Neighbor, Naive Bayes, Decision Tree and Support Vector
Machines. Bednarik at al. [21] exploited various kinds of eye data,
including pupil sizes and their dynamics, gaze speeds and distances of
infrared reflections on the eyes. After building a feature vector, its
dimension was reduced using the Fast Fourier Transform and
Principal Component Analysis techniques. Tests included different
tasks, namely text reading, tracking of a moving cross and watching a
static gray-level image. Deravi and Guness [22] recorded gaze data of
testers while looking at some images for about 5s each. Gaze
durations, pupil positions, pupil sizes and gaze points were measured
and then analyzed using the Forward Feature Selection, Backwards

Feature Selection and Branch and Bound Feature Selection algorithms.
Holland and Komogortsev [23] assessed the effects of eye tracking
specifications and stimulus presentation on the biometric feasibility
of complex eye movement patterns. Through two experiments, they
examined the effects of varied stimulus type and varied spatial
accuracy and temporal resolution. A third test was carried out using
a low-cost eye tracker for cross-validation purposes. The authors
found that, for biometric purposes, eye trackers with spatial accuracy
of less than 0.5° and a sampling frequency greater than 250 Hz are
recommended. The combination of eye behaviors and iris structure
can of course provide better user recognition rates, although current
eye trackers may not be fully suitable for detailed iris analysis. For
instance, Komogortsev et al. [24] propose a biometric approach that
exploits three different eye features, specifically the eye anatomical
properties (represented by Oculomotor Plant Characteristics), the
visual attention strategies (represented by Complex Eye Movement
patterns) and the physical structure of the iris.

Like the study described in the present paper, the work by
Rigas et al. [25] focuses on the free observation of face images. In
each one of the eight test sessions carried out, participants
watched 10 photos depicting human faces for 4s each. Gaze
positions were directly used to build eye trajectories. The similar-
ity of spatial distributions of fixation points was quantified by
means of a graph theoretic measure based on the multivariate
generalization of Wald-Wolfowitz runs test. The obtained results
indicate the existence of characteristic patterns that can be
potentially exploited to discriminate persons.

Instead of static images, other investigations consider video-
clips as stimuli. For example, Kinnunen et al. [26] propose a task-
independent scenario in which short-term eye gaze direction is
used to build feature vectors modeled by means of Gaussian
mixtures. Eye movements, recorded while watching a 25 min long
video, are described as a histogram of all angles the eye travels
during a certain period. Liang et al. [27] present a video-based
biometric identification model in which visual attention features,
such as acceleration, geometric, and muscle properties, are
obtained from gaze data and employed as biometric traits to
recognize people. Experiments were carried out using a Back-
Propagation neural network and a Support Vector Machine.
Results showed that measuring video-based eye tracking data is
aviable solution for biometric applications.

Eye tracking approaches are also interesting because they can
allow the implementation of “intrusion detection” methods aimed
at finding potential user behaviors different from usual: substan-
tial discrepancies in eye activities may suggest that the current
user is not the habitual one, thus alerting the system. For example,
Holland and Komogortsev [28] present a variety of eye movement-
based biometric features and their capability to correctly differ-
entiate single persons. In particular, they investigate the scanpaths
deriving from reading processes. Biedert et al. [29] base their
intrusion detector on “learning effects”, assuming that users
become progressively more accustomed with certain tasks. In
some experiments, student testers were asked to perform com-
mon tasks such as check for emails, read messages from their
imaginary supervisor and perform specific actions connected with
their hypothetical thesis work. Silver and Biggs [30] used a multi-
modal approach considering both keystroke and eye-tracking
biometrics. While keystroke information seemed to provide better
results than eye tracking data, the combination of the two
modalities is a promising method.

Unlike intrusion detection systems, ATM-like solutions require
the user to explicitly perform certain eye tasks in order to
authenticate. For instance, De Luca et al. [31] propose an authen-
tication mechanism based on eye gestures, which derives from the
idea that it is easier to remember complex shapes than long
passwords or PINs. Gestures are obtained by moving the eyes in



specific ways, thus “drawing” patterns on the screen. Dunphy et al.
[32] developed a software to vaguely simulate ATM verification.
The user is presented with a sequence of five 3 x 3 grids contain-
ing nine faces each, and he or she has to recognize and select one
face per grid (those chosen during an initial training phase).
Weaver et al. [33] describe a system in which the user authenti-
cates by looking at symbols on an on-screen keyboard. Instead of
dwelling on the virtual keys or pressing a button to trigger the
selection action, gaze points are grouped and automatically
analyzed to find out the selected symbols.

Apart from the technical feasibility of gaze-based authentica-
tion, also the human factors coming into play in eye-controlled
interfaces need to be considered. De Luca et al. [34], for example,
assessed three different eye-based PIN-entry techniques (one of
which based on gestures), finding that eye gaze interaction is an
appropriate method for PIN entry, especially when element selec-
tion is performed by pressing a physical button. Brooks et al. [35]
investigated some interface designs for eye movement biometric
systems, focusing on task completion times, need for system
recalibration and testers’ usability perception.

3. Method

Data were acquired through the Tobii 1750 remote eye tracker,
which integrates all its components (camera, infrared lighting,
etc.) into a 17” LCD monitor (1280 x 1024 resolution). As experi-
mental stimuli, images representing human faces were used. Each
face was segmented into significant areas of interest (AOIs).

3.1. Data acquisition

In the Tobii eye tracker, five NIR-LED (Near Infra-Red Light
Emitting Diodes) light eyes up producing reflection patterns. An
image sensor records pupil position and corneal-reflections to
determine eyes position and the gaze point. For correct use of the
system, at least one eye (better if both) must stay within the field
of view of the infrared camera, which can be represented as a box
with size 20 x 15 x 20 cm placed about 60 cm from the screen. The
accuracy of the device is 0.5°.

The Tobii ClearView gaze recording software was employed to
define stimuli (still images, slideshows, videos, etc. to be presented to

Fig. 2. dx (left) and dy (right) distances. M indicates the eyes' middle point.
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Fig. 3. Cloud of normalized fixation points of observer 15 in session 1: (a) observation points on four different face images; (b) merging of observation points coming from all

the 16 observed face images.

the subject), as well as to record and manipulate gaze data. The
system acquires 50 raw gaze coordinates per second, from which
fixations are then obtained (characterized by coordinates, duration
and timestamps). For the purpose of our experiments, a fixation was
considered as a sequence of successive samplings detected within a
circle with a 30 pixel radius, for a minimum duration of 100 ms. The
(ClearView software also allows to obtain two useful graphical depic-
tions, namely gazeplots and hotspots. While a gazeplot displays the
sequence of fixations of a user, in the form of circles with areas
proportional to fixation times, a hotspot uses color codes to highlight
those screen portions in which there are high concentrations of
fixations—and consequently have been watched most. Gazeplot circles
are numbered, thus clearly indicating the fixation sequence. A further
output of the eye tracker is the gaze replay, which dynamically shows
the evolution of fixations and saccades with time.

3.2. Data normalization

To analyze how a particular observer looks at faces, all his or her
observations ie. recordings of fixation point sequences while
looking at each one of the 16 faces, are merged together. To do
this, a normalization step is required, because in different face
images a particular area of interest such as right or left eye and
mouth, may be located in slightly different positions in the image.
Even a deviation of only few pixels in the position of a face in an
image with respect to another may imply that in the first image a
fixation at coordinates (x, y) falls in the right eye area, while in the
second the fixation falls in the right eyebrow area. Moreover, face
images used in our experiments have little different sizes. In Fig. 1,
for example, the point at coordinates (x=280, y=420) corresponds
to different face areas in different face images.

The normalization of fixation point coordinates is performed
with respect to scale and shift, by means of an affine transforma-
tion. Let be dx the distance between the eyes and dy the distance
between the mouth and the eyes' middle point (Xy, Yu) (see
Fig. 2), the scaling factors with respect to the horizontal and
vertical directions are s,=1/dx and sy=1/dy respectively. The new
normalized coordinates (x', y') are simply obtained as follows:
sx 0O X —Xm SxX— X
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Fig. 4. STASM output on subject 3.

After normalization, the coordinates { x', y') will correspond to
the same face area for all 16 subjects.

Once all coordinates of the fixation points are normalized for
each of the 16 subjects observed, all fixation points of a given
observer, in a single test session, are merged in a single plot. As an
example, the result of the normalization phase for observer 15 is
shown in Fig. 3. Now it is possible to analyze the cloud of fixation
points for each observer and try to extract some features useful to
distinguish an observer from another.

3.21. Face fiducial points detection

To automatically obtain the distances dx and dy and the coordinates
of the eyes’ middle point M, a face detector system presented in [36],
namely, the extended Active Shape Model (STASM) algorithm, is used.
First, faces are detected by a global face detector (Viola-Jones [37] or
Rowley [38]), which extracts all regions of interest (ROI) from an image
that contains at least one face. The detected ROIs are then submitted
to the STASM algorithm, which searches for facial landmarks by
minimizing a global distance between candidate image points and
their homologues using a general model (shape model), which is



precomputed (“learned”) over a wide set of training images. The
algorithm locates 68 interest points. The precision of the location
procedure depends on the amount of face distortion. For instance, the
output of STASM on subject 3 is shown in Fig. 4.

Among the 68 points extracted by STASM we only need those
representing the pupils’ central points and the mouth's central
point in order to compute dx and dy distances. Since the eyes’
middle point M is not returned by STASM, its coordinates have to
be computed starting from those of the pupils.

3.3. Feature extraction

For each observer in each session, we have now the set of all his
or her fixation points. In our previous work “GAS - Gaze Analysis
System”, presented in [39], we subdivided faces into 17 ROIs such
as right eye, left eye, forehead, lips, and background, and then a
feature vector was built with each element corresponding to a ROL
The values in the feature vector corresponded to the sum of
durations of fixations contained in the corresponding ROI. How-
ever, with the approach described in [39] we only analyzed the
time spent by the observer in each ROL Moreover, as each face is
different from another, a specific ROl mask was built for each face.
In this work, instead of using a different mask for each face, we
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decided to use a standard subdivision in ROI for all faces, that we
will discuss later in Section 3.3.1.

The objective of this work is to obtain a fully automatic gaze
analysis system capable to analyze which areas of a face the
observer is used to look at, for how much time and in which order.
The idea is to build a graph from the set of fixation points that
contains information in the form of weights associated to nodes
and arcs, related to the density of fixations and to the time spent in
a specific area of the face, and to the observation path.

Another graph based approach for eye movement based bio-
metric recognition is presented in [25]. The authors present a
method based on the construction of a joint minimal spanning
tree graph structure between a reference and a test sample of
fixation points. The distance between the two samples is mea-
sured by a multivariate generalization of the Wald-Wolfowitz
random runs test. However, with respect to our approach, only
coordinates of fixation points are taken into account, while GANT,
through the use of weights associated to nodes and arcs, analyzes
other important distinctive features such as duration, density and
trajectory of the fixation points.

3.3.1. Features graph
Because of the high number of points in the fixation cloud, they
are first aggregated in a smaller number of nodes. In order to do
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Fig. 5. Density graphs of four different observers: observer 10 (top-left); observer 41 (top-right); observer 56 (bottom-left); observer 86 (bottom-right). The size of red circles
indicates the weight associated to the node. Black bordered circles indicate a weight > 95.



this, the cloud is subdivided using a grid. Since in our experiments
we have observed that after normalization all fixation point x
coordinates ranged in [ - 1.5, 1.5] and y coordinates ranged in [ -2,
1.5], we have chosen a cell size of 0.5 x 0.5, obtaining a 7 x 6 grid
(see Fig. 3). For each cell of the grid, we consider a node centered
in that cell with a default weight equal to zero. Weights are then
associated to each node based on:

® Density: the number of fixations in the corresponding cell;
® Duration: the sum of durations (in milliseconds) of each
fixation in the corresponding cell.

Figs. 5 and 6 show some examples of density-graphs and
duration-graphs.

The method used to create and associate weights to the arcs of
the graph is a little more complex due to the fact that we have
merged together different observations (i.e. observations of the 16
different subjects). We cannot build a unique path over all fixation
points because they belong to different face images, so it is not
correct to build an arc from the last node observed on an image
and the first node observed on another image. For each face image,
we want to increment the weight of an arc linking two nodes A

and B each time the observer gaze passes from node A to node B
and vice versa.

The arcs of the graph are defined as follows:

Let 0 be the initial weight for all arcs;

Let f;; be the k™ fixation (1 <k < n) of an observer on image i
(1<i<16);

Let A, B be the first and second endpoints of an arc, Alf;; € A;

For each f; of the fixation sequence

Bifix,1 € B;
ifB< >A
increment the weight of arc AB by one;
A=B;
k=k + 1;
if k=n
break;
endif
endif
endfor
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Fig. 6. Duration graphs of four different observers: observer 10 (top-left); observer 41 (top-right); observer 56 (bottom-left); observer 86 (bottom-right). The size of red
circles indicates the weight associated to the node. Black bordered circles indicate a weight > 45,000 (ms).
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Fig. 7. Weighted arcs graphs of four different observers: observer 10 (top-left); observer 41 (top-right); observer 56 (bottom-left); observer 86 (bottom-right). The thickness

of arcs specifies the associated weight.

Fig. 7 shows some examples of weighted arcs. The thickness of
arcs specifies the associated weight: a ticker arc indicates that the
gaze of the observer shifted more frequently between the two
nodes connected by that arc. With this approach we do not
consider the order in which nodes are observed, but, rather, which
nodes are more closely related each other. This representation
allows us to easily combine arc graphs, obtained from an observer
of different face images, by summing up the weights of corre-
sponding arcs, and also to make the comparison process described
in the following easier.

34. Comparison

The graph obtained for each observer in each session repre-
sents the observer fixation model. Weights associated to nodes are
described by two matrices 7 x 6 with each element corresponding
to a node, one for densities and one for durations. To represent
weighted arcs, an adjacency matrix 42 x 42 is used. To compare
different observers based on densities, durations or arcs, the
distance between couples of matrices of the same feature is
measured through the Frobenius norm of the matrices’ difference.
Frobenius norm is a matrix defined as the square root of the sum
of the absolute squares of its elements [40].

4. Experimental results
4.1. Experimental protocol

A total of 112 volunteer observers (73 males and 39 females)
took part in the trials, subdivided into the following age groups:
17-18 (11 persons), 21-30 (58), 31-40 (9), 41-50 (16), 51-60 (8),
61-70 (9) and 71-80 (1). All participants reported normal or
corrected-to-normal vision.

Prior to the beginning of the experiments, carried out in a quiet
environment, participants were informed about the fact that some
images, without specifying their kind, would appear on the eye
tracker's display in full screen mode (to prevent the user from
getting distracted during the gaze recording procedure). Face
images were interleaved with blank white screens with a small
cross at their center, to ensure a common starting location for
stimulus exploration. The first blank screen was displayed for 5 s,
while the others for 3 s. Each test was also preceded by a short and
simple calibration procedure, lasting about 10 s and consisting in
following a moving circle on the screen. Participants were then
instructed to look at the cross when the blank screen was
displayed, and to freely watch wherever they wanted when the
images were presented. Each stimulus image was shown for 10's.



Fig. 8. Examples of stimuli.

Table 1 Table 3
Test scheme for single feature experiments. Single feature experiments results.
Feature Experiment Gallery Probe Experiment EER AUC CMS(1)
Density Experiment | Gallery Probe | Density | 0.3078 0.7893 0.2093
Experiment I Gallery Probe Il Density Il 0.2785 0.7727 0.3043
Duration Experiment | Gallery Probe I Duration | 02783 0.8032 0.1860
Experiment Il Gallery Probe Il Duration Il 0.2628 0.7960 0.3043
Arcs Experiment | Gallery Probe | Arcs | 03158 0.7330 0.1860
Experiment Il Gallery Probe Il Arcs 1 0.3484 0.7445 0.1739
Table 2 taken from the AR Face Database [41]. Examples of the stimulus
Test scheme for combined feature experiments. image set are shown in Fig. 8.
The presentation order of the 16 images was random. Behind
Features Experiment Gallery Probe the eye tracker there was a wall painted in neutral gray and the
Density-duration Erpectinet] Gallery Probe | fllummatlon f’f .the room was ~umforrp and constant. Alsq, all
Experiment Il Gallery Probe II images had similar gray-level distributions. On average, a single
Arcs-density Experiment | Gallery Probe | test session, including task explanation, device calibration, lasted a
Experiment I Gallery Probe Il little more than 5 min.
Arcs: drralion Eig:::g:: :l g:{::g :gg: :I A first set Sy of tests was carried out with 88 participants. Of
Density-duration-arcs Experiment | Gallery Probe | Fhese, 36 were involved i'n. a second sessiqn (with Fhe same
Experiment I Gallery Probe II images), and 16 other participants were also involved in a third

Sixteen black-and-white pictures were employed in the experi-
ments, which contained close-up faces of eight males and eight
females. Half of the faces (four males and four females) were of
famous persons (mostly actors and actresses), while the others
were of people unknown to the observers. Images were mostly

test session. One hundred forty tests were therefore carried out in
the three sessions. Time intervals between the first and the second
session, and between the second and the third session, ranged
from a minimum of 5 days to a maximum of 9 days.

A second set S, of tests, with 34 participants, was implemented
after 1 year from S;. Ten observers in this group had been involved
in S; as well. Also in this case, three sessions were organized: 17
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Table 4

Combined features experiments results.
Experiment EER AUC CMS(1)
Den-Dur | 0.2878 0.7917 0.1395
Den-Dur 11 02901 0.7922 0.3043
Arc-Den [ 03093 0.7824 0.1628
Arc-Den Il 0.2984 0.7879 0.2174
Arc-Dur [ 0.2786 0.7892 0.1395
Arc-Dur I 0.2688 0.7928 0.3043
Arc-Den-Dur | 0.2859 0.7905 0.1395
Arc-Den-Dur Il 02911 0.7935 0.3043

observers out of 34 were involved in a second session (nine of
whom had participated in S;), and 13 took part in a third session
(six of whom had participated in S,). Sixty-four tests were there-
fore carried out in the three sessions. Time intervals between the
first and the second session, and between the second and the third
session, ranged from a minimum of 1 day to a maximum of
21 days.

4.2. Results

The accuracy of the GANT system has been assessed in terms of
Area Under Curve (AUC - the area under the ROC curve), Equal
Error Rate (EER) and Cumulative Match Curve (CMC). The ROC is a
curve relating the Genuine Acceptance Rate and False Accepting
Rate according to an acceptance threshold § varying in the range
[0,1]. The Equal Error Rate represents a sort of steady state for the
system, as it corresponds to the point where False Acceptance Rate
equals False Recognition Rate. The Cumulative Match Score at a
rank n of a biometric identification system represents the like-
lihood that the correct identity is returned by the system among
its top n answers. Thus the CMC is a curve representing the CMS
with the rank ranging from 1 to N, where N is the number of
enrolled subjects into the system gallery. CMS(1) indicates the
value at rank 1, namely the Recognition Rate.

The fixation models have been subdivided into Gallery and
Probe sets as follows:

® Gallery: the Gallery contains the fixation models obtained from
data acquired in the first session (111 observers, where 87
observers comes from §; and 24 are the new observers coming
from S,. Observer 80 was discarded because the fixation points
relative to one of the 16 images were missing);

® Probe [: the first probe set is composed of the fixation models
obtained from data acquired in the second session (44

observers, where 36 comes from S; and eight are the new
observers coming from 5;);

® Probe II: the second probe set is composed of the fixation
models obtained from data acquired in the third session (23
observers, where 16 comes from S; and seven are the new
observers coming from S,).

We have carried out three kinds of experiments based on:

® Single features;
® Combined features;
® Weighted combined features.

For tests based on single features, we separately tested density,
duration and arc features following the test scheme presented in
Table 1.

For tests based on combined and weighted combined features,
we tested all features combinations following the test scheme
presented in Table 2. Before combining single features, scores have
been normalized to the range [0, 1].

4.3. Single feature experiments

Results of the tests on single features show that the duration
represents the best discriminating feature among the three, and in
particular it has the best EER, AUC and CMS values. The results of
the single feature experiments are summarized in Table 3.

The performance obtained when the duration is used as a
discriminant feature is shown in Fig. 9.

4.4. Combined features experiments

We tested all the combinations of the three features that are
density, duration and observation path. The final score of each
combination is computed by averaging scores obtained by GANT
with single feature. The results of this experiment are reported in
Table 4.

The graphs related to the combination of features which
achieved the best performance are presented in Fig. 10.

4.5. Weighted combined features experiments

We have finally tested all the weighted combinations of
features in order to improve the performance of the system.
Weights have been chosen proportionally to the results of single
features in order that their sum was equal to 1. Higher weights
have been given to scores relative to duration features which



08
£
(T3
7]
5 06
B
=
@
5 04
3
E
=5
o H i :
0.2"" leeeianiliens
= == Arc-Dur |
g . —— Arc-Dur Il
0 - : - :
0 2 40 60 80 100

Rank

ROC Curve

Genuine Accept Rate

02

===Arc-Durl
——Arc-Dur ll

0 02 04 06 08 1
False Accept Rate

Fig. 10. Performance graphs for the experiment on the combination of arcs and duration features.

Table 5

Weighted combined features experiments results.
Experiment EER AUC CMS(1)
Den-Dur | 0.2819 0.7924 0.1395
Den-Dur 11 0.2933 0.7922 0.3043
Arc-Den | 0.3047 0.7828 0.1628
Arc-Den Il 0.3038 0.7867 0.1739
Arc-Dur 1 0.2803 0.7906 0.1395
Arc-Dur 11 0.2706 0.7917 0.3043
Arc-Den-Dur | 0.2719 0.7932 0.1395
Arc-Den-Dur 1l 0.2739 0.7930 0.3043
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Fig. 11. Performance graphs for the experiment on the weighted combination of arcs, density and duration features.

performed better in our experiments, medium weights to scores
relative to density features and lower weights to scores relative to
arc features. The scores fusion has been performed through the
weighted average. Results are reported in Table 5.

Fig. 11 shows the graphs of the performance of the combination
of features Arcs, Density and Duration which obtained the best
results.

4.6. Comparison with previous experiments

As mentioned in Section 3.3, in [39] we presented “GAS - Gaze
Analysis System"”, and a first series of experiments on a part of the
database (88 individuals in total, the set S, of tests described in
Section 4.1), their performance graphs are shown in Fig. 12.

Table 6 shows the comparison, on the same dataset (88
observers), between the best results obtained in [39] (GAS) and
the best results (duration feature) of the system presented in this
work (GANT) in terms of EER, AUC and CMS. With GAS I and GANT
I we indicate experiments in which the second session is used as
Probe, while GAS Il and GANT Il indicate experiments in which
the third session in used as Probe. With respect to the previous
experiments, EER drops from 0.361 to 0.250 when using the third
session as Probe set, while AUC and CMS(1) values have a
significant improvement. The reason is that we provided a more
robust representation of users' fixation model, increasing the
number of AOIs and using the same standard subdivision in AOls
for all fixation sequences. Finally, in computing system perfor-
mance we took into account users’ observations over all the 16
faces, both for the Gallery and the Probe sets, while in the previous
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Table 6
Comparison between experiments presented in [39] (GAS) and best results of the
system presented in this work (GANT).

Experiment EER AUC CMS(1)
GAS | 0.424 06318 0.0476
GAS Il 0.361 06617 0.0589
GANT | 0224 0.8179 0.2286
GANT Il 0250 0.7901 03125

work testing was performed by considering, in turn, one of the 16
observations acquired during sessions 2 and 3 separately.

5. Conclusions

The recent interest of the research community in soft biometric
led us to design and test a novel technique for gaze analysis,
namely GANT. The GANT approach, applied to a wide dataset
composed of 112 volunteer observers acquired through the Tobii
1750 remote eye tracker, verified the conjecture that the way an
individual looks at an image might be a personal distinctive
feature. However, significant improvements are required, specifi-
cally to allow the application of gaze analysis in large-scale
identification scenarios. To further improve its performance, we
plan to include GANT in a multi-biometric framework including
iris and face, using a multi-view camera for acquisition.
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