WIRE: Watershed based iris recognition
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ABSTRACT

A Watershed transform based Iris REcognition system (WIRE) for noisy images acquired in visible
wavelength is presented. Key points of the system are: the color/illumination correction pre-processing
step, which is crucial for darkly pigmented irises whose albedo would be dominated by corneal specular
reflections; the criteria used for the binarization of the watershed transform, leading to a preliminary
segmentation which is refined by taking into account the watershed regions at least partially included in
the best iris fitting circle; the introduction of a new cost function to score the circles detected as
potentially delimiting limbus and pupil. The advantage offered by the high precision of WIRE in iris
segmentation has a positive impact as regards the iris code, which results to be more accurately
computed, so that the performance of iris recognition is also improved. To assess the performance of
WIRE and to compare it with the performance of other available methods, two well known databases
have been used, specifically UBIRIS version 1 session 2 and the subset of UBIRIS version 2 that has been
used as training set for the international challenge NICE II.

1. Introduction

Iris recognition is one of the more commonly used biometrics.
Itis generally regarded as the most accurate of the commonly used
biometric technologies, giving a reliable answer to the increasing
demand of security systems [1]. This is due to the good features
characterizing the iris of human beings (richness, uniqueness,
external visibility and stability during the entire life) and to the
non-invasiveness of the available iris acquisition technologies
(cameras operating in the near infrared spectrum [2,3] or with
visible light technology [4], able to capture good quality images at
a largely variable distance (from a few centimeters up to a few
meters) and even “on-the-move” [5-7]).

The literature in the field of iris detection and recognition has
received a considerable number of contributions, since the first
system has been suggested by Daugman [8]. A recent book, [9],
providing complete coverage of the key subjects in iris recognition
- from sensor acquisition to matching - and two wide surveys of
iris recognition methods covering the periods until the end of
2007, [10], and from 2008 to 2010, [11], are available,
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The iris is the annular part of the eye delimited by the white
sclera and delimiting the pupil, which even in case of eye colors
having the lightest tints of blue is the darkest part of the eye (see
Fig. 2). The structure of the iris is referred to as the iris texture and
has a number of characteristics significantly larger than the
number of characteristics typical of other biometrics. Though an
interesting debate has recently started on the stability of the iris
pattern [12-14], the literature has widely shown that the prob-
ability of obtaining similar signatures from two different iris
textures is close to zero [1]. Thus, at least under nearly ideal
image acquisition conditions (good illumination and cooperative
subject), simple image processing tools can be satisfactorily
adopted for iris recognition. [n turn, under non-ideal conditions,
problems such as occlusions caused by eyelids and eyelashes, poor
illumination, specular reflection and lack of cooperation of the
subject whose identity should be detected, make iris recognition a
hard task to face.

The main weakness of iris recognition techniques developed in
the last years is that they show a proven effectiveness only in
relatively constrained scenarios, performing in the near infrared
spectrum and at close acquisition distances. So recently, several
researchers have focused their attention on designing a novel
family of iris segmentation algorithms operating on images
acquired in less constrained conditions and under the visible light.
However, the unconstrained iris image acquisition introduces
additional noise factors as reflections, blurring and defocus, mainly
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Fig. 2. Images of two subjects from the UBIRIS2t dataset, acquired in uncontrolled environment under different illumination conditions before (left and middle left) and after
(middle right and right) the color/illumination correction. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

due to subjects moving at widely varying distances. To solve the
problem of the detection and recognition of heavily degraded iris
images, the scientific community promoted two international
evaluation initiatives about these issues, named Noisy Iris Chal-
lenge Evaluation (NICE) [7]. This competition was divided in two
parts: (i) Part I - for the segmentation of iris images in visible
wavelength and (ii) Part II- for the recognition of iris images in
visible light.

Iris recognition includes a number of processes: (i) acquisition
of the eye image, (ii) iris segmentation, to separate the foreground
(iris and pupil) from the background (the rest of the image),
(iii) normalization, to produce iris regions with the same constant
dimensions, so that images of the same iris taken under different
conditions have their features at the same spatial locations,
(iv) features extraction, to associate a code to each detected iris,
and (v) recognition, generally accomplished by using mathema-
tical and statistical algorithms to compare the code of the iris at
hand with the codes stored in a suitable database. All processes
(i)-(v) should be accomplished in accurate way, since the result at
each step conditions the outcome of the successive step.

Though this paper introduces the iris recognition system WIRE
and, hence, deals with all the above processes, in what follows we
will focus mainly on the novel contribution of this paper, ie., on
iris segmentation for degraded iris images acquired in visible
wavelength. Iris segmentation is obtained by using both wate-
rshed transformation and circle fitting. In this way, we identify the
iris boundary more precisely than by resorting only to circle
fitting, and obtain an accurately computed iris code. Using the
watershed transform is important since the shape of the iris is not
necessarily circular and because pixels inside the best fitting circle
may be noisy iris pixels. To assess the performance of WIRE, we
adopt two well known databases: UBIRIS version 1 session 2
(UBIRISv1s2) [15] and the subset of UBIRIS version 2 that has been
used as training set in NICE (UBIRISv2t) [16].

The rest of the paper is organized as follows, Previous work for
iris segmentation is briefly reviewed in Section 2. The segmentation
scheme of the proposed system WIRE for watershed based iris
recognition is described in Section 3. Section 4 deals with iris
recognition. Section 5 discusses parameter setting. Section 6 is
devoted to the experiments and to the discussion of the obtained
results. Concluding remarks and some ideas for future work are
finally given in Section 7.

2. Related works on iris segmentation

The role of iris segmentation is to identify in the image of the
eye all pixels belonging to the iris. Note that pixels in positions
where iris pixels are expected may be noisy pixels and should not
contribute to the computation of the iris code. Segmentation is a
crucial task since inaccuracy in iris detection has a strong negative
impact on the performance of the whole recognition task.

Iris segmentation is generally achieved by identifying the
boundary of the pupil and of the limbus, so as to delimit the
region of interest in the image, and by suitably taking into account
that eyelids and eyelashes may overlap with the iris causing
interruptions of its boundary.

Methods for iris segmentation can be roughly divided into two
categories: (i) methods approximating the iris boundary with a
circle or an ellipse, and (ii) methods determining the precise
boundary of the iris. Methods in the former category are often
referred to as classical methods.

Awell known classical method employs the integro-differential
operator [3]. The input image is preliminarily convolved with a
Gaussian filter to obtain a smoothed image. In this way, noise is
reduced without affecting the strongest edges, ie., those in
correspondence with the boundaries of iris and eyelids. Then, by
means of an integro-differential operator, the maximum value of a
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normalized integral is detected along circular contours character-
ized by different radii and positions of the center. The integro-
differential operator acts as an iterative circular edge detector,
which identifies the boundary of pupil and iris. Since eyelids may
partially occlude the iris, the limbus boundary may be not circular.
To detect the boundary of the eyelids and, hence, correctly identify
the iris, the integration arc used is suitably changed from circular
to arcuate.

Another classical method is due to Wildes [2]. This is a
histogram-based model-fitting approach involving the use of the
Hough Transform [17]. After an edge map of the eye image is
obtained by means of a gradient operator, a voting procedure is
used to select the parameter values for the contour that better fits
a circle. Also in this case, the eye image is preliminarily smoothed.
Derivatives corresponding to vertical edges of the limbus bound-
ary are weighted more during the voting process. In this way, even
if the eyelids partially overlap the iris, a circle can be detected
fitting the lateral parts of the limbus boundary. Notwithstanding
its quite high computational cost, the Hough transform is still
often used [18]. To find the boundaries of upper and lower eyelids,
a gradient operator favoring horizontal edges is used and the
parameter values of contours that better fit parabolic arcs are
computed. An alternative way to detect the best fitting circle has
been suggested in ISIS [19], which is based on Taubin's technique
[20]. Other recent iris segmentation methods approximating the
iris boundaries with circles, ellipses or polynomials are available
in [21-24].

Geodesic active contours [25,26], and variational level sets
|27,28], are used in methods aimed at determining the precise
iris boundary, particularly in the presence of occlusions caused by
eyelashes. The relation between active contours and minimal
length curves is considered for methods based on geodesic active
contours. A curve, initialized arbitrarily within the iris, evolves by
taking into account properties of the iris boundary, until it satisfies
a stopping criterion. The difference in energy between successive
contours is taken into account to avoid over-evolution, occurring
in regions where the stopping criterion is not sufficiently strong. In
turn, the approach based on variational level sets uses partial
differential equations to find a numerical solution for the curves
defining the iris boundaries. The iris boundaries are first approxi-
mated using elliptical models. Then, they are refined using active
contours with variational formulation. The method identifies the
curve within the level set function that minimizes the total energy
of the curve. Other recent methods based on curve evolution to
precisely detect the iris boundaries can be found in [29,30].

Though the watershed transformation, introduced in [31] to
partition gray level images, is generally recognized as an image
segmentation tool able to correctly detect objects contours, to our
knowledge it has not been much used in the framework of iris
segmentation [32-34]. In this paper we will extensively make use
of the watershed transformation.

Our iris segmentation method borrows from the classical meth-
ods the idea of using circle fitting. However, we use circle fitting only
to identify the Region Of Interest (ROI), where to detect more
accurately the iris boundary. Moreover, circle fitting is done on a
binarized version of the watershed transform of the eye image,
obtained by taking into account local and global properties in the eye
image. Once the ROI has been identified by circle fitting, the
watershed transform is furthermore exploited to distinguish, among
all the watershed regions at least partially overlapping the best fitting
circle, those actually belonging to the iris from those belonging to the
eyelids, eyelashes, sclera, or to reflection regions. In this respect,
differently from other techniques (e.g., [35]) that explicitly face
problems such as those due to reflections and eyelashes, the
watershed transform provides without any further cost the addi-
tional advantage to distinguish regions that, though placed within

the iris, should not be taken into account when computing the iris
code since they would provide a noisy contribution.

Our iris segmentation method is the improved version of
recently suggested methods [33,34] and shows the following main
differences: (i) the introduction of a color/illumination correction
step, (ii) a completely revised process to select the best fitting
circle for the limbus, (iii) a new method to improve the location of
the pupil, once the iris region has been isolated from the input
image, and (iv) an extensive evaluation of the impact induced on
recognition by the better segmentation and its comparison with
that of other methods (to this purpose, we use using an improved
version of an algorithm taken from the state of the art [36]). More
in general, the main novelties of WIRE are the new curvature
approximation method, the cost function used to score circles
approximating the boundary, and the use of the watershed
transformation to obtain a more precise iris boundary.

3. Segmentation framework

WIRE works with RGB color images, where pixel colors are
interpreted as points in the 3D Cartesian space with red (R), green
(G) and blue (B) as coordinate axes. Since the R, G, B coordinates of
any pixel color are in the range [0,255], all possible colors are
points within a cube spanning from the origin (0, 0, 0), black, to
(255, 255, 255), white.

Iris segmentation consists of six phases respectively devoted to
pre-processing, watershed transformation, image binarization,
circle fitting, limbus contour refinement, and pupil detection, See
the flow-chart in Fig. 1.

3.1. Pre-processing

Pre-processing includes colorfillumination correction, size
reduction, image smoothing, and gradient image computation.

The goal of colorfillumination correction is to reduce local
distortions, as shadows and different color temperature, intro-
duced during uncontrolled iris acquisition, as well as to treat both
dark brown eyes and light blue eyes.

On the basis of the Lambertian reflectance theory [37], the
image intensity of the diffusely reflected light I is as follows:

Itx, y) = Ry(x. y)L(x,¥) 4y

where Ry is the albedo, or reflectance component, and L is the
intensity of the incoming light. Consequently, the R; component
can be computed as the ratio, pixel by pixel, between the image I
and the version of I smoothed by a Gaussian filter.

Based on the above concepts, to build a smoothed version of
the eye image, WIRE applies a Gaussian filter to each of the three
RGB components using experimentally fixed values for kernel
dimension n and variance o (for the assignment of values to n
and variance o see Section 5). An array with the same resolution of
the examined color component is computed, where at each
position the ratio pixel by pixel between the color component
and its filtered version is recorded. These values are then normal-
ized, [38], in the range [0,1] by means of a Quasi Linear Sigmoidal
function and are then mapped in the range [0,255], generating the
new image component. In Fig. 2, two color input images and the
corresponding results after color/illumination correction are
shown. It can be seen that a clearer separation of the eye parts
is available after color/illumination correction. The two eye images
are taken from the UBIRISv2t database. Their size is 400 x 300, as
it is for all other images in the database. The eye in Fig. 2 left is
used as running example.



Size reduction and smoothing are respectively accomplished to
reduce the computation time necessary for the successive phases
of the process and to reduce the noise in the eye images.

In order to speed up the computation without biasing the
quality of the input image, a resizing to 200 x 150 pixels is
performed by means of standard scaling down based on linear
interpolation and using a reduction factor of 0.5. Then, a median
filter is applied to the image I. By taking into account that the iris
diameter is comparable to the vertical resolution of the filter, size
has been set to 7 x 7. As a result, noise is removed while edges are
preserved. See Fig. 3 left, showing the resized and smoothed
image, For better visualization all images appear from now on
with the same size as the input images.

Finally, computing the gradient image is done to enhance the
edges present in the eye images and to identify the regional
minima necessary for the watershed transformation.

The Sobel edge filter is applied to each of the three gray level
images R, G and B composing I. The gradient image VI, Fig. 3
middle left, is obtained as the average of the three computed
gradient images.

3.2. Watershed transformation

The watershed transformation partitions a gray level image by
applying region growing to a suitable set of seeds. Seeds are
generally detected as the regional minima in the gradient image
and region growing is accomplished by taking into account some
homogeneity criterion, so that each region of the partition will
result to be homogeneous, while the union of any two adjacent
regions will not.

Two main approaches can be followed to compute the wat-
ershed transform, known as watershed transform by immersion
and watershed transform by topographical distance [39]. In this
paper, we follow the latter approach. The watershed lines of the
watershed transform W are shown to be superimposed on a white
background for better visibility in Fig. 3 middle right. Of course the
watershed lines can also be seen as separating lines of the regions
into which the eye image [ is partitioned.

With reference to Fig. 3 middle right, we observe that wate-
rshed lines satisfactorily border the regions into which the eye
image is partitioned, but their number is rather large so making
segmentation a very complex task. To simplify the segmentation
process, we perform merging of adjacent regions that are similar

to each other as far as their color is concerned. To this purpose, the
average color of any region R; of the watershed transform is
computed as the mean value of the colors of pixels belonging to
it and the Euclidean distance in color between R; and each of its
adjacent regions is computed. Then, R; is merged with the adjacent
region R; at the minimum color distance from R;, provided that the
distance between R; and R; is lower than an a priori fixed threshold
5 (see Section 5). The watershed lines resulting after merging are
shown in Fig. 3 right.

To perform segmentation, we should identify the regions
belonging to the iris among all the obtained watershed regions.

Regions of the watershed partitioned image I consist of pixels
characterized by a homogeneous color. Thus, we can work on a
modified version Q of I, where the colors of pixels in the same
region R; are replaced by a unique representative color. The
representative color for a region R is the color ¢; whose red, green
and blue components are the arithmetic means of the red, green
and blue components of the colors of all pixels in R;. The resulting
image Q can be seen in Fig. 4 left.

3.3. Image binarization

To detect the ROl where the limbus boundary is placed, we
compute a binarized version BW of the watershed transform.
Binarization is done in such a way that even if the foreground of
BW does not coincide exactly with the region of the eye consisting
of iris and pupil, its contour includes portions of the limbus
boundary that are large enough to reliably apply circle fitting.

For each region R; we respectively denote by db; and dw; the
Euclidean distances of its representative color ¢; from black and
white in the RGB space. Moreover, we denote by db and dw the
arithmetic means of the distances of all representative colors from
black and white. Finally, we denote by dbw the distance between
black and white. Since black and white are the two points in the
3D cube having respectively coordinates (0, 0, 0) and (255, 255,
255), it results dbw=441.6730.

BW is obtained by ascribing the foreground status to the
partition regions that can be tentatively regarded as belonging to
iris or pupil, and the background status to all other partition
regions. Binarization is accomplished in two steps.

In general pupil and iris are characterized by colors that are
closer to black than to white, while sclera and eyelids have color
closer to white than to black. Thus, during the first step of

Fig. 3. Effect of resizing and median filter, left, gradient image, middle left, watershed transform, middle right, and watershed transform after merging, right.

ot

Fig. 4. The image Q obtained by replacing the colors within each region of W by the representative color of the region, left. The binary image BW, after the first step of

binarization of the watershed transform, middle, and after the second step, right.



binarization, the two arithmetic means db and dw could be used as
threshold values on the representative colors to decide on the
status of the corresponding partition regions. If for ¢; it results in
db; < db, the status of foreground could be ascribed to R;. In turn, if
dw; <dw, the status of background could be ascribed to R;
Obviously, if it is db; >db and dw; > dw, a decision on the status
of R; could not be taken. Moreover, if it is db; <db and dw; < dw
both the foreground status and the background status might be
ascribed to R;. Thus, the status might be not ascribed to all regions,
or the status might be ascribed in an ambiguous manner. The
former case happens if it results in db+dw < dbw, while the latter
case when it results in db+dw = dbw.

The above problems can be overcome by fixing a non ambig-
uous and proper value for the hinarization threshold T. To this aim,
the ratio dbw/(db+dw) is used as a multiplicative weight for the
arithmetic mean db, and T is set to db x dbw/(db+dw). The binary
image BW is obtained by ascribing the foreground status to the
regions whose representative colors have distance from black
smaller than T, and the background status to all other regions.
The result of the first step of binarization is shown in Fig. 4 middle.

During the second step of binarization, BW is refined by
changing from foreground to background the status of some
regions. To this aim, let ¢r and ¢z denote the average foreground
color and average background color, respectively. These average
colors are computed as the arithmetic means of the colors of the
pixels belonging to regions of Q that have been tentatively
assigned to the foreground and to the background. The refined
image BW is obtained by changing the status from foreground to
background of any region R;, such that d(c;, cg) < d(c;, cf), where d is
the Euclidean, The binary image resulting after the second step of
binarization is shown in Fig. 4 right.

We remark that the utility of the watershed transform is related to
the high quality of the found boundaries. In fact, the watershed lines
along the contour of the foreground include pixels that in the gradient
image VI are located in correspondence with strong changes in color
of the eye image. Thus, the edges of the foreground of BW are placed
in correspondence of the perceived boundaries.

3.4. Circle fitting

The circle detection procedure [20] is applied to the contour of
the foreground of BW, which includes both very smooth portions
(shown in yellow in Fig. 5 left), and sharp bends (shown in blue in
Fig. 5 left). The existence of sharp bends facilitates segmentation of
the contour into subsets that can then undergo circle fitting. To
avoid a time consuming point by point curvature analysis, we
resort to an estimate of curvature, by adopting the following
strategy:

® Each connected component C of the contour is processed by a
countour tracing algorithm to orderly record its points Py=(xx,
yk) in a list Lc={P1, P,..., Pn]

® Starting from a point P, and moving along the contour L, the
additional contour point taken into account is the point Py, , at

Fig. 5. The contour of the binarized version BW of the watershed transform, left,
and circles detected by the Taubin algorithm (the best ranked circle is in red), right.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

distance t from Py. Instead of taking the additional point Py at
a fixed distance from P, we set t=4. |logo(IQ)] so as to take
into account the length of the contour.

Let M=(m,,m,) be the midpoint of the segment PP, and let
P; be a contour point where i=|(k+t)/2]. The Euclidean
distance dy,(M, P;) is computed and is normalized by dividing
it by the greatest of all distances dpmg = arg max(dy,). Normal-

k

ized distances are in the range [0,1]. The greater the distance
value at a given point Py is, the higher will be the corresponding
estimated curvature.

All points of C with a curvature larger than a threshold theur
(see Section 5) are deleted from L, so that C is partitioned into
a set of connected components of edges Ej, Ey, ..., Ey with
smooth curvature, as illustrated in Fig. 5 left.

A new list of edges L is generated that is composed by the E;
including at least thy, contour points Py (see Section 5).
Taubin's algorithm [20] is then applied only to each E; in Lg to
provide both center and radius of circle approximation of iris
(Fig. 5 right).

Among circles detected by Taubin's algorithm, some might not
be entirely included into the image. Circles that are included for
less than 80% are not further considered in the process, while the
remaining ones undergo a voting procedure to select the best
limbus approximation.

Let cf; be the circle fitting E;, and let (cf;,, cfy,) and r; be its center
and radius. Let us consider two additional circles cff with radius
0.9r; included in cf; and cfi” with radius 1.1r; including cfi. For each
contour point in cf;, in the polar coordinate system (p,8), WIRE
computes the difference diff; between the two pixels of BW, which
are located at the same angle g, but with different radii in cf{ and
cf;". The differences diff; are summed up and the result is divided
by the number of points in cf;; the obtained value is then assigned
to the circle cf; as its score. The circle cf; with the maximum score is
selected to approximate the limbus boundary (see the red circle in
Fig. 5 right). The analysis of the limbus shows that outside red
circle area falls mainly in the background, while the inner one in
the foreground.

3.5. Limbus contour refinement

To identify as much correctly as possible the pixels actually
belonging to iris and pupil, we exploit the information included in
the watershed transform, in particular as regards the regions at
least partially overlapping the circle found by circle fitting. In fact,
the area identified by circle fitting may not include all pixels of the
iris, and in turn may include also pixels belonging to eyelids, sclera
and eyelashes, or iris pixels that are noisy pixels due to corneal
specular reflections. Thus, the regions of W at least partially
overlapping the found circle have to be analyzed individually. In
Fig. 6 left, the detected circle is shown in purple superimposed on
W. In Fig. 6 right, regions of W totally overlapping the circle are
shown in red (if they are regions belonging to the foreground of

Fig. 6. Circle detected by circle fitting superimposed on W, left, regions of W totally
overlapping the circle (red and blue) and regions partially overlapping the circle
(yellow), right. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)



BW) and blue (if they are regions belonging to the background of
BW), while regions partially overlapping are shown in yellow.

Let Cjympys be the arithmetic mean of the colors of the pixels of Q
that satisfy the following two conditions: (i) they are within the
circle and (ii) they are in the foreground of BW. With reference to
Fig. 4 right and Fig. 6 right, only the red regions and part of the
yellow regions are taken into account to compute Cjynpys. Analo-
gously, let cpq, be the arithmetic mean of the colors of the pixels
of Q that are outside the circle and that have been assigned to the
background in BW. Thus, with reference to Fig. 6, right, the blue
regions are not taken into account in the computation of cyge.

Let us denote by f and b two markers that will be assigned to
the watershed partition regions to indicate that a region is
assigned to the foreground or to the background of the segmented
image, respectively.

Watershed regions having no overlap at all with the circle are
assigned the marker b. These regions belong by all means to the
background. In turn, the remaining watershed regions are tenta-
tively assigned to the foreground, but some further checking is
necessary before taking a final decision. Thus, two foreground
markers, f+ and f-, are initially introduced to distinguish
watershed regions completely overlapping the circle (receiving
the marker f+) and watershed regions only partially overlapping
the circle (receiving the marker f—). In Fig. 6 right, red and blue
regions are marked f+, while yellow regions are marked f—.

Watershed regions with marker f+ are analyzed first to
validate some of them as foreground regions. This process is
accomplished in two phases. During the first phase, the marker
J+ of any region R; is changed into fif at least one of the following
conditions is satisfied:

1) d(c;, Chack) > d(C;, Climpus), Where d is the Euclidean distance and
¢; is the representative color c; of R;; and

2) the region R; has been assigned to the foreground in BW and at
least a neighboring region of R; has marker f+, while no
neighboring regions exist with marker f-.

During the second phase of the process, we compute the
minimum Euclidean distance d.;; between the representative
color ¢; of R; and the representative color of each of the regions
adjacent to R; with marker f. Then, the marker of R; is changed
from f+ to f, if d(c;, Chack) = dmin- Otherwise, the marker of R; is set
to b.

Fig. 7 left, shows the regions with initial marker f+ that have
been detected as foreground regions (black) and as background
regions (white), respectively.

Regions with marker f— are then analyzed. Each watershed
region with marker f— is split in two sub-regions, which respec-
tively include the pixels that are within the circle, and the pixels
that are outside the circle. The former sub-regions play the role of
regions completely overlapping the circle, and receive marker f+
(red regions in Fig. 7 middle left). In turn, the latter sub-regions

play the role of regions that are not overlapping the circle, and
receive marker b (green regions in Fig. 7 middle right).

After watershed region splitting, the image Q and the values
Crimpus a0d Cpqcy are updated since the number of regions and the
relative representative colors have been modified. Then, final
decision is taken for the regions with marker f+. Namely, each
region R; with marker f+ is assigned to the foreground if there
exists at least a neighboring region of R, already classified as
belonging to the foreground, and at least one of the following
cases occurs:

i) d(ci, Coack) > d(Cir Climpus)i

ii) the Euclidean distance between ¢; and cpqck is not smaller than
the minimum Euclidean distance between ¢; and the color of
the regions adjacent to R; and with marker f.

Otherwise, the region R; with marker f+ is assigned to the
background.

The detected foreground is shown in Fig. 7 middle right. The
representative colors of the foreground regions can be seen in
Fig. 7 right.

In Fig. 8, the boundary of the foreground detected by WIRE is
shown in red superimposed on a few sample eye images.

We point out that the detected foreground boundary may be
multiply connected. In fact, besides the component identifying the
limbus also other components are detected that delimit the light
areas inside iris and pupil, which are mainly due to illumination. In
this way, a more reliable coding of the iris is possible.

Moreover, we observe that the color/illumination correction
has a key role in obtaining a more precise limbus. This can be
appreciated with reference to Fig. 9, where the boundary detected
for the eye images in Fig. 2 is shown. A better boundary
identification is evident for the two images after color/illumina-
tion correction.

3.6. Pupil detection

To complete iris detection, the pupil boundary has to be identi-
fied. As the pupil is always inside the iris, the procedure for its
detection is performed by considering only the portion of the whole
eye image that is inside the circle approximating the limbus.

To this aim, the region of interest (ROI) is extracted from the
input image after the color/illumination correction. The color ROI
image is converted to a gray level image and is processed by the
Canny filter in order to obtain 1-pixel thick contours. We used ten
different thresholds and knowing that for the Canny filter thresh-
old ranges from 0 to 1 the values we considered are {0.05, 0.10,
0.15,..., 055). For each image generated by Canny filter the
corresponding connected components are extracted and pixel
counting is performed. Only connected compenents including
more than thy,; pixels (see Section 5) are processed by Taubin
circle fitting algorithm. A list of circles derived starting from
connected components and entirely included in the circle

Fig. 7. Result after analyzing regions with marker f+, left; regions with initial marker f— after splitting into sub-regions completely included by the circle (red) and outside
the circle (green), middle left; area surrounded by the limbus, middle right; color quantized area surrounded by the limbus, right. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)



Fig. 9. Limbus, shown in red, detected without applying the color/illumination correction, left and middle left, and after applying the correction, middle right and right. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

approximating the limbus is generated. Each circle in the list is
then processed by a voting function using the following criteria:

Homogeneity: The pupil is a circular region with a homoge-
neous gray level distribution. The voting function ignores if the
pupil has bright or dark tones, because during uncontrolled
acquisition this area is often affected by reflexes that could alter
its appearance. Then, every circle receives a score calculated only
according to the degree of homogeneity of the pixels it includes.
If h is the histogram of the region included by the circle, the
scoring function assigns to the circle a value s, equal to

255

sy =max [19]/ 3 h. e
i=0

Separability: The pupil boundary also shows a sharp transition
from a darker to a lighter zone; thus a separability index is
defined accordingly. Given a candidate circle C with its contour
points represented in polar space as P(p,0), WIRE considers the
internal circle Gy with p;=0.9p, and the external circle Coyr
with p2=1.1p. We define an operator, namely the separability,
which is similar to Daugman's integro-differential operator that
measures difference between the gray levels of corresponding
pixels on such two concentric circles for each angle 6;:

w(i)=I(py cos(8)),p, sin(8;))—I(py cos(8;),p; sin(@))| 3)

where ,=iz[180 and i=1,2,...,360. The pupil boundary sepa-
rates the pupil from the iris, which significantly differs in color.
Thus, w(i) assumes values that are generally high and almost
constant along all the pupil boundary, being characterized by a
high mean and a low variance. Therefore, we can define the
separability index as follows:

w

o(w)+1 @

S§i=

E w;ﬁm"

Fig. 10. The detected pupil boundary. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

The global score assigned to the circle C is
S=Sp+S). ®)

The circle Cpo with the highest score is considered as the
circular shape which better approximates the pupil.

The pupil boundary found for the eye images in Fig. 2 middle
right and right are shown in red in Fig. 10.

4. Iris recognition

The iris recognition process starts by isolating from the whole
eye image (Fig. 11a) the iris. By using the process described in
Section 3 for the detection of the boundaries of limbus and pupil, a
binary image (Fig. 11b) is achieved that plays the role of binary
mask, allowing iris isolation (Fig. 11c). Centre and radius of both
iris and pupil are used to map the original annular iris region in
the Cartesian space to a rectangular region (shown in Fig. 11d) in
the polar space by means of the rubber sheet model. This approach
was first introduced by Daugman in [3] to compensate for
distortions caused by contraction/relaxation of muscles surround-
ing the pupil. Indeed, it is well known that is very unlikely for



Fig. 11. Isolation and polar transformation of the iris annular region: (a) iris images after color and illumination correction, (b) binary mask with iris pixels in black, (c) iris

annular region, and (d) iris pixels remapped in the polar space.

pupil to be perfectly concentric with respect to the iris. The polar
iris image then undergoes a feature extraction technique to be
represented in a low dimensional feature space. In particular, most
of the approaches mentioned in Section 1 work on NIR or gray
level images by extracting local features, which are very robust
with respect to local distortions like partial occlusions caused by
eyelids or eyelashes. In this specific context, color provides addi-
tional information that WIRE can exploit for both segmentation
and classification. In general, it is possible to extend any of the
gray level based approaches to the case of color images, by simply
applying the technique separately to three R, G, B, channels and
then gathering together individual results to obtain a global
feature vector. WIRE performs in a completely different way, by
keeping well disjoint features coming from color and luminance.
This is achieved by mapping the original RGB image into the Hue,
Saturation, Value (HSV) color space, so that H and S channels are
processed together, while V is treated separately; an histogram
based approach is adopted for Hue and Saturation, while cumu-
lative sums method (CSUM) [36] is used for Value. CSUM has been
adopted since it provides a good compromise between simplicity
and effectiveness of the method.

In more details, an histogram hy of 32 equidistributed bins is
computed over the H channel, whose elements are normalized
into the range [0,1] by dividing them by the total number of pixels
in the eye image. Similarly, the histogram hs is extracted from the §
channel. The color feature vector is represented by a global
histogram hys of 64 bins, which is obtained by concatenating hy
and hs. The distance between two color feature vectors is com-
puted by the cosine dissimilarity and is mapped into the range
[0,1] (the original range is - 11]).

Luminance, that is the V channel, is processed through the
CSUM approach to extract local features. CSUM has been shown to
be very robust with respect to the noise affecting UBIRIS version
1 and 2 iris images and provided a recognition accuracy that is
comparable with the state of the art.

CSUM partitions the input iris image into a number of cells,
where each cell A, has size u x v (see Section 5 for the assignment
of u and v). For each A, CSUM computes the average gray value
avg(Ay) of its pixels. Along orthogonal directions (horizontal and
vertical), cells Ay are aggregated into sets Q; ={A;, A3, ..., Aj} of g
cells and the average gray value is calculates for each set is as
follows:

1 q
@)= Y avg(Ay (6)
k=1

Given a cell Ay, its cumulative sum 5y is computed as
S = 5¢-1+[avg(Ay) —avg(2))] 7

where Sy=0 and k=1.2,..., g. The iris code is then computed by
applying the following rules:

Let Smex and Spin be the maximum and minimum values
respectively that 5, can assume in the sets 2;, then:

o [f 5, falls between S and Siin:
o if Sy > S;._ 1, assign £; with 1;
o if S, < 8,1, assign £; with 2;
® else assign £2; with 0.

The dissimilarity between two iris codes is computed as their
Hamming distance normalized in the range [0,1]. Finally, the
overall distance between two iris images is computed as the
arithmetic mean of the normalized Hamming distance and the
cosine dissimilarity computed on the color histogram.

5. Parameters set-up

The segmentation process implemented by WIRE involves several
parameters, some of which are strictly related to the size of the
object to be segmented from the background. The tuning of all
parameters has been performed by evaluating the segmentation/
recognition results obtained on a training set, when changing their
values. The training set included 50 images randomly picked and
not used for testing. The default values of the parameters are
those producing the best results in the average during the tuning
process.

The most relevant parameters and their assigned values are the
following:

n=128 and =10 - kernel size and variance of the Gaussian
filter respectively (Section 3.1);

§=50 - threshold on color for merging adjacent watershed
regions (Section 3.2);

theyrne=0.5 - threshold on punctual curvature (Section 3.4);
thpne=150 - threshold on connected component size for limbus
detection (Section 3.4);

thyupi=>50 - threshold on connected component size for pupil
detection (Section 3.6); and

u=3 and v=10 - dimensions for the CSUM cells (Section 4).

As regards size and variance of the Gaussian filter, we noted
that there is a quadratic relation between them and the image
resolution. The optimal values n=128 and ¢=10 have been
computed with respect to image resolution in datasets UBIRISv1s2
and UBIRISv2t. For the parameter § the value 50 has been found as
the highest one preventing merging of adjacent watershed regions



belonging to iris and eyelashes that, especially for dark eyes, may
be characterized by rather similar colors. In Section 3.4 the
threshold the,r. is adopted to break the whole foreground contour
into separate components depending on punctual curvature,
Curvature values range between 0 and 1, and we experimented
that points with a curvature higher than the middle value of this
range can be deleted from the foreground contour. The parameter
thpn, is related to the size of connected component that undergoes
to the circle fitting process during limbus detection. We noticed
that connected components with less than 150 pixels are too small
to be considered as potential candidate for approximating the
limbus. Similarly, for the pupil approximation small connected
components are discarded in the circle fitting process. As the pupil
size is about one third of that of the region delimited by the
limbus, we found that 50 represents a good value for this thresh-
old. The performance of the CSUM method strongly depends on
size of the cells. We chose the values for these parameters by
taking into account the resolution of the iris region in polar space.

6. Experiments and discussion

The used iris images are acquired in visible wavelength. For this
reason, WIRE has been tested on the databases UBIRIS version
1 and UBIRIS version 2. Both include color RGB iris images
captured on-the-move and at-a-distance, and where images in
the latter database are more degraded than those in the former
one. UBIRIS version 1 is composed of two sessions, but in order to
get the testing process more stressing, only session 2 has been
used. Indeed, images acquired in UBIRIS version 1 session 2
(UBIRISv1s2) are more noisy than those collected in session 1,
due to specular reflection, defocus, and occlusions. UBIRISv1s2 is
composed of 663 images acquired from 132 people (at least
5 images per subject).

Also for UBIRIS version 2, we considered only a subset, named
UBIRISv2t. This dataset consists of 1000 images of 171 irises, either left
or right. Iris images in UBIRISv2t were selected as training set for the
international challenge NICE I The list of images has been made
available at [40]. The subset UBIRISv2t also includes binary iris
segmentation masks provided by the algorithm Tan [24] that is the
winner of NICE L The corresponding masks can be considered as the
benchmark to compare the effectiveness of WIRE with respect to two
additional algorithms, namely ISIS [19] and Wildes [2]. In turn, to
compare the performances of selected algorithms on UBIRISv1s2, the
binary masks (ground truth) for the iris images have been manually
built and should be accepted as the optimal segmentation.

We have used two ground truths for the two datasets for the
following reason. The executable version of the algorithm by Tan is
not publicly available and we could not run the Tan algorithm on
UBIRISv1s2 and, accordingly, used manually segmented masks. In
turn, for the dataset UBIRISv2t, we had the results of the Tan
algorithm that were made available within the challenge NICE II.
Thus, for this dataset we could use the results of the Tan algorithm
(used as ground truth) to compare the results of the other
algorithms.

To measure the quality of segmentation, two quantitative
parameters have been used: (i) the amount of overlap between
the segmentation result (i.e. detected binary mask) and the
corresponding ground truth; and (ii) the errors percentage mea-
sured in pixel number.

Given two binary masks BM; and BM,, the degree of overlap
between them is computed according to the following expression:

23 BMi (i, j) - BMa(i. )
Sp=— _ @)
IZJ:BMl(I,JHIZJ:BMZ(UJ

The value of so ranges from 0, when the masks are completely
separated, to 1 when they totally overlap. It is worth to notice that
the degree of overlap between two binary masks only provides an
overall assessment of the segmentation error. In particular, there
are cases in which the pupil is not correctly located. Since iris has a
larger surface than the pupil, even with an incorrect location of the
latter, the amount of overlap still remains high.

To the aim of better evaluating the segmentation accuracy,
limbus and pupil location processes must be assessed also sepa-
rately. Limbus and pupil boundaries produced by the process
described in Section 3, are fitted again by circles with Taubin's
algorithm. Each circle is described by three parameters that are the
planar coordinates of the centre and the radius. The localization
errors for the circles approximating limbus and pupil are then
computed as the discrepancy in terms of pixel percentage between
the parameters of the circles computed by WIRE and those
provided by the ground truth.

In more details, for each image in the testing dataset, the
absolute value of the difference is computed between homologous
parameters (i.e., abscissa, ordinate and radius) of the circle (pupil
or limbus) in the ground truth and the corresponding one detected
by the tested segmentation approach. The obtained values are
normalized according to horizontal/vertical image resolution and
are multiplied by 100. The overall is then obtained by averaging
errors of all images in the testing dataset.

It has been found experimentally that errors larger than a given
threshold oy in circle parameters estimation indicate a comple-
tely wrong detection, so that they can be considered as outliers.
For each circle parameter, the median value my is computed over
all errors performed on the testing dataset, and the corresponding
£oue 15 Set to 15.my,

Since outliers produce negative effects on the overall evalua-
tion, for each performance a couple of values is showed, specifying
if outliers have been included or not in the global average
computation. These two cases are always distinguished in the
following tables that reassume the results, and for each of them
the percentage of outliers is given. Indeed, the percentage of
outliers can be used as an additional effectiveness parameter.
Finally, to measure how the variations of color and illumination
affect the segmentation, each experiment has been repeated with
and without the correction step and results are reported in
separate tables. Results of this experiment on UBIRISv1s2 images
without and with color/illumination correction are reported in
Tables 1 and 2, respectively. For each method the results in
presence of outliers (out) and without outliers (nout) are reported.
The percentage of outliers produced by each method is specified
under the corresponding name. Columns 2-4 and 5-7 refer to
center coordinates and radius of iris and pupil, respectively, while
the last column reports the degree of overlap according expression
(8). In each column the smallest error value is highlighted both in

Table 1

Segmentation accuracy measured in terms of error percentage with respect to
manual segmentation for the three tested approaches (Wildes, ISIS, and WIRE) on
UBIRISv1s2 images without color/illumination correction.

Method Iris Iris Iris Pupil Pupil Pupil Overlap
x (x radius Cx x radius

Wildes out 512 188 144 238 765 155 0.80
out nout 452 147 128 163 256 123 0.83
1%

ISIS out 314 312 315 118 195 093 0.83
out 4% nout 3.02 284 298 077 091 0.56 0.84
WIRE out 346 283 1.03 203 218 097 0.86
out 6% nout 259 232 198 115 098 054 0.89




Table 2

Segmentation accuracy measured in terms of error percentage with respect to
manual segmentation for the three tested approaches (Wildes, ISIS, and WIRE) on
UBIRISv1s2 images with color/illumination correction.

Method Iris Iris Iris Pupil Pupil Pupil Overlap
x Cy radivs Cx Cy radius
Wildes out 512 118 144 222 117 1.47 0.81
out 9% nout 459 148 128 158 249 116 0.83
ISIS  out 379 329 315 188 272 115 0.76
out nout 294 259 2.65 112 119 062 0.85
12%
WIRE out 305 276 191 187 217 093 0.87
out 4% nout 239 209 162 105 094 054 0.90
Table 3

Segmentation accuracy measured in terms of error percentage with respect to
manual segmentation for the three tested approaches (Wildes, ISIS, and WIRE) on
UBIRISv2t images without color/illumination correction.

Method Iris Iris Iris Pupil Pupil Pupil Overlap
x Cy radivs Cx Cy radius
Wildes out 696 3.78 343 852 1955 223 0.59
out  nout 454 276 313 592 1783 170 0.65
10%
ISIS  out 283 330 349 277 223 154 0.67
out 8% nout 240 3.07 3.02 208 169 107 0.72
WIRE out 444 395 291 451 334 162 0.72
out 8% nout 2.87 294 253 258 204 113 0.78

presence of outliers (number in boldface) and without outliers
(numbers in italics).

From Table 1, we can observe that the numbers of outliers
provided by ISIS and WIRE are comparable and are both remark-
ably smaller than that produced by WILDES.

If the outliers are included in the calculation of the average
error, the number of parameters for which the error committed by
ISIS results to be minimum (in bold) is greater than other two
methods.

When the outliers are not included in the calculation of the
average error, it appears evident that WIRE almost always per-
forms the best result, as illustrated with the numbers in italics. We
remark that with and without outliers WIRE outperforms the
other methods in terms of overlap.

On corrected images, the behavior of WIRE radically changes.
Indeed, Table 2 shows how WIRE provides the best result with and
without outliers in the majority of cases. By comparing results in
Tables 1 and 2 we can also observe that the correction process
further reduces the number of outliers for two of the tested
methods (WILDES and WIRE). This is not true for ISIS, which is
deeply based on the Canny filter for pupil localization. However,
the Canny filter is rather sensitive to image details, which are
greatly accentuated by the correction operator we apply.

The same experiment has been performed on images from the
UBIRISv2t dataset without and with color/illumination correction.
Results are reported in Tables 3 and 4.

In the first case, that is when no image correction is applied on
input images, ISIS shows a higher robustness in terms of centers
and radii of iris and pupil, even when the outliers are included.
WIRE always outperforms in terms of overlap. Moreover, WIRE
comes up as the best performing algorithm on corrected images.
Indeed, it is the only method for which the percentage of outliers
further reduces. It is also worth noticing that the error percentage
generally reduces for all methods when color/illumination correc-
tion is applied.

6.1. Impact on iris recognition

Iris location is upstream of the verification/recognition process,
so more accurate the segmentation is, higher is the accuracy the
overall authentication system will provide. This suggests that the
performance of an iris segmentation approach can be indirectly
assessed by measuring the improvement in recognition accuracy it
induces when placed before a given classification technique. In our
case, we compare the recognition performance when the segmen-
ted images are those provided by the ground truth and by WILDES,
ISIS and WIRE.

The authentication method adopted by WIRE in the experi-
ments is a color extension of the CSUM technique [36] that has
been detailed in Section 4. We also try to ascertain the improve-
ment produced by the colorfillumination correction in terms of
authentication accuracy by testing three abovementioned seg-
mentation approaches (Wildes, ISIS and WIRE) on both UBI-
RiSv1s2 and UBIRISv2t with and without colorfillumination
correction. According to the protocol defined in NICE II [7], the
accuracy of the authentication system has been evaluated in terms
of decidability [3]. The decidability measures the performance of
an authentication system by evaluating the average of scores it
provides for genuine and impostor users. More specifically, given a
set of user templates V, it performs an “all-against-all” comparison,
which provides a set of dissimilarity intra-class D;={Dp, Dp, ...,
Dy} and inter-class Dg={Dgy, D3, ..., Dgn), depending on whether
templates belong to the same class or not. The decidability d(D,,
D) of the set V is computed as follows:

|avg(Dy) - avg(Dy)|
] (G(Df)z +G(DE)2)

d(D;, D) = 9

where the resulting value ranges into [0, co).

Tests have been performed on both UBIRISv1s2 and UBIRISv2t,
and results are repotted in Tables 5 and 6, respectively. Tables 5 and 6
regard the performance of iris recognition for UBIRISv1s2 and
UBIRISv2t respectively. In both cases, the first column provides the
recognition performance (decidability) obtained when the ground
truth is used as the result of segmentation.

Table 4

Segmentation accuracy measured in terms of error percentage of error with respect
to manual segmentation for the three tested approaches (Wildes, ISIS, and WIRE)
on UBIRISv2t images with color/illumination correction.

Method Iris Iris Iris Pupil Pupil Pupil Overlap
Cx Cy radius Cx Cy radius

Wildes out 579 357 352 653 948 183 063

out  nout 425 269 317 493 356 150 0.67
16%

ISIS  out 387 339 276 412 310 154 0.68

out 8% nout 245 263 249 243 202 119 0.74

WIRE out 335 2.87 257 355 258 146 0.77

out 6% nout 241 231 233 217 153 1.02 081

Table 5

The decidability for recognition on UBIRISv1s2 images, when segmentation mask
are those provided by the ground truth, Wildes, ISIS and WIRE.

Dataset Ground truth  Wildes  ISIS WIRE
UBIRISv1s2 no correction 2.1476 20335 13801  2.0356
UBIRISv1s2 with correction 21455 20324 13800 20335




Table 6
The decidability for recognition on UBIRISv2t images, when segmentation mask are
those provided by the ground truth, Wildes, ISIS and WIRE.

Dataset Ground truth ~ Wildes SIS WIRE
UBIRISV2t no correction 1.2472 1.0211 0.6469 13755
UBIRISv2t with correction 13926 0.8062  1.0985 13850

As expected, Table 5 confirms that manual segmentation
(ground truth) is the most accurate, since it allows the classifier
to reach the highest value of decidability. Moreover, there is no
appreciable difference between decidability values obtained with
and without color/illumination correction. This is motivated by the
fact that changes in lighting and color temperature are quite
limited on the images of the UBIRISv1s2 dataset.

Several interesting aspects come up from values reported in
Table 6. First of all, the decidability induced by WIRE on the
original images (no correction) is higher than that produced by all
other approaches; moreover, it still remains comparable after
color/illumination correction underlying in this way the robust-
ness of WIRE with respect to local distortions. The correction
process also produces a considerable increase in decidability
values when using the ground truth and ISIS segmented images.
On the contrary, the method suggested by Wildes suffers from a
high location error for pupil parameters, which strongly affects
the classification process and leads to a reduction of the
decidability value.

7. Conclusion

The growing interest of the research community for iris based
identification under uncontrolled data acquisition conditions
inspired this paper. Moreover, the future capillary diffusion of
HD camera will make iris detection more and more strategic in the
identification process. So a novel watershed based iris segmenta-
tion scheme, namely WIRE, has been designed and tested for
visible wavelength noisy images. The experimental results, per-
formed on UBIRIS version 1 session 2 and the subset of UBIRIS
version 2 used as training set for the international challenge NICE
II, demonstrated the robustness of WIRE in terms of accuracy. This
is relevant to security and surveillance, on one side, and mobile
commercial and financial applications (home and mobile banking),
on the other side. To further improve performances we plan to use
a suitable binarization of the watershed transform also for pupil
detection, so as to increase the accuracy in the location of pupil
boundary. We are also planning to exploit watershed based iris
detection for NIR eye images and to extend WIRE to mobile
framework.
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