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Diffusion-Based Adaptive Distributed Detection:
Steady-State Performance in the

Slow Adaptation Regime
Vincenzo Matta, Paolo Braca, Stefano Marano, Ali H. Sayed

Abstract—This work examines the close interplay between
cooperation and adaptation for distributed detection schemes
over fully decentralized networks. The combined attributes of
cooperation and adaptation are necessary to enable networks of
detectors to continually learn from streaming data and to con-
tinually track drifts in the state of nature when deciding in favor
of one hypothesis or another. The results in the paper establish a
fundamental scaling law for the steady-state probabilities of miss-
detection and false-alarm in the slow adaptation regime, when the
agents interact with each other according to distributed strategies
that employ small constant step-sizes. The latter are critical to
enable continuous adaptation and learning. The work establishes
three key results. First, it is shown that the output of the
collaborative process at each agent has a steady-state distribution.
Second, it is shown that this distribution is asymptotically
Gaussian in the slow adaptation regime of small step-sizes. And
third, by carrying out a detailed large deviations analysis, closed-
form expressions are derived for the decaying rates of the false-
alarm and miss-detection probabilities. Interesting insights are
gained from these expressions. In particular, it is verified that
as the step-size µ decreases, the error probabilities are driven
to zero exponentially fast as functions of 1/µ, and that the
exponents governing the decay increase linearly in the number
of agents. It is also verified that the scaling laws governing
errors of detection and errors of estimation over networks behave
very differently, with the former having an exponential decay
proportional to 1/µ, while the latter scales linearly with decay
proportional to µ. Moreover, and interestingly, it is shown that
the cooperative strategy allows each agent to reach the same
detection performance, in terms of detection error exponents,
of a centralized stochastic-gradient solution. The results of the
paper are illustrated by applying them to canonical distributed
detection problems.

Index Terms—Distributed detection, adaptive network, diffu-
sion strategy, consensus strategy, false-alarm probability, miss-
detection probability, large deviations analysis.

I. OVERVIEW

RECENT advances in the field of distributed inference
have produced several useful strategies aimed at exploit-

ing local cooperation among network nodes to enhance the
performance of each individual agent. However, the increasing
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availability of streaming data continuously flowing across the
network has added the new and challenging requirement of
online adaptation to track drifts in the data. In the adaptive
mode of operation, the network agents must be able to enhance
their learning abilities continually in order to produce reliable
inference in the presence of drifting statistical conditions,
drifting environmental conditions, and even changes in the
network topology, among other possibilities. Therefore, con-
current adaptation (i.e., tracking) and learning (i.e., inference)
are key components for the successful operation of distributed
networks tasked to produce reliable inference under dynami-
cally varying conditions and in response to streaming data.

Several useful distributed implementations based on con-
sensus strategies [1]–[12] and diffusion strategies [13]–[18]
have been developed for this purpose in the literature. The
diffusion strategies have been shown to have superior stability
ranges and mean-square performance when constant step-sizes
are used to enable continuous adaptation and learning [19].
For example, while consensus strategies can lead to unstable
growth in the state of adaptive networks even when all
agents are individually stable, this behavior does not occur for
diffusion strategies. In addition, diffusion schemes are robust,
scalable, and fully decentralized. Since in this work we focus
on studying adaptive distributed inference strategies, we shall
therefore focus on diffusion schemes due to their enhanced
mean-square stability properties over adaptive networks.

Now, the interplay between the two fundamental aspects
of cooperation and adaptation has been investigated rather
extensively in the context of estimation problems. Less ex-
plored in the literature is the same interplay in the context
of detection problems. This is the main theme of the present
work. Specifically, we shall address the problem of designing
and characterizing the performance of diffusion strategies that
reconcile both needs of adaptation and detection in decen-
tralized systems. The following is a brief description of the
scenario of interest.

A network of connected agents is assumed to monitor a
certain phenomenon of interest. As time elapses, the agents
collect an increasing amount of streaming data, whose sta-
tistical properties depend upon an unknown state of nature.
The state is formally represented by a pair of hypotheses, say,
H0 and H1. At each time instant, each agent is expected to
produce a decision about the state of nature, based upon its
own observations and the exchange of information with neigh-
boring agents. The emphasis here is on adaptation: we allow
the true hypothesis to drift over time, and the network must be
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Fig. 1. The top panel illustrates the time-evolution of the decision statistics
at three generic local agents for two situations: (a) constant step-size adap-
tation using a diffusion strategy and (b) diminishing step-size updates using
µn = 1/n and a running consensus strategy. The actual variation of the true
hypothesis is depicted in the bottom panel from H0 to H1 to H0.

able to track the drifting state. This framework is illustrated
in Fig. 1, where we show the time-evolution of the actual
realization of the decision statistics computed by three generic
network agents. Two situations are considered. In the first case,
the agents run a constant-step size diffusion strategy [15], [20]
and in the second case, the agents run a consensus strategy
with a diminishing step-size of the form µn = 1/n [1]–[6].
Note from the curves in the figure that the statistics computed
by different sensors are hardly distinguishable, emphasizing a
certain equivalence in performance among distinct agents, an
important feature that will be extensively commented on in
the forthcoming analysis.

Assume that high (positive) values of the statistic cor-
respond to deciding for H1, while low (negative) values
correspond to deciding for H0. The bottom panel in the figure
shows how the true (unknown) hypothesis changes at certain
(unknown) epochs following the sequence H0 → H1 → H0. It
is seen in the figure that the adaptive diffusion strategy is more
apt in tracking the drifting state of nature. It is also seen that
the diminishing step-size consensus implementation is unable
to track the changing conditions. Moreover, the inability to
track the drift degrades further as time progresses since the
step-size sequence µn = 1/n decays to zero as n → ∞. For
this reason, in this work we shall set the step-sizes to constant
values to enable continuous adaptation and learning by the
distributed network of detectors. In order to evaluate how well
these adaptive networks perform, we need to be able to assess
the goodness of the inference performance (reliability of the
decisions), so as to exploit the trade-off between adaptation
and learning capabilities. This will be the main focus of the
paper.

A. Related Work

The literature on distributed detection is definitely rich,
see, e.g., [21]–[28] as useful entry points on the topic. A
distinguishing feature of our approach is its emphasis on adap-

tive distributed detection techniques that respond to streaming
data in real-time. We address this challenging problem with
reference to the fully decentralized setting, where no fusion
center is admitted, and the agents cooperate through local
interaction and consultation steps.

For several useful formulations of distributed point esti-
mation and detection, the use of stochastic approximation
consensus-based solutions with diminishing step-sizes leads
to asymptotically optimal performance, either in the sense of
asymptotic variance in point estimation [12], in the sense of
error exponents [4]–[6], or in the sense of asymptotic relative
efficiency in the locally optimum detection framework [2].
Optimality in these works is formulated in reference to the
centralized solution, and the qualification “asymptotic” is used
to refer either to a large number of observations or a large
time window. The error performance (e.g., mean-square error
for estimation or error probabilities for detection) is shown
in these works to decay with optimal rates as time elapses,
provided that some conditions on the network structure are
met. For these results to hold, it is critical for the statistical
properties of the data to remain invariant and for the algorithms
to rely on a recursive test statistics with a diminishing step-
size.

In some other distributed inference applications, however,
the statistical properties of the data can vary over time. For
instance, in a detection problem, the actual hypothesis in
force, and/or some parameters of the pertinent distributions,
might change at certain moments. Therefore, the adaptation
aspect, i.e., the capability of persistently tracking dynamic
scenarios, becomes important. In such scenarios, the diffusion
algorithms (with non-diminshing, constant step-size) provide
effective mechanisms for continuous adaptation and learning.
Similar to the consensus-based algorithms with diminishing
step-sizes, they are easy to implement, since they involve linear
operations, and are naturally suited to a fully distributed imple-
mentation. However, differently from the consensus algorithms
with diminishing step-size, the strategies with constant step-
size are inherently able to work under dynamically changing
conditions and offer enhanced tracking capability.

B. Inherent Tracking Mechanism

It is well-known in the adaptation and learning literature that
using constant step-sizes in the update relations automatically
infuses the algorithms with a tracking mechanism that enables
them to track variations in the underlying models. This is
because constant step-sizes keep adaptation alive, forever. This
is in contrast to decaying step-sizes, which tend to zero and
ultimately stop adapting. With a constant step-size, learning
is always active. When the hypothesis changes, an algorithm
with a constant step-size will continue learning from that point
onwards and given sufficient time to learn, the steady-state
analysis in this article will show that the probabilities of error
will indeed decay exponentially as functions of the inverse of
the step-size.

The key challenge in these scenarios is that a constant step-
size keeps the update active, which then causes gradient noise
to seep continuously into the operation of the algorithm. This
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effect does not happen for decaying step-sizes because the
diminishing step-size annihilates the gradient noise term in
the limit. However, a decaying step-size cannot track changing
hypotheses due to the vanishing step-size. The difficulty in
the constant step-size case is therefore to show that despite
the presence of gradient noise, the dynamics of the learning
algorithm is such that it can keep this effect under check and
is capable to learn. The more it learns, the more it reduces
the size of the gradient noise and this feedback mechanism
leads to effective learning. This is one of the key conclusions
in this work, namely, showing that indeed the probabilities
of error decay exponentially with the inverse of the step-size.
This result is non-trivial and the derivations will take some
effort before arriving at the insightful scaling laws that we are
presenting in this work.

C. Analysis of Detection Performance

The aforementioned properties of the diffusion strategies
used in this work explain their widespread utilization in
the context of adaptive estimation [17], and motivate their
use in the context of adaptive distributed detection [29]–
[31]. With reference to this class of algorithms, while several
results have been obtained for the mean-square-error (MSE)
estimation performance of adaptive networks [15], [20], less
is known about the performance of distributed detection net-
works. In particular, in [29], the miss-detection and false-alarm
probabilities have been evaluated with reference to Gaussian
observations. However, a detailed analytical characterization
of the detection performance (i.e., false-alarm and detection
probabilities), with reference to a general observational model,
is still missing. This is mainly due to the fact that results on the
asymptotic distribution of the error quantities under constant
step-size adaptation over networks are largely unavailable in
the literature.

While reference [32] argues that the error in single-agent
least-mean-squares (LMS) adaptation converges in distribu-
tion, the resulting distribution is not characterized. These ques-
tions are considered in [33], [34] in the context of distributed
estimation over adaptive networks. Nevertheless, these results
on the asymptotic distribution of the errors are still insufficient
to characterize the rate of decay of the probability of error
over networks of distributed detectors. The main purpose of
this work is to fill this gap. To do so, it is necessary to pursue
a large deviations analysis in the constant step-size regime.
Motivated by these remarks, we therefore provide a thorough
statistical characterization of the diffusion network in a manner
that enables detector design and analysis.

Notation. We use boldface letters to denote random variables,
and normal font letters for their realizations. Capital letters
refer to matrices, small letters to both vectors and scalars.
Sometimes we violate this latter convention, for instance, we
denote the total number of sensors by S. The symbols P

and E are used to denote the probability and expectation
operators, respectively. The notation Ph and Eh, with h = 0, 1,
means that the pertinent statistical distribution corresponds to
hypothesis H0 or H1.

II. PRELIMINARIES AND MAIN RESULTS

Consider a connected network of S agents. The scalar
observation collected by the k-th sensor at time n will
be denoted by xk(n), k = 1, 2, . . . , S. Data are assumed
to be spatially and temporally independent and identically
distributed (i.i.d.), conditioned on the hypothesis that gives
rise to them. The distributed network is interested in making
an inference about the true state of nature (i.e., the underlying
hypothesis), which is allowed to vary over time. Since in this
work we focus on a steady-state analysis, it is unnecessary at
this stage to introduce an explicit dependence of the datum
xk(n) on the particular hypothesis giving rise to it.

Remark. When dealing with i.i.d. observations across sensors,
the important issue of local versus aggregate distinguishability
is bypassed. In most practical scenarios, sensors observe
different aspects of a field, so local distinguishability is hard
to achieve but the collective observation model may still be
globally informative. The issue when local information is not
sufficient for discrimination has been studied in several works
before, including [35]–[37], and in other related references on
diffusion strategies. In the context of multi-agent processing,
the distinguishability condition essentially amounts to a posi-
tivity condition on the global Gramian (Hessian) matrix while
allowing the individual Gramians to be non-negative definite.
Learning is still possible in these cases, as shown, for example,
in [17], [38], [39]. !

As it is well-known, for the i.i.d. data model, an optimal
centralized (and non-adaptive) detection statistic is the sum of
the log-likelihoods. When these are not available, alternative
detection statistics obtained as the sum of some suitably
chosen functions of the observations are often employed, as
happens in some specific frameworks, e.g., in locally optimum
detection [45] and in universal hypothesis testing [46]. Ac-
cordingly, each sensor in the network will try to compute, as
its own detection statistic, a weighted combination of some
function of the local observations. We assume the symbol
xk(n) represents the local statistic that is available at time
n at sensor k.

Since we are interested in an adaptive inferential scheme,
and given the idea of relying on weighted averages, we
resort to the class of diffusion strategies for adaptation over
networks [15], [29]. These strategies admit various forms. We
consider the ATC form due to some inherent advantages in
terms of a slightly improved mean-square-error performance
relative to other forms [15]. In the ATC diffusion implemen-
tation, each node k updates its state from yk(n− 1) to yk(n)
through local cooperation with its neighbors as follows:

vk(n) = yk(n− 1) + µ[xk(n)− yk(n− 1)], (1)

yk(n) =
S∑

ℓ=1

ak,ℓvℓ(n) (2)

where 0 < µ ≪ 1 is a small step-size parameter. In this
construction, node k first uses its local statistic, xk(n), to
update its state from yk(n − 1) to an intermediate value
vk(n). All other nodes in the network perform similar updates
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simultaneously using their local statistics. Subsequently, node
k aggregates the intermediate states of its neighbors using
nonnegative convex combination weights {ak,ℓ} that add up to
one. Again, all other nodes in the network perform a similar
calculation. If we collect the combination coefficients into a
matrix A = [ak,ℓ], then A is a right-stochastic matrix in that
the entries on each of its rows add up to one:

ak,ℓ ≥ 0, A1 = 1, (3)

with 1 being a column-vector with all entries equal to 1.

A. Performance and Convergence Analyses

At time n, the k-th sensor needs to produce a decision
based upon its state value yk(n). To this aim, a decision rule
must be designed, by choosing appropriate decision regions.
The performance of the test will be measured according to
the Type-I (false-alarm) and Type-II (miss-detection) error
probabilities defined, respectively, as

αk(n) " P

[
agent k decides H1 at time n

while H0 is true at time n

]
, (4)

βk(n) " P

[
agent k decides H0 at time n

while H1 is true at time n

]
. (5)

Note that these probabilities depend upon the statistical proper-
ties of the whole set of data used in the diffusion algorithm up
to current time n. In particular, the error probabilities depend
upon the different variations of the statistical distributions may
have occurred during the evolution of the algorithm, and not
only upon the particular hypothesis in force at time n.

Therefore, a rigorous analytical characterization of the sys-
tem in terms of its overall inference performance at each
time instant, and under general operation modalities (i.e.,
for arbitrarily varying statistical conditions) is generally not
viable. This implies, among other difficulties, that the structure
of the optimal, or even a reasonable test, is unknown. A
standard approach in the adaptation literature to get useful
performance metrics and meaningful insights, consists of
splitting the analysis in two parts:

i) A transient analysis where, starting from a given state,
some variations in the statistical conditions occur and the
time to track such variations is evaluated. It is possible
to carry out studies that focus on the transient phase of
the learning algorithm, and to clarify its behavior during
this stage of operation, as is done in [38], [39].

ii) A steady-state analysis, where the inference performance
is evaluated with reference to an infinitely long period
of stationarity. Even in the steady-state regime, an exact
analytical characterization of the inference performance
is seldom affordable. Therefore, closed-form results are
usually obtained working in the regime of slow adapta-
tion, i.e., of small step-sizes.

These two views are complementary. Typically, for a given
value of the step-size µ, the diffusion algorithm exhibits the
following features:

i) The convergence rate towards the steady-state regime is
known to occur at an exponential rate in the order of
O(cn) for some c ∈ (0, 1); this is a faster rate than

O(1/n) that is afforded, for example, by diminishing
step-sizes. Nevertheless, in the constant step-size case,
the smaller the value of µ is, the closer the value of c
gets to one.

ii) The steady-state inference performance is a decreasing
function of the step-size. Therefore, the lower µ is, the
lower the steady-state error.

In this article, we address in some detail the steady-state
performance of diffusion strategies for distributed detection
over adaptive networks. Our main interest is in showing that
the multi-agent network is able to learn well, with error
probabilities exhibiting an exponential decay as functions
of 1/µ. In particular, our analysis will be conducted with
reference to the steady-state properties (as n → ∞), and for
small values of the step-size (µ → 0). Throughout the paper,
the term steady-state will refer to the limit as the time-index
n goes to infinity, while the term asymptotic will be used to
refer to the slow adaptation regime where µ→ 0. Specifically,
we will follow these steps:

• We show that, in the stationary, steady-state regime,
yk(n) has a limiting distribution as n goes to infinity
(Theorem 1).

• For small step-sizes, the steady-state distribution of yk(n)
approaches a Gaussian, i.e., it is asymptotically normal

(Theorem 2).
• We characterize the large deviations of the steady-state

output yk(n) in the slow adaptation regime when µ→ 0
(Theorem 3).

• The results of the above steps will provide a series of
tools for designing the detector and characterizing its
performance (Theorem 4).

B. Comparison with Decaying Step-Size Solutions

It is useful to contrast the above results with those pertaining
to distributed detection algorithms with diminishing step-
size [4]–[6]. The result in Theorem 1 reveals that, under
stationary conditions, the detection statistic (i.e., the diffusion
output yk(n)) converges to a limiting distribution, and the
results in Theorem 2 add that such limiting distribution is
approximately Gaussian in the slow adaptation regime. In
contrast, in the diminishing step-size case, the detection statis-
tic will collapse, as time elapses, into a deterministic value
(e.g., the Kullback-Leibler divergence). Such convergence
to a deterministic value reflects the continuously improving
performance as time elapses, with diminishing step-sizes. In
particular, under stationary conditions, the error probabilities
for diminishing step-size algorithms decay exponentially as

functions of the time index n — see, e.g. [4]–[6]. The latter
feature must be contrasted with the results of our Theorems 3
and 4, where the exponential decay of the error probabilities
does not refer to the time index n. Instead, we find the
new result that the error probabilities decay exponentially as

functions of the (inverse of the) step-size µ.
Finally, we would like to mention that the detailed statistical

characterization offered by Theorems 1-3 is not confined to the
specific detection problems we are dealing with. As a matter
of fact, these results are of independent interest, and might be
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useful for the application of adaptive diffusion strategies in
broader contexts.

C. Main Results

As explained in the previous section, we focus on a con-
nected network of S sensors, performing distributed detection
by means of adaptive diffusion strategies. The adaptive nature
of the solution allows the network to track variations in the hy-
potheses being tested over time. In order to enable continuous
adaptation and learning, we shall employ distributed diffusion
strategies with a constant step-size parameter µ. Now, let αk,µ

and βk,µ represent the steady-state (as n → ∞) Type-I and
Type-II error probabilities at the k-th sensor. One of the main
conclusions established in this paper can be summarized by
the following scaling laws:

αk,µ
·
= e−(1/µ)S E0 , βk,µ

·
= e−(1/µ)S E1 (6)

where the notation
·
= means equality to the leading exponential

order as µ goes to zero [40]. In the above expressions, the
parameters E0 and E1 are solely dependent on the moment
generating function of the single-sensor data x, and of the
decision regions. These parameters are independent of the
step-size µ, the number of sensors S, and the network con-
nectivity. Result (6) has at least four important and insightful
ramifications about the performance of adaptive schemes for
distributed detection over networks.

To begin with, Eq. (6) reveals a fundamental scaling law
for distributed detection with diffusion adaptation, namely, it
asserts that as the step-size decreases, the error probabilities
are driven to zero exponentially as functions of 1/µ, and
that the error exponents governing such a decay increase
linearly in the number of sensors. These implications are
even more revealing if examined in conjunction with the
known results concerning the scaling law of the Mean-Square-
Error (MSE) for adaptive distributed estimation over diffusion
networks [15], [20]. Assuming a connected network with S
sensors, and using sufficiently small step-sizes µ ≈ 0, the
MSE that is attained by sensor k obeys (see expression (32)
in [15]):

MSEk ∝
µ

S
, (7)

where the symbol ∝ denotes proportionality. Some interesting
symmetries are observed. In the estimation context, the MSE
decreases as µ goes to zero, and the scaling rate improves
linearly in the number of sensors. Recalling that smaller values
of µ mean a lower degree of adaptation, we observe that
reaching a better inference quality costs in terms of adaptation
speed. This is a well-known trade-off in the adaptive estima-
tion literature between tracking speed and estimation accuracy.

Second, we observe from (6) and (7) that the scaling laws
governing errors of detection and estimation over distributed
networks behave very differently, the former exhibiting an
exponential decay proportional to 1/µ, while the latter is linear
with decay proportional to µ. The significance and elegance
of this result for adaptive distributed networks lie in revealing
an intriguing analogy with other more traditional inferential

schemes. As a first example, consider the standard case of
a centralized, non-adaptive inferential system with N i.i.d.
data points. It is known that the error probabilities of the best
detector decay exponentially fast to zero with N , while the
optimal estimation error decays as 1/N [41], [42]. Another
important case is that of rate-constrained multi-terminal infer-
ence [43], [44]. In this case the detection performance scales
exponentially with the bit-rate R while, again, the squared
estimation error vanishes as 1/R. Thus, at an abstract level,
reducing the step-size corresponds to increasing the number of
independent observations in the first system, or increasing the
bit-rate in the second system. The above comparisons furnish
an interesting interpretation for the step-size µ as the basic
parameter quantifying the cost of information used by the
network for inference purposes, much as the number of data
N or the bit-rate R in the considered examples.

A third aspect pertaining to the performance of the dis-
tributed network relates to the potential benefits of coopera-
tion. These are already encoded into (6), and we have already
implicitly commented on them. Indeed, note that the error
exponents increase linearly in the number of sensors. This
implies that cooperation offers exponential gains in terms of
detection performance.

The fourth and final ramification we would like to highlight
relates to how much performance is lost by the distributed
solution in comparison to a centralized stochastic gradient
solution. Again, the answer is contained in (6). Specifically,
the centralized solution is equivalent to a fully connected
network, so that (6) applies to the centralized case as well. As
already mentioned, the parameters E0 and E1 do not depend on
the network connectivity, which therefore implies that, as the
step-size µ decreases, the distributed diffusion solution of the
inference problem exhibits a detection performance governed
by the same error exponents of the centralized system. This is
a remarkable conclusion and it is also consistent with results
in the context of adaptive distributed estimation over diffusion
networks [15].

We now move on to describe the adaptive distributed
solution and to establish result (6) and the aforementioned
properties.

III. EXISTENCE OF STEADY-STATE DISTRIBUTION

Let yn denote the S × 1 vector that collects the state
variables from across the network at time n, i.e.,

yn = col{y1(n), y2(n), . . . ,yS(n)}. (8)

Likewise, we collect the local statistics {xk(n)} at time n
into the vector xn. It is then straightforward to verify from
the diffusion strategy (1)–(2) that the vector yn is given by:

yn = (1 − µ)n Any0 +
µ

1− µ

n∑

i=1

(1− µ)n−i+1An−i+1xi

(9)
We are concerned here with a steady-state analysis. Ac-
cordingly, we must examine the situation where the data
are possibly nonstationary up to a certain time instant, after
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which they are drawn from the same stationary distribution
for infinitely long time. This implies that, when performing
the steady-state analysis, it suffices to assume that the data,
for all n ≥ 1, arise from one and the same distribution. The
past history (including possible drifts occurred in the statistical
conditions) that influences the overall algorithm evolution, is
reflected in the initial state vector y0. In addition, since, for
n ≥ 1, we only need to specify the particular distribution
from which data are drawn, in the forthcoming derivations
we shall conduct our study with reference to a sequence of
i.i.d. data with a given distribution. Later on, when applying
the main findings to the detection problem, we shall use a
subscript h ∈ {0, 1} to denote that data follow the distribution
corresponding to a particular hypothesis.

We are now ready to show the existence and the specific
shape of the limiting distribution. By making the change of
variables i← n− i+ 1, Eq. (9) can be written as

yn = (1 − µ)n Any0 +
µ

1− µ

n∑

i=1

(1− µ)iAixn−i+1. (10)

It follows that the state of the k-th sensor is given by:

yk(n) = (1− µ)n
S∑

ℓ=1

bk,ℓ(n)yℓ(0)

︸ ︷︷ ︸
transient

+
µ

1− µ

n∑

i=1

(1 − µ)i
S∑

ℓ=1

bk,ℓ(i)xℓ(n− i+ 1),

︸ ︷︷ ︸
steady-state

(11)

where the scalars bk,ℓ(n) are the entries of the matrix power:

Bn " An. (12)

Since we are interested in reaching a balanced fusion of the
observations, we shall assume that A is doubly stochastic with
second largest eigenvalue magnitude strictly less than one,
which yields [8], [16], [48]:

Bn
n→∞−→ 1

S
11

T . (13)

Now, we notice that the first term on the RHS of (11)
vanishes almost surely (a.s.) (and, hence, in probability [41])
with n, since, for any initial state vector y0, we have:
∣∣∣∣∣(1− µ)n

S∑

ℓ=1

bk,ℓ(n)yℓ(0)

∣∣∣∣∣ ≤ (1− µ)n
S∑

ℓ=1

|yℓ(0)|. (14)

Accordingly, if we are able to show that the second term on
the RHS of (11) converges to a certain limiting distribution,
we can then conclude that the variable yk(n) converges as
well to the same limiting distribution, as a direct application
of Slutsky’s Theorem [41].

In order to reveal the steady-state behavior of yk(n), it
suffices to focus on the last summation in (11). We observe
preliminarily that the term xn−i+1 in (10) depends on the
time index n in such a way that the most recent datum xn

is assigned the highest scaling weight, in compliance with the

adaptive nature of the algorithm. However, since the vectors
xi are i.i.d. across time, and since we shall be only concerned
with the distribution of partial sums involving these terms,
the statistical properties of the summation in (10) are left
unchanged if we replace xn−i+1 with a random vector x′

i,
where {x′

i} is a sequence of i.i.d. random vectors distributed
similarly to the {xn−i+1}. Formally, as regards the steady-
state term on the RHS of (11), we can write:

µ

1− µ

n∑

i=1

(1 − µ)i
S∑

ℓ=1

bk,ℓ(i)xℓ(n− i + 1)

d
=

µ

1− µ

n∑

i=1

(1− µ)i
S∑

ℓ=1

bk,ℓ(i)x
′
ℓ(i) "

n∑

i=1

zk(i),

(15)

where
d
= denotes equality in distribution, and where the

definition of zk(i) should be clear. As a result, we are faced
with a sum of independent, but not identically distributed,
random variables. Let us evaluate the first two moments of
the sum:

E

(
n∑

i=1

zk(i)

)

= Ex

n∑

i=1

µ(1 − µ)i−1
S∑

ℓ=1

bk,ℓ(i)

︸ ︷︷ ︸
=1

n→∞−→ Ex,

(16)
and

VAR

(
n∑

i=1

zk(i)

)

= σ2
x

n∑

i=1

µ2(1− µ)2(i−1)
S∑

ℓ=1

b2k,ℓ(i)

︸ ︷︷ ︸
≤1

≤ σ2
x µ

2− µ
<∞, (17)

where VAR denotes the variance operator, and σ2
x " VAR(x).

We have thus shown that the expectation of the sum expression
from (15) converges to Ex, and that its variance converges to
a finite value. In view of the Infinite Convolution Theorem
— see [49, p. 266], these two conditions are sufficient to
conclude that the RHS of (15), i.e., the sum of random
variables zk(i), converges in distribution as n → ∞, and the
first two moments of the limiting distribution are equal to Ex

and
∑∞

i=1 VAR(zk(i)). The random variable characterized by
the limiting distribution will be denoted by y⋆k,µ, where we
make explicit the dependence upon the step-size µ for later
use.

The above statement can be sharpened to ascertain that
the sum of random variables zk(i) actually converges al-
most surely. This conclusion can be obtained by applying
Kolmogorov’s Two Series Theorem [49]. In view of the a.s.
convergence, it makes sense to define the limiting random
variable y⋆k,µ as:

y⋆k,µ "
∞∑

i=1

S∑

ℓ=1

µ (1 − µ)i−1bk,ℓ(i)x
′
ℓ(i) (18)

We wish to avoid confusion here. We are not stating that
the actual diffusion output yk(n) converges almost surely
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(a behavior that would go against the adaptive nature of
the diffusion algorithm). We are instead claiming that yk(n)
converges in distribution to a random variable y⋆k,µ that can
be conveniently defined in terms of the a.s. limit (18).

The main result about the steady-state behavior of the
diffusion output is summarized below (the symbol # means
convergence in distribution).

THEOREM 1: (Steady-state distribution of yk(n)). The state

variable yk(n) that is generated by the diffusion strategy (1)–

(2) is asymptotically stable in distribution, namely,

yk(n)
n→∞# y⋆k,µ (19)

!

It is useful to make explicit the meaning of Theorem 1. By def-
inition of convergence in distribution (or weak convergence),
the result (19) can be formally stated as [42], [50]:

lim
n→∞

P[yk(n) ∈ Γ] = P[y⋆k,µ ∈ Γ], (20)

for any set Γ such that P[y⋆k,µ ∈ ∂Γ] = 0, where ∂Γ denotes
the boundary of Γ. It is thus seen that the properties of the
steady-state variable y⋆k,µ will play a key role in determining
the steady-state performance of the diffusion output. Accord-
ingly, we state two useful properties of y⋆k,µ.

First, when the local statistic xk(n) has an absolutely

continuous distribution (where the reference measure is the
Lebesgue measure over the real line), it is easily verified
that the distribution of y⋆k,µ is absolutely continuous as well.

Indeed, note that we can write y⋆k,µ = zk(1) +
∑∞

i=2 zk(i).
Now observe that zk(1), which has an absolutely continuous
distribution by assumption, is independent of the other term.
The result follows by the properties of convolution and from
the fact that the distribution of the sum of two independent
variables is the convolution of their respective distributions.

Second, when the local statistic xk(n) is a discrete random
variable, by the Jessen-Wintner law [51], [52], we can only
conclude that y⋆k,µ is of pure type, namely, its distribution
is pure: absolutely continuous, or discrete, or continuous but
singular.

An intriguing case is that of the so-called Bernoulli convolu-
tions, i.e., random variables of the form

∑∞
i=1(1−µ)i−1x(i),

where x(i) are equiprobable ±1. For this case, it is known
that if 1/2 < µ < 1, then the limiting distribution is a
Cantor distribution [53]. This is an example of a distribu-
tion that is neither discrete nor absolutely continuous. When
µ < 1/2, which is relevant for our discussion since we shall
be concerned with small step-sizes, the situation is markedly
different, and the distribution is absolutely continuous for
almost all values of µ.

Before proceeding, we stress that we have proved that a
steady-state distribution for yk(n) exists, but its form is not
known. Accordingly, even in steady-state, the structure of
the optimal test is still unknown. In tackling this issue, and
recalling that the regime of interest is that of slow adaptation,
we now focus on the case µ≪ 1.

IV. THE SMALL-µ REGIME.

While the exact form of the steady-state distribution is
generally impossible to evaluate, it is nevertheless possible to
approximate it well for small values of the step-size parameter.
Indeed, in this section we prove two results concerning the
statistical characterization of the steady-state distribution for
µ→ 0. The first one is a result of asymptotic normality, stating
that y⋆k,µ approaches a Gaussian random variable with known
moments as µ goes to zero (Theorem 2). The second finding
(Theorem 3) provides the complete characterization for the
large deviations of y⋆k,µ. In the following, N (a, b) is a shortcut
for a Gaussian distribution with mean a and variance b, and
the symbol ∼ means “distributed as”.

THEOREM 2: (Asymptotic normality of y⋆k,µ as µ→ 0). Under

the assumption E|xk(n)|3 <∞, the variable y⋆k,µ fulfills, for
all k = 1, 2, . . . , S:

y⋆k,µ − Ex
√
µ

µ→0# N
(
0,
σ2
x

2S

)
(21)

Proof: The argument requires dealing with independent but
non-identically distributed random variables, as done in the
Lindeberg-Feller CLT (Central Limit Theorem) [49]. This
theorem, however, does not apply to our setting since the
asymptotic parameter is not the number of samples, but rather
the step-size. Some additional effort is needed, and the detailed
technical derivation is deferred to Appendix A. !

A. Implications of Asymptotic Normality

Let us now briefly comment on several useful implications
that follow from the above theorem:

1) First, note that all sensors share, for µ small enough,
the same distribution, namely, the inferential diffusion
strategy equalizes the statistical behavior of the agents.
This finding complements well results from [15], [20],
[34] where the asymptotic equivalence among the sen-
sors has been proven in the context of mean-square-
error estimation. One of the main differences between
the estimation context and the detection context studied
in this article is that in the latter case, the regression
data is deterministic and the randomness arises from the
stochastic nature of the statistics {xk(n)}. For this rea-
son, the steady-state distribution in (21) is characterized
in terms of the moments of these statistics and not in
terms of the moments of regression data, as is the case
in the estimation context.

2) The result of Theorem 2 is valid provided that the con-
nectivity matrix fulfills (13). This condition is satisfied
when the network topology is strongly-connected, i.e.,
there exists a path with nonzero weights connecting any
two arbitrary nodes and at least one node has ak,k >
0 [16]. Obviously, condition (13) is also satisfied in the
fully connected case when ak,ℓ = bk,ℓ = 1/S for all
k, ℓ = 1, 2, . . . , S. This latter situation would correspond
to a representation of the centralized stochastic gradient

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2016.2580665

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

algorithm, namely, an implementation of the form

y(c)(n) = y(c)(n− 1) +
µ

S

S∑

ℓ=1

[xℓ(n)− y(c)(n− 1)],

(22)
where y(c)(n) denotes the output by the centralized
solution at time n. The above algorithm can be deduced
from (1)–(2) by defining

y(c)(n) "
1

S

S∑

ℓ=1

yℓ(n). (23)

Now, since the moments of the limiting Gaussian
distribution in (21) are independent of the particular
connectivity matrix, the net effect is that each agent
of the distributed network acts, asymptotically, as the
centralized system. This result again complements well
results in the estimation context where the role of
the statistics variables {xk(n)} is replaced by that of
stochastic regression data [54].

3) The asymptotic normality result is powerful in approx-
imating the steady-state distribution for relatively small
step-sizes, thus enabling the analysis and design of
inferential diffusion networks in many different contexts.
With specific reference to the detection application that
is the main focus here, Eq. (21) can be exploited for
an accurate threshold setting when one desires to keep
under control one of the two errors, say, the false-alarm
probability, as happens, e.g., in the Neyman-Pearson
setting [42]. To show a concrete example on how this can
be done, let us assume that, without loss of generality,
E0x < E1x, and consider a single-threshold detector
for which:

Γ0 = {γ ∈ R : γ ≤ ηµ}, Γ1 = R \ Γ0, (24)

where the threshold is set as

ηµ = E0x+

√
µσ2

x,0

2S
Q−1(ᾱ). (25)

Here, σ2
x,0 is the variance of x under H0, Q(·) denotes

the complementary CDF for a standard normal distribu-
tion, and ᾱ is the prescribed false-alarm level. By (21),
it is straightforward to check that this threshold choice
ensures

lim
µ→0

P0[y
⋆
k,µ > ηµ] = ᾱ. (26)

In summary, Theorem 2 provides an approximation of
the diffusion output distribution for small step-sizes. At first
glance, this may seem enough to obtain a complete character-
ization of the detection problem. A closer inspection reveals
that this is not the case. A good example to understand why
Theorem 2 alone is insufficient for characterizing the detection
performance is obtained by examining the Neyman-Pearson
threshold setting just described in (25)–(26) above. While
we have seen that the asymptotic behavior of the false-alarm
probability in (26) is completely determined by the application
of Theorem 2, the situation is markedly different as regards

the miss-detection probability P1[y⋆k,µ ≤ ηµ]. Indeed, by
using (25) we can write:

P1[y
⋆
k,µ ≤ ηµ] = P1

[
y⋆k,µ − E1x
√
µ

≤ ηµ − E1x√
µ

]

= P1

⎡

⎣y
⋆
k,µ − E1x
√
µ

≤ E0x− E1x√
µ

+

√
σ2
x,0

2S
Q−1(ᾱ)

⎤

⎦ .

(27)

Since E0x < E1x, the quantity E0x−E1x√
µ diverges to −∞ as

µ → 0. As a consequence, the fact that
y
⋆
k,µ−E1x√

µ is asymp-

totically normal does not provide much more insight than
revealing that the miss-detection probability converges to zero
as µ → 0. A meaningful asymptotic analysis would instead
require to examine the way this convergence takes place (i.e.,
the error exponent). The same kind of problem is found when
one lets both error probabilities vanish exponentially, such
that the Type-I and Type-II detection error exponents furnish
a meaningful asymptotic characterization of the detector. In
order to fill these gaps, the study of the large deviations of
y⋆k,µ is needed.

B. Large Deviations of y⋆k,µ.

From (21) we learn that, as µ → 0, the diffusion output
shrinks down to its limiting expectation Ex and that the small

(of order
√
µ) deviations around this value have a Gaussian

shape. But this conclusion is not helpful when working with
large deviations, namely, with terms like:

P[|y⋆k,µ − Ex| > δ]
µ→0−→ 0, δ > 0, (28)

which play a significant role in detection applications. While
the above convergence to zero can be inferred from (21), it
is well known that (21) is not sufficient in general to obtain
the rate at which the above probability vanishes. In order
to perform accurate design and characterization of reliable
inference systems [55], [56] it is critical to assess this rate
of convergence, which turns out to be the main purpose of a
large deviations analysis.

Accordingly, we will be showing in the sequel that the pro-
cess y⋆k,µ obeys a Large Deviations Principle (LDP), namely,
that the following limit exists [55], [56]:

lim
µ→0

µ lnP[y⋆k,µ ∈ Γ] = − inf
γ∈Γ

I(γ) " −IΓ, (29)

for some I(γ) that is called the rate function. Equivalently:

P[y⋆k,µ ∈ Γ] = e−(1/µ) IΓ+o(1/µ) ·
= e−(1/µ) IΓ , (30)

where o(1/µ) stands for any correction term growing slower
than 1/µ, namely, such that µ o(1/µ)→ 0 as µ→ 0, and the

notation
·
= was introduced in (6). From (30) we see that, in

the large deviations framework, only the dominant exponential
term is retained, while discarding any sub-exponential terms.
It is also interesting to note that, according to (30), the
probability that y⋆k,µ belongs to a given region Γ is dominated
by the infimum IΓ of the rate function I(γ) within the
region Γ. In other words, the smallest exponent (⇒ highest
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Fig. 2. Leftmost panel: The LMGF ψ(t) of the original data xk(n); its slope at the origin is Ex. Middle panel: The function ω(t) defined by (36) is strictly
convex; its slope at the orgin is also equal to Ex. The labels underneath the plot illustrate the intervals over which ω′(t) is negative and positive for the
LMGF ψ(t) shown in the leftmost plot. Rightmost panel: The Fenchel-Legendre transform, Ω(γ), which is relevant for the evaluation of the rate function,
attains the minimum value of zero at γ = Ex.

probability) dominates, which is well explained in [56] through
the statement: “any large deviation is done in the least unlikely
of all the unlikely ways”.

In summary, the LDP generally implies an exponential
scaling law for probabilities, with an exponent governed by
the rate function. Therefore, knowledge of the rate function
is enough to characterize the exponent in (30). We shall
determine the expression for I(γ) pertinent to our problem
in Theorem 3 further ahead — see Eq. (37).

In the traditional case where the statistic under consideration
is the arithmetic average of i.i.d. data, the asymptotic parame-
ter is the number of samples and the usual tool for determining
the rate function in the LDP is Cramér’s Theorem [55], [56].
Unfortunately, in our adaptive and distributed setting, we are
dealing with a more general statistic y⋆k,µ, whose dependence
is on the step-size parameter and not on the number of
samples. Cramér’s Theorem is not applicable in this case, and
we must resort to a more powerful tool, known as the Gärtner-
Ellis Theorem [55], [56], stated below in a form that uses
directly the set of assumptions relevant for our purposes.

GÄRTNER-ELLIS THEOREM [56]. Let zµ be a family of ran-

dom variables with Logarithmic Moment Generating Function
(LMGF) φµ(t) = lnE exp{tzµ}. If

φ(t) " lim
µ→0

µφµ(t/µ) (31)

exists, with φ(t) <∞ for all t ∈ R, and φ(t) is differentiable

in R, then zµ satisfies the LDP property (29) with rate function
given by the Fenchel-Legendre transform of φ(t), namely:

Φ(γ) " sup
t∈R

[γt− φ(t)]. (32)

!

In what follows, we shall use capital letters to denote Fenchel-
Legendre transforms, as done in (32).

We now show how the result allows us to assess the asymp-
totic performance of the diffusion output in the inferential
network. Let us introduce the LMGF of the data xk(n), and

that of the steady-state variable y⋆k,µ, respectively:

ψ(t) " lnE exp{txk(n)}, (33)

φk,µ(t) " lnE exp{ty⋆k,µ}. (34)

THEOREM 3: (Large deviations of y⋆k,µ as µ → 0). Assume
that ψ(t) <∞ for all t ∈ R. Then, for all k = 1, 2, . . . , S:

i)

φ(t) " lim
µ→0

µφk,µ(t/µ) = S ω(t/S) (35)

where

ω(t) "
∫ t

0

ψ(τ)

τ
dτ (36)

ii) The steady-state variable y⋆k,µ obeys the LDP with a rate

function given by:

I(γ) = S Ω(γ) (37)

that is, by the Fenchel-Legendre transform of ω(t) mul-

tiplied by the number of sensors S.

Proof: See Appendix B. !

C. Main Implications of Theorem 3

From Theorem 3, a number of interesting conclusions can
be drawn:

• The function ω(t) in (36) depends only upon the LMGF
ψ(t) of the original statistic xk(n), and does not depend
on the number of sensors.

• As a consequence of the above observation, part ii)
implies that the rate function (and, therefore, the large
deviations exponent) of the diffusion output depends
linearly on the number of sensors. Moreover, the rate can
be determined by knowing only the statistical distribution
of the input data xk(n).

• The rate function does not depend on the particular sensor
k. This implies that all sensors are asymptotically equiv-
alent also in terms of large deviations, thus strengthening
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what we have already found in terms of asymptotic nor-
mality — see Theorem 2 and the subsequent discussion.

• Theorem 3 can be applied to the centralized stochastic
algorithm (22) as well, and, again, the diffusion strategy
is able to match, asymptotically, the centralized solution.

Before ending this section, it is useful to comment on
some essential features of the rate function Ω(γ), which will
provide insights on its usage in connection with the distributed
detection problem. To this aim, we refer to the following
convexity properties shown in Appendix C (see also [55], Ex.
2.2.24, and [56], Ex. I.16):

i) ω′′(t) > 0 for all t ∈ R, implying that ω(t) is strictly
convex.

ii) Ω(γ) is strictly convex in the interior of the set:

DΩ = {γ ∈ R : Ω(γ) <∞}. (38)

iii) Ω(γ) attains its unique minimum at γ = Ex, with

Ω(Ex) = 0. (39)

In light of these properties, it is possible to provide a geo-
metric interpretation for the main quantities in Theorem 3,
as illustrated in Fig. 2. The leftmost panel shows a typical
behavior of the LMGF of the original data xk(n). Using the
result ω′(t) = ψ(t)/t, and examining the sign of ψ(t)/t,
it is possible to deduce the corresponding typical behavior
of ω(t), depicted in the middle panel. As it can be seen,
the slope at the origin is preserved, and is still equal to the
expectation of the original data, Ex. The intersection with
the t-axis is changed, and moves further to the right in the
considered example. Starting from ω(t), it is possible to draw
a sketch of its Fenchel-Legendre transform Ω(γ) (rightmost
panel), which illustrates its convexity properties, and the fact
that the minimum value of zero is attained only at γ = Ex.

V. THE DISTRIBUTED DETECTION PROBLEM

The tools and results developed so far allow us to address
in some detail the detection problem we are interested in. Let
us denote the decision regions in favor of H0 and H1 by Γ0

and Γ1, respectively. We assume that they are the same at all
sensors because, in view of the asymptotic equivalence among
sensors proved in the previous section, there is no particular
interest in making a different choice. Note, however, that all
the subsequent development does not rely on this assumption
and applies, mutatis mutandis, to the case of distinct decision
regions used by distinct agents.

The Type-I and Type-II error probabilities at the k-th sensor
at time n are defined in (4) and (5), respectively. Since we
are interested in their steady-state behavior, namely, for an
increasingly large interval where a certain hypothesis stays in
force, the only distribution that matters is that corresponding
to such hypothesis. Therefore, it is legitimate to write:

lim
n→∞

αk(n) = lim
n→∞

P0[yk(n) ∈ Γ1], (40)

lim
n→∞

βk(n) = lim
n→∞

P1[yk(n) ∈ Γ0], (41)

where the subscripts 0 and 1 denote here the (stationary)
situation where the data collected for all n ≥ 1 come

from one and the same distribution. As already observed,
this simply corresponds to saying that the stationarity period
used to compute the steady-state distribution starts at time
n = 1. Some questions arise. Do these limits exist? Do
these probabilities vanish as n approaches infinity? Theorem 1
provides the answers. Indeed, we found that yk(n) stabilizes
in distribution as n goes to infinity. In the sequel, in order to
avoid dealing with pathological cases, we shall assume that
P0[y⋆k,µ ∈ ∂Γ1] = 0 and that P1[y⋆k,µ ∈ ∂Γ0] = 0. This is
a mild assumption, which is verified, for instance, when the
limiting random variable y⋆k,µ has an absolutely continuous
distribution, and the decision regions are not so convoluted to
have boundaries with strictly positive measure. Accordingly,
by invoking the weak convergence result of Theorem 1, and
in view of (20) we can write:

αk,µ " lim
n→∞

αk(n) = P0[y
⋆
k,µ ∈ Γ1], (42)

βk,µ " lim
n→∞

βk(n) = P1[y
⋆
k,µ ∈ Γ0], (43)

where the dependence upon µ has been made explicit for later
use. We notice that, in the above, we work with decision
regions that do not depend on n, which corresponds exactly
to the setup of Theorem 1. Generalizations where the regions
are allowed to change with n can be handled by resorting to
known results from asymptotic statistics. To give an example,
consider the meaningful case of a detector with a sequence of
thresholds η(n) that converges to a value η as n→∞. Here,

lim
n→∞

Ph[yk(n) > η(n)] = Ph[y
⋆
k,µ > η], (44)

which can be seen, e.g., as an application of Slutsky’s Theo-
rem [41], [42].

From (42)–(43), it turns out that, as time elapses, the error
probablities do not vanish exponentially. As a matter of fact,
they do not vanish at all. This situation is in contrast to
what happens in the case of running consensus strategies with
diminishing step-size studied in the literature [1]–[6]. We wish
to avoid confusion here. In the diminishing step-size case,
one does need to examine the effect of large deviations [4]–
[6] for large n, quantifying the rate of decay to zero of the
error probabilities as time progresses. In the adaptive context,
on the other hand, where constant step-sizes are used to
enable continuous adaptation and learning, the large deviations
analysis is totally different, in that it is aimed at characterizing
the decaying rate of the error probabilities as the step-size µ
approaches zero.

Returning to the detection performance evaluation (42)–
(43), we stress that the steady-state values of these error
probabilities are unknown, since the distribution of y⋆k,µ is gen-
erally unknown. However, the large deviations result offered
by Theorem 3 allows us to characterize the error exponents
in the regime of small step-sizes.

Theorem 3 can be tailored to our detection setup as follows
(subscripts 0 and 1 are used to indicate that the statistical
quantities are evaluated under H0 and H1, respectively):

THEOREM 4: (Detection error exponents). For h ∈ {0, 1}, let
Γh be the decision regions –independent of µ– and assume
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Fig. 3. A geometric view of Theorem 4.

that ψh(t) <∞ for all t ∈ R, and define:

ωh(t) "
∫ t

0

ψh(τ)

τ
dτ. (45)

Then, for all k = 1, 2, . . . , S, Eq.(6) holds true, namely,

lim
µ→0

µ lnαk,µ = −S E0, lim
µ→0

µ lnβk,µ = −S E1 (46)

with

E0 = inf
γ∈Γ1

Ω0(γ), E1 = inf
γ∈Γ0

Ω1(γ) (47)

where Ωh(γ) is the Fenchel-Legendre transform of ωh(t). !

REMARK I. The technical requirement that the LMGFs ψ0(t)
and ψ1(t) are finite is met in many practical detection prob-
lems, as already shown in [5]. In particular, the assumption is
clearly verified when the observations have (the same, under
the two hypotheses) compact support, a special interesting
case being that of discrete variables supported on a finite
alphabet; and for shift-in-mean detection problems where the
data distributions fulfill mild regularity conditions — see
Remark II in [5] for a detailed list.

REMARK II. As typical in large deviations analysis, we have
worked with regions Γ0 and Γ1 that do not depend on the
step-size µ. Generalizations are possible to the case in which
these regions depend on µ. A relevant case where this might
be useful is the Neyman-Pearson setup, where one needs
to work with a fixed (non-vanishing) value of the false-
alarm probability. An example of this scenario is provided
in Sec. VI-C — see the discussion following (78) — along
with the detailed procedure for the required generalization.

In Fig. 3, we provide a geometric interpretation that can be
useful to visualize the main message conveyed by Theorem 4.
In order to rule out trivial cases, we assume that E0x ̸= E1x,
as happens, e.g., in the standard situation where the local
statistic xk(n) is a log-likelihood ratio and the detection
problem is identifiable [42]. Without loss of generality, we take
E0x < E1x, and, for the sake of concreteness, we consider
a detector with threshold η, amounting to the following form

for the decision regions:

Γ0 = {γ ∈ R : γ ≤ η}, Γ1 = R \ Γ0. (48)

Let us set E0x < η < E1x since, as will be clear soon,
choosing a threshold outside the range (E0x,E1x) will lead to
trivial performance for one of the error exponents. According
to Theorem 4, to evaluate the exponent E0 (resp., E1), one must
consider the worst-case, i.e., the smallest value of the function
Ω0(γ) (resp., Ω1(γ)), within the corresponding error region Γ1

(resp., Γ0). In view of the convexity properties discussed at the
end of Sec. IV-C, and reported in Appendix C, we see that, for
the threshold detector, both minima are attained only at γ = η.
Certainly, this shape turns out to be of great interest in practical
applications where, inspired by the optimality properties of a
log-likelihood ratio test in the centralized case, a threshold
detector is often an appealing and reasonable choice. On the
other hand, we would like to stress that different, arbitrary
decision regions can be in general chosen, and that the minima
of Ω0(·) and Ω1(·) in Fig. 3 might be correspondingly located
at two different points.

In summary, Theorem 4 allows us to compute the exponents
E0 and E1 as functions of i) the kind of statistic x employed
by the sensors, which determines the shape of the LMGFs
ψh(t) to be used in (45); and ii) of the employed decision
regions relevant for the minimizations in (47). Once E0 and
E1 have been found, the error probabilities αk,µ and βk,µ can
be approximated using Eq. (6). This result is then key for
both detector design and analysis, so that we are now ready
to illustrate the operation of the adaptive distributed network
of detectors.

VI. EXAMPLES OF APPLICATION

In this section, we apply the developed theory to four
relevant detection problems. We start with the classical Gaus-
sian shift-in-mean problem. Then, we consider a scenario of
specific relevance for sensor network applications, namely,
detection with hardly (one-bit) quantized measurements. This
case amounts to testing two Bernoulli distributions with dif-
ferent parameters under the different hypotheses. Both the
Gaussian and the finite-alphabet assumptions are removed in
the subsequent example, where a problem of relevance to
radar applications is addressed, that is, shift-in-mean with
additive noise sampled from a Laplace (double-exponential)
distribution. Finally, we examine a case where the agents have
limited knowledge of the underlying data model, and agree
to employ a simple sample-mean detector, in the presence of
noise distributed as a Gaussian mixture.

Before dwelling on the presentation of the numerical exper-
iments, we provide some essential details on the strategy that
has been implemented for obtaining them:

• The network used for our experiments consists of ten
sensors, arranged so as to form the topology in Fig. 4,
with combination weights ak,ℓ following the Laplacian
rule [8], [16].

• The decision rule for the detectors is based on comparing
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Fig. 4. Network skeleton used for the numerical simulations.

the diffusion output yk(n) to some threshold η, namely,

yk(n)
H0

$
H1

η, (49)

where the decision regions are the same as in (48).
• Selecting the threshold η in (49) is a critical stage of

detector design and implementation. This choice can
be guided by different criteria, which would lead to
different threshold settings. In the following examples, we
present three relevant cases, namely: i) a threshold setting
that is suited to the Bayesian and the max-min criteria
(Sec. VI-B); ii) a Neyman-Pearson threshold setting
(Sec. VI-C); iii) and a threshold setting in the presence
of insufficient information about the underlying statistical
models (Sec. VI-D). We would like to stress that using
different threshold setting rules for different statistical
models has no particular meaning. These choices are just
meant to illustrate different rules and different models
while avoiding repetition of similar results.

• The diffusion output is obtained after consultation steps
involving the exchange of some local statistics xk(n).
The particular kind of statistic used in the different
examples will be detailed when needed.

A. Shift-in-mean Gaussian Problem

The first hypothesis testing problem we consider is the
following:

H0 : dk(n) ∼ N (0,σ2), (50)

H1 : dk(n) ∼ N (θ,σ2), (51)

where dk(n) denotes the local datum collected by sensor k
at time n. We assume the local statistic xk(n) to be shared
during the diffusion process is the log-likelihood ratio of the
measurement dk(n):

xk(n) =
θ

σ2

(
dk(n)−

θ

2

)
. (52)

Note that in the Gaussian case the log-likelihood ratio is
simply a shifted and scaled version of the collected observation
dk(n), such that no substantial differences are expected if the
agents share directly the observations.

In the specific case that xk(n) is the log-likelihood ratio,
the expectations E0x and E1x assume a peculiar meaning.
Indeed, they can be conveniently represented as:

E0x = −D(H0||H1), E1x = D(H1||H0), (53)

where D(Hi||Hj), with i, j ∈ {0, 1}, is the Kullback-Leibler
(KL) divergence between hypotheses i and j — see [40].
In particular, for the Gaussian shift-in-mean problem the
distribution of the log-likelihood ratio can be expressed in
terms of the KL divergences as follows:

xk(n)
H0∼ N (−D, 2D), xk(n)

H1∼ N (D, 2D), (54)

where

D " D(H0||H1) = D(H1||H0) =
θ2

2σ2
, (55)

is the KL divergence for the Gaussian shift-in-mean case [40].

Since the LMGF of a Gaussian random variable N (a, b) is
at+ bt2/2 [42], we deduce from (54) that

ψ0(t) = Dt(t − 1), ψ1(t) = Dt(t+ 1). (56)

Note that ψ1(t) = ψ0(t + 1), a relationship that holds true
more generally when working with the LMGFs of the log-
likelihood ratio — see, e.g., [55]. Now, applying (45) to (56)
readily gives

ω0(t) = Dt

(
t

2
− 1

)
, ω1(t) = Dt

(
t

2
+ 1

)
. (57)

According to its definition (32), in order to find the Fenchel-
Legendre transform we should maximize, with respect to t, the
function γt−ω(t). In view of the convexity properties proved
in Appendix C, this can be done by taking the first derivative
and equating it to zero, which is equivalent to writing

γ = ω′
0(t0) =

ψ0(t0)

t0
⇒ t0 =

γ

D + 1, (58)

γ = ω′
1(t1) =

ψ1(t1)

t1
⇒ t1 =

γ

D − 1. (59)

These expressions lead to

Ω0(γ) =
(γ +D)2

2D , Ω1(γ) =
(γ −D)2

2D . (60)

Selecting the threshold η within the interval (−D,D), the
minimization in (47) is easily performed — refer to Fig. 3
and the related discussion. The final result is:

αk,µ
·
= e−(1/µ)S (η+D)2

2D , βk,µ
·
= e−(1/µ)S (η−D)2

2D (61)

These expressions provide the complete asymptotic character-
ization to the leading exponential order (i.e., they furnish the
detection error exponents) of the adaptive distributed network
of detectors for the Gaussian shift-in-mean problem, and for
any choice of the threshold η within the interval (−D,D).

We have run a number of numerical simulations to check the
validity of the results. Clearly, in order to show the generality
of our methods, it is desirable to test them on non-Gaussian
data as well. Since the interpretation of the results for both
Gaussian and non-Gaussian data is essentially similar, we
shall skip the numerical results for the Gaussian case to avoid
unnecessary repetitions and focus on other cases. Accordingly,
also the discussion on how to make a careful selection of the
detection threshold η is postponed to the forthcoming sections.
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Fig. 5. Bernoulli example discussed in Sec. VI-B. We refer to the network in Fig. 4, and use detector (49) with η = 0. Leftmost panel: Rate functions.
The dark circle in the close-up marks the employed detection threshold, which is relevant to error exponent evaluation. Rightmost panel: Steady-state error
probabilities at different sensors, obtained via Monte Carlo simulation. For comparison purposes, the empirical error probabilities of the fully connected system

are reported. The solid curves in the inset plot represent the empirical error exponents −µ ln p
(e)
k,µ, for k = 1, 2, . . . , S, while the dashed horizontal line is

the exponent S E predicted by our large deviations analysis (Theorem 4). The parameters of the considered detection problem are p0 = 0.49 and p1 = 0.51.
The number of Monte Carlo runs is 105.

B. Hardly (one-bit) Quantized Measurements

We now examine the example in which the measurements
at the local sensors are hardly quantized. This situation can be
formalized as the following hypothesis test:

H0 : dk(n) ∼ B(p0), (62)

H1 : dk(n) ∼ B(p1), (63)

with B(p) denoting a Bernoulli random variable with success
probability p. As in the previous example, we assume that
the local statistics xk(n) employed by the sensors in the
adaptation/combination stages are chosen as the local log-
likelihood ratios that, in view of (62)–(63), can be written
as:

xk(n) = dk(n) ln

(
p1
p0

)
+ (1− dk(n)) ln

(
q1
q0

)
, (64)

where qh = 1 − ph, with h = 0, 1. Since dk(n) ∈ {0, 1},
we see that xk(n) is a binary random variable taking on the
values ln(p1/p0) or ln(q1/q0). The distribution of xk(n) is
then characterized by:

P0

[
xk(n) = ln

(
p1
p0

)]
= p0, P1

[
xk(n) = ln

(
p1
p0

)]
= p1,

(65)
and, hence, the LMGFs for this example are readily computed:

ψ0(t) = ln

(
pt1
pt−1
0

+
qt1
qt−1
0

)
, (66)

ψ1(t) = ln

(
pt+1
1

pt0
+

qt+1
1

qt0

)
. (67)

According to the relationship (45) found in Theorem 4, these
closed-form expressions are used for the evaluation of ω0(t)
and ω1(t), which in turn are needed to compute the rate
functions Ω0(γ) and Ω1(γ). Differently from the Gaussian
example, here these tasks need to be performed numerically.
The resulting rate functions are displayed in the leftmost

panel of Fig. 5, and the observed behavior reproduces what is
predicted by the general properties of the rate function — see
also the explanation of Fig. 2.

Let us now examine the adaptive distributed network of
detectors in operation. To do so, we must decide on how to
set the detection threshold η in (49). As a method for selecting
the threshold, in this section we illustrate the asymptotic
Bayesian criterion that prescribes maximizing the exponent
of the average error probability

p(e)k,µ " π0αk,µ + π1βk,µ, (68)

where π0 and π1 are the prior probabilities of occurrence of
hypotheses H0 and H1, respectively. It is easily envisaged that
the exponent of the average error probability is determined by
the worst one (slowest decay) between the Type-I and Type-
II error exponents — see [56, Eq. (I.2), p. 4]. As a result,
optimizing the Bayesian error exponent is equivalent to a max-
min approach aimed at maximizing the minimum exponent.
We now apply this criterion to the considered example. To
this aim, a close inspection of the rate functions in Fig. 5 is
beneficial. First, as it can be seen by the close-up shown in
the inset plot, setting the threshold to η = 0 would imply

E0 = inf
γ>0

Ω0(γ) = Ω0(0) = Ω1(0) = inf
γ≤0

Ω1(γ) = E1 " E .
(69)

Moreover, any other choice of the threshold η ̸= 0 makes one
of the two exponents smaller than E . This can be clearly visu-
alized by varying the position of η in Fig. 3, and computing
the infima over the pertinent decision regions. In summary,
according to whether we adopt a Bayesian or a max-min
criterion, an optimal choice for the threshold in this case is
η = 0.

In the simulations, we refer to a sufficiently large time
horizon, such that the steady-state assumption applies, and
evaluate the error probabilities for different values of the step-
size — see the rightmost panel in Fig. 5. In the considered
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example, it is easily verified by symmetry arguments that the
error probabilities (and not only the exponents) of first and
second kind are equal, and therefore they equal the average
error probability for any prior distribution of the hypotheses:

αk,µ = βk,µ = p(e)k,µ. (70)

Accordingly, in the following description the terminologies
“error probability” and “error exponent” can be equivalently
and unambiguously referred to any of these errors.

In Fig. 5, rightmost panel, the performance of all the agents
is displayed as a function of 1/µ, and different agents are
marked with different colors. For comparison purposes, the
performance of the fully connected system is also displayed.
All these probability curves have been obtained by Monte
Carlo simulation. Some remarkable features are observed.

First, all the different curves pertaining to different agents
stay nearly parallel for sufficiently small values of the step-size
µ. This is a way to visualize that i) the detection error proba-
bilities vanish exponentially at rate 1/µ; and ii) the detection
error exponents at different sensors are equal, and further
equal to that of the fully-connected system corresponding to
the centralized stochastic gradient solution. This is the basic
message conveyed by the large deviations analysis. Indeed,
the asymptotic relationships for the error probabilities in (6)
express convergence to the first leading order in the exponent.

It remains to show that the exponents of the simulated error
probabilities match the exponents predicted by Theorem 4.
This is made in the inset plot of Fig. 5, rightmost panel, where
the horizontal dashed line depicts the theoretical exponent SE ,
with E computed using (69), while the solid curves represent
the empirical error exponents seen at different sensors, namely

the quantities −µ ln p(e)k,µ, for k = 1, 2, . . . , S. It is observed
that, as the step-size decreases, the empirical error exponents
converge towards the theoretical one S E .

A further interesting evidence seems to emerge from the
numerical experiments. The error probability curves in Fig. 5,
rightmost panel, are basically ordered. Examining the relation-
ship between this ordering and the sensor placement in Fig. 4,
it is seen that the ordering reflects the degree of connectivity
of each agent. For instance, sensor 3 has the highest number
of neighbors (five), and its performance is the closest to the
fully connected case. On the other hand, sensor 8 is the most
isolated, and its error probability curve appears accordingly
the highest one. Note that, since from the presented theory we
learned that each agent reaches asymptotically the same de-
tection exponent, these differences are related to higher order
corrections (i.e., sub-exponential terms that are neglected in a
large deviations analysis) and/or to non-asymptotic effects. A
systematic and thorough analysis of the above features, as well
as of their exact interplay with the network connectivity and
more in general with the overall structure of the connectivity
matrix A, requires a refined asymptotic estimate that goes
beyond the large deviations analysis carried out here.

C. Shift-in-mean with Laplacian noise

In this section we consider another non-Gaussian example,
namely, the case of a shift-in-mean detection problem with

noise distributed according to a Laplace distribution. Denoting
by L(a, b) a (shifted) Laplace distribution with shift parameter
a and scale parameter b, i.e., having the probability density
function:

fL(ξ) =
1

2b
e−

|ξ−a|
b , (71)

the hypothesis test we are now interested in is formulated as
follows:

H0 : dk(n) ∼ L(0,σ), (72)

H1 : dk(n) ∼ L(θ,σ). (73)

We assume again that the local statistics xk(n) are chosen as
the local log-likelihood ratios:

xk(n) =
1

σ
(|dk(n)|− |dk(n)− θ|). (74)

Then, the LMGFs for this case can be computed in closed
form [5], and are given by:

ψ0(t) = ln

(
1− t

1− 2t
e−ρ t − t

1− 2t
e−ρ (1−t)

)
, (75)

ψ1(t) = ln

(
1 + t

1 + 2t
eρ t +

t

1 + 2t
e−ρ (1+t)

)
, (76)

where we defined ρ = θ/σ, and where, by limit arguments,
we have ψ0(1/2) = ψ1(−1/2) = −ρ/2 + ln(1 + ρ/2).

As done before, we can use the above expressions in (45),
for performing numerical evaluation of ω0(t) and ω1(t), and
of their Fenchel-Legendre transforms Ω0(γ) and Ω1(γ), which
are displayed in Fig. 6, leftmost panel.

Differently from the previous section, we now consider an
alternative threshold setting, which is grounded on the well-
known Neyman-Pearson criterion [42]. Its classical (asymp-
totic) formulation sets a maximum tolerable value for the
false-alarm probability, and examines the decaying rate of
the miss-detection probability (the role of the two errors can
also be reversed). The main difference in relation to the setup
considered so far is that we relax the condition that the Type-
I error probability vanish exponentially, and this allows in
general for a gain in terms of the Type-II error exponent. The
procedure for the Neyman-Pearson threshold setting has been
already described in Sec. IV — see (25)–(26). Accordingly,
to achieve a false-alarm probability ᾱ, we need a threshold

η = ηµ = E0x+

√
µσ2

x,0

2S
Q−1(ᾱ). (77)

It remains to evaluate the Type-II error probability

βk,µ = P1[y
⋆
k,µ ≤ ηµ], (78)

or, more precisely, the corresponding exponent E1. For this
purpose, we must resort to Theorem 4. Note, however, that the
threshold η = ηµ now depends on µ and, hence, Theorem 4
does not directly apply. As noted in Remark II, it is instructive
to examine how the result of Theorem 4 can be generalized
to manage similar situations. Indeed, we can work in terms of
the shifted variables

ŷ⋆k,µ = y⋆k,µ −

√
µσ2

x,0

2S
Q−1(ᾱ), (79)
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Fig. 6. Laplace example discussed in Sec. VI-C. We refer to the network in Fig. 4, and use the Neyman-Pearson detector with threshold (77), for two values of
the desired false-alarm level ᾱ. Leftmost panel: Rate functions. The dark circle in the close-up marks the abscissa η = E0x, which is relevant for computing
the Type-II error exponent. Middle panel: Solid curves refer to the empirical steady-state Type-I error probabilities at different sensors, obtained via Monte
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to the theoretical Type-I error probabilities obtained by the normal approximation (Theorem 2). Rightmost panel: Steady-state Type-II error probabilities at
different sensors, along with the performance of the fully connected case. The solid curves in the inset plot represent the empirical Type-II error exponent
−µ lnβk,µ, for k = 1, 2, . . . , S, while the dashed horizontal line is the exponent predicted by our large deviations analysis (Theorem 4). The parameters of
the considered detection problem are θ = 0.05 and σ = 1. The number of Monte Carlo runs is 105.

yielding

βk,µ = P1[ŷ
⋆
k,µ ≤ E0x]. (80)

By application of the Gärtner-Ellis Theorem to the shifted
variables ŷ⋆k,µ, it is easy to see that the added deterministic
term (vanishing with µ) does not alter the limiting function
ω1(t) in (45), and consequently the final rate function Ω1(γ).
Accordingly, and based on (80), the Type-II error exponent is

E1 = inf
γ≤E0x

Ω1(γ) = Ω1(E0x). (81)

The main implication of the above result can be understood,
e.g., by examining the close-up in the leftmost panel of Fig. 6,
where it is seen that:

E1 = Ω1(E0x) > Ω1(0), (82)

the latter value being the Type-II error exponent achieved by
the max-min optimal detector with zero threshold previously
described. This immediately shows the gain achieved by
relaxing the constraint that both error probabilities must vanish
exponentially.

We now present the numerical evidence for the Neyman-
Pearson adaptive distributed detector. The middle panel in
Fig. 6 shows the convergence of αk,µ towards the prescribed
Type-I error probability ᾱ as the step-size µ goes to zero. The
rightmost panel refers instead to the corresponding Type-II
error probability curves. The conclusions that can be drawn are
similar to those discussed in the previous example, confirming
the validity of the theoretical analysis. It is also interesting to
note that the ordering of the different curves, for both error
probabilities, is exactly the same obtained in the Bernoulli
example. Since the network employed for the simulations is
unchanged, this is another clue that the ordering may be related
to the structure of the connectivity matrix A.

D. Shift-in-mean with Gaussian mixture noise

As a final example, we consider the case of a shift-in-
mean detection problem with noise distributed according to
a zero-mean Gaussian mixture, having the probability density
function

fGM (ξ) =
1

2

(
1√
2πb1

e−
(ξ−a0)2

2b1 +
1√
2πb2

e−
(ξ+a0)2

2b2

)
,

(83)
namely, a balanced mixture of normal random variables with
different variances b1 and b2, and symmetric expectations ±a0.
Denoting by Nmix(a, a0, b1, b2) a shifted Gaussian mixture
distribution with shift parameter a, we consider the following
hypothesis test:

H0 : dk(n) ∼ Nmix(0, θ0,σ
2
1 ,σ

2
2), (84)

H1 : dk(n) ∼ Nmix(θ, θ0,σ
2
1 ,σ

2
2). (85)

For this model, we do not assume that the local statistics
xk(n) are chosen as the local log-likelihood ratios. We assume
instead that the agents of the network have scarce knowledge
about the underlying statistical model. They know that it is a
shift-in-mean problem, and possess a rough information about
the value of θ. In these circumstances, the agents decide to
implement a distributed sample-mean detector, namely, they
exchange the local measurements as they are, without any

additional pre-processing. This amounts to state that

H0 : xk(n) ∼ Nmix(0, θ0,σ
2
1 ,σ

2
2), (86)

H1 : xk(n) ∼ Nmix(θ, θ0,σ
2
1 ,σ

2
2). (87)

Then, the LMGFs for this case can be computed in closed
form [5], and are given by:

ψ0(t) = ln

(
1

2
eθ0t+

σ2
1t2

2 +
1

2
e−θ0t+

σ2
2t2

2

)
, (88)

ψ1(t) = θt+ ψ0(t). (89)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2016.2580665

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



16

!2 0 2

0

1

2

3

4

5

6

Γ

R
at

e
fu

n
ct

io
n

s,
G

au
ss

ia
n

m
ix

tu
re

#0!Γ"

#1!Γ"

!0.05 0 0.05Η

Γ

10 100 200 300 400 500

10−2

10−1

100

1/µ

T
y
p
e-
I
er
ro

r
p
ro

b
a
b
il
it
y
α

k
,µ

 

 

Sensor 8
Sensor 9
Sensor 2
Sensor 6
Sensor 5
Sensor 10
Sensor 4
Sensor 1
Sensor 7
Sensor 3
Fully conn.

10 500
0

0.01

0.1

1/µ

−
µ

ln
α

k
,µ

Theor. expon. S E 0

10 100 200 300 400 500

10−2

10−1

100

1/µ

T
y
p
e-
II

er
ro

r
p
ro

b
a
b
il
it
y
β
k
,µ

 

 

Sensor 8
Sensor 9
Sensor 2
Sensor 6
Sensor 5
Sensor 10
Sensor 4
Sensor 1
Sensor 7
Sensor 3
Fully conn.

10 500
0

0.01

0.1

1/µ

−
µ

ln
β
k
,µ

Theor. expon. S E 1

Fig. 7. Gaussian mixture example discussed in Sec. VI-D. We refer to the network in Fig. 4, and use detector (49) with η = θ/3. Leftmost panel: Rate
functions. The dark circle in the close-up marks the employed detection threshold, which is relevant for evaluating the error exponents. Middle panel: Steady-
state Type-I error probabilities at different sensors, obtained via Monte Carlo simulation. For comparison purposes, the empirical error probabilities of the
fully connected system are reported. The solid curves in the inset plot represent the empirical Type-I error exponent −µ lnαk,µ, for k = 1, 2, . . . , S, while
the dashed horizontal line is the exponent predicted by our large deviations analysis (Theorem 4). Rightmost panel: Same of middle panel, but for the Type-II
error. The parameters of the considered detection problem are θ = 0.05, θ0 = 1, σ1 = 1, and σ2 = 0.3. The number of Monte Carlo runs is 105.

The above expressions are used in (45) for evaluating nu-
merically ω0(t) and ω1(t), and then their Fenchel-Legendre
transforms Ω0(γ) and Ω1(γ). These latter are depicted in
the leftmost panel of Fig. 7. We assume the agents in the
network are not able to optimize the choice of the detection
threshold, due to their limited knowledge of the underlying
statistical models. The particular value used in the simulations
is η = θ/3, which is marked in the close-up of Fig. 7,
leftmost panel. It is seen that, differently from the previous
examples, this choice does not correspond to a balancing
of the detection error exponents, such that it is expected
that the Type-I and Type-II error probabilities behave quite
differently in this case. This is clearly observed in the middle
(Type-I error) and rightmost (Type-II error) panels of Fig. 7.
The numerical evidence confirms the theoretical predictions,
as well as the essential features found in all the previous
examples. Moreover, it is seen that the enhanced decaying rate
of the Type-II error probability arising from the unbalanced
threshold setting is paid in terms of a higher Type-I error
probability.

E. Adaptation and detection

In the simulation results illustrated so far, we focused on
the system performance at steady-state. It is of great interest
to consider also the time-evolution of the system performance,
and even more to show the system at work in a dynamic

situation where the true hypothesis is changing over time,
which is truly the main motivation for an adaptive framework.

To this aim, we return to the kind of situation described in
Fig. 1, which is now re-examined in more quantitative terms
by focusing on the actual error probabilities, rather than on
the time-evolution of the detection statistics. Specifically, in
Fig. 8 we display the performance of three generic agents of
the network, for two values of the step-size. For comparison
purposes, we show also the performance of the running
consensus algorithm [1]–[6]. The underlying statistical model
is the shift-in-mean with Laplacian noise detailed in Sec. VI-C,
and we employ a zero-threshold detector.
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Fig. 8. Pictorial summary of adaptive diffusion for detection, with reference
to the Laplace example discussed in Sec. VI-C. Top panel: time-evolution
of the error probability at a local node with i) the diffusion strategy with
different step-sizes µ = 0.025, 0.05, and ii) the running consensus strategy
(diminishing step-size µn = 1/n). Actual variation of the true hypothesis
is depicted in the bottom panel. The parameters of the considered detection
problem are θ = 0.3 and σ = 1.

First, the inference/adaptation trade-off is emphasized:
smaller values of µ allow better inference (lower values of
the steady-state error probabilities), at the cost of increasing
the time for reliably learning that a change occurred. In
this respect, the running consensus performance represents
an extreme case: indeed, here the step-size is vanishing, i.e.,
µn = 1/n, which explains the bad performance in terms of
adaptation exhibited in Fig. 1.

VII. CONCLUDING REMARKS AND OPEN ISSUES

The asymptotic tools developed in this paper allow design-
ing and characterizing the performance of network detectors
that are adaptive and decentralized. We show that the steady-
state detection error probabilities of each individual agent
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decrease exponentially with the inverse of the step-size and
that cooperation among sensors makes the error exponents
governing such decay equal to that of a centralized stochastic
gradient solution. Closed-form expressions are derived, giving
insights about the main scaling laws with respect to the
fundamental system parameters.

In our treatment, we studied the detection performance of
the diffusion strategy, given a certain local statistic x. Our
findings show that the steady-state observable, as well as its
detection performance, in general depend upon the kind of
transmitted data x. A plausible, though heuristic, choice for
x is that of the log-likelihood ratio of the measured data.
However, the problem of choosing the best statistic is open,
and we feel that the obtained results can assist in exploring
the relationship between the asymptotic performance and the
choice of an optimal statistic x.

We would like to finally note that in order to avoid a
prohibitive number of Monte-Carlo runs, the simulations in
the previous section were run in the small signal-to-noise ratio
regime, where the error probabilities need not be too small.
In this regime, the exact rate functions could in principle be
replaced by parabolic approximations (see, e.g., the leftmost
plot in Fig. 5) and a parabolic approximation is basically a
Gaussian approximation. To avoid confusion, we note that the
results of this work do not require any small signal-to-noise
ratio assumption; they hold in greater generality. Moreover,
using a Gaussian approximation will generally lead to a wrong
error exponent. For the same reason of avoiding prohibitive
simulation runs in the convergence analysis of the Type-II
error exponent, the Type-I error probability for the Neyman-
Pearson setting of Fig. 6 was set to ᾱ = 1/4 (rather than
to much smaller values) and used to illustrate the theoretical
findings against the simulated curves.

APPENDIX A: PROOF OF THEOREM 2

Since the transient term in (11) does not affect the limiting
behavior of yk(n), it suffices to focus on the limiting behavior
of the summations in (15). We introduce accordingly the
following finite-horizon variable:

y⋆k(n) "
n∑

i=1

zk(i) =
n∑

i=1

S∑

ℓ=1

µ(1−µ)i−1bk,ℓ(i)x
′
ℓ(i). (90)

Since y⋆k(n) converges in distribution to y⋆k,µ as n → ∞, by
Lévy’s continuity Theorem [49], the corresponding character-
istic functions must converge as well. It is convenient to work
in terms of the normalized variable:

ỹ⋆k,µ =
y⋆k,µ − Ex
√
µσ2

x/(2S)
. (91)

Denoting by ϕk,µ(t) the characteristic function of ỹ⋆k,µ, us-
ing (90) and (91), and taking the limit as n→∞, we have:

ϕk,µ(t) = Eejtỹ
⋆
k,µ =

∞∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ , (92)

defined in terms of the non-random variable

ζi,ℓ =
√
2Sµ(1− µ)i−1bk,ℓ(i), (93)

and the centered and normalized random variable

x̃′
ℓ(i) =

x′
ℓ(i)− Ex

σx
. (94)

Now, the claim of asymptotic normality in (21) can be proven
by showing the convergence, as µ → 0, of ϕk,µ(t) towards
the characteristic function of the standard normal distribution,

e−
t2

2 . It suffices to work with t > 0 to verify the validity of
this latter property. Formally, we would like to show that the
quantity:

∣∣∣ϕk,µ(t)− e−
t2

2

∣∣∣ =

∣∣∣∣∣

∞∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ − e−

t2

2

∣∣∣∣∣ (95)

converges to zero as µ→ 0. To this aim, we start by working
with a finite n, and write:
∣∣∣∣∣

n∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ − e−

t2

2

∣∣∣∣∣

≤

∣∣∣∣∣

n∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ −

n∏

i=1

S∏

ℓ=1

e−
t2ζ2i,ℓ

2

∣∣∣∣∣

+

∣∣∣∣∣

n∏

i=1

S∏

ℓ=1

e−
t2ζ2

i,ℓ
2 − e−

t2

2

∣∣∣∣∣ . (96)

We first focus on the first term on the RHS of (96). For
complex wi, zi, with |wi| ≤ 1 and |zi| ≤ 1, it is known
that [49]: ∣∣∣∣∣

n∏

i=1

wi −
n∏

i=1

zi

∣∣∣∣∣ ≤
n∑

i=1

|wi − zi|. (97)

Since Eejtx̃
′
ℓ(i)ζi,ℓ is a characteristic function, its magnitude

is not greater than one [49], such that it is legitimate to write,
in view of (97):
∣∣∣∣∣

n∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ −

n∏

i=1

S∏

ℓ=1

e−
t2ζ2i,ℓ

2

∣∣∣∣∣

≤
n∑

i=1

S∑

ℓ=1

∣∣∣∣Ee
jtx̃′

ℓ(i)ζi,ℓ − e−
t2ζ2

i,ℓ
2

∣∣∣∣ . (98)

The single summand on the right-hand side of the above
expression is upper bounded by
∣∣∣∣∣Ee

jtx̃′
ℓ(i)ζi,ℓ − 1 +

t2ζ2i,ℓ
2

∣∣∣∣∣+

∣∣∣∣∣e
−

t2ζ2
i,ℓ

2 − 1 +
t2ζ2i,ℓ
2

∣∣∣∣∣ . (99)

Using the fact that Ex̃′
ℓ(i) = 0 and E[x̃′

ℓ(i)]
2 = 1, we can

further bound the first term in the above expression as
∣∣∣∣∣Ee

jtx̃′
ℓ(i)ζi,ℓ − 1 +

t2ζ2i,ℓ
2

∣∣∣∣∣

=

∣∣∣∣∣E

(

ejtx̃
′
ℓ(i)ζi,ℓ − 1− jx̃′

ℓ(i)tζi,ℓ + [x̃′
ℓ(i)]

2
t2ζ2i,ℓ
2

)∣∣∣∣∣

≤ E|x̃′
ℓ(i)|3

t3ζ3i,ℓ
6

, (100)

where the last inequality follows from upper bounding the
remainder of the Taylor expansion of the complex exponential:

∣∣∣∣e
jt − 1− jt

1!
− · · ·− (jt)n−1

(n− 1)!

∣∣∣∣ ≤
|t|n

n!
. (101)
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Likewise, the second term in (99) is upper bounded by
t4ζ4i,ℓ

8
since |e−s − 1 + s| ≤ s2/2 for any s ≥ 0.

We can accordingly rewrite (96) as:
∣∣∣∣∣

n∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ − e−

t2

2

∣∣∣∣∣

≤ E|x̃′
ℓ(i)|3

t3

6

n∑

i=1

S∑

ℓ=1

ζ3i,ℓ

+
t4

8

n∑

i=1

S∑

ℓ=1

ζ4i,ℓ

+
∣∣∣e−

t2

2

∑n
i=1

∑S
ℓ=1 ζ

2
i,ℓ − e−

t2

2

∣∣∣ .
(102)

We now take the limit as n→∞ in the above expression. To
this aim, observe that, by the definition (93), the summation:

n∑

i=1

S∑

ℓ=1

ζmi,ℓ, m = 1, 2, . . . (103)

is made of nonnegative terms, and is upper bounded by a
convergent geometric series, since bk,ℓ ≤ 1. This implies the
convergence of the series (103) as n → ∞. Accordingly,
taking the limit as n→∞ in (102), and using (95), we have:

∣∣∣ϕk,µ(t)− e−
t2

2

∣∣∣ =

∣∣∣∣∣

∞∏

i=1

S∏

ℓ=1

Eejtx̃
′
ℓ(i)ζi,ℓ − e−

t2

2

∣∣∣∣∣

≤ E|x̃′
ℓ(i)|3

t3

6

∞∑

i=1

S∑

ℓ=1

ζ3i,ℓ

+
t4

8

∞∑

i=1

S∑

ℓ=1

ζ4i,ℓ

+
∣∣∣e−

t2

2

∑∞
i=1

∑S
ℓ=1 ζ

2
i,ℓ − e−

t2

2

∣∣∣ .
(104)

According to the latter relationships, in order to show that∣∣∣ϕk,µ(t)− e−
t2

2

∣∣∣ converges to zero as µ → 0, it suffices to

verify that:

∞∑

i=1

S∑

ℓ=1

ζmi,ℓ
µ→0−→ 0, m = 3, 4, (105)

∞∑

i=1

S∑

ℓ=1

ζ2i,ℓ
µ→0−→ 1. (106)

A technical remark is useful at this stage. Given the assump-
tion of finite absolute third moment, there exists a simpler way
to prove our claim, relying on the celebrated Berry-Esseen the-
orems [49, p. 542]. Such technique would directly reduce our
proof to the verification of properties such as (105) and (106),
without the preliminary work with characteristic functions.
However, we prefer to offer here a more general proof, which
might be useful to obtain future generalizations where the
condition about the third moment could be weakened.

The key for proving (105) and (106) is Perron’s Theorem,
which provides a uniform bound on the convergence rate of

the matrix Bn = An — see [48, Th. 8.5.1]. Let λ2 be the
second largest magnitude eigenvalue of A. For any positive
λ such that |λ2| < λ < 1, there exists a positive constant
C = C(λ, A), ensuring for all i, k and ℓ:

∣∣∣∣bk,ℓ(i)−
1

S

∣∣∣∣ ≤ Cλi. (107)

The above result follows by noting that the largest magnitude
eigenvalue of the difference matrix Bn − (1/S)11T is λ2,
and by applying the result on the convergence rate in [48,
Corollary 5.6.13].

According to the above discussion, let us modify the vari-
ables ζi,ℓ by replacing the matrix entries bk,ℓ(i) with their limit
1/S, namely,

ζ̃i,ℓ =
√
2Sµ(1− µ)i−1 1

S
, (108)

and introduce, for any integer m ≥ 2, the absolute difference:
∣∣∣∣∣

∞∑

i=1

S∑

ℓ=1

ζmi,ℓ −
∞∑

i=1

S∑

ℓ=1

ζ̃mi,ℓ

∣∣∣∣∣ ≤
∞∑

i=1

S∑

ℓ=1

|ζmi,ℓ − ζ̃mi,ℓ|

= (2Sµ)m/2
∞∑

i=1

S∑

ℓ=1

(1− µ)m(i−1)

∣∣∣∣b
m
k,ℓ(i)−

1

Sm

∣∣∣∣ .

(109)

Recalling the factorization

am − bm = (a− b)
m−1∑

k=0

akbm−1−k, (110)

(which can be proved, for a ̸= b, by using the geometric sum∑m−1
k=0 rk = 1−rm

1−r , and using r = a/b), along with the fact
that bk,ℓ(i) and 1/S are not greater than one, we conclude that

∣∣∣∣b
m
k,ℓ(i)−

1

Sm

∣∣∣∣ ≤ m

∣∣∣∣bk,ℓ(i)−
1

S

∣∣∣∣ , (111)

yielding
∣∣∣∣∣

∞∑

i=1

S∑

ℓ=1

ζmi,ℓ −
∞∑

i=1

S∑

ℓ=1

ζ̃mi,ℓ

∣∣∣∣∣

≤ m(2Sµ)m/2
∞∑

i=1

S∑

ℓ=1

(1− µ)m(i−1)

∣∣∣∣bk,ℓ(i)−
1

S

∣∣∣∣

≤ Cλm(2Sµ)m/2
∞∑

i=1

S∑

ℓ=1

(1 − µ)m(i−1)λi−1

= Cλm2m/2Sm/2+1 µm/2

1− λ(1 − µ)m
µ→0−→ 0, (112)

where the second inequality follows from (107), and the limit
holds because λ < 1. In view of the above result, in order
to establish (105) and (106) it is enough to study the limiting
behavior of the summation:

∞∑

i=1

S∑

ℓ=1

ζ̃mi,ℓ =
(2µ)m/2

Sm/2−1

∞∑

i=1

(1− µ)m(i−1)

=
2m/2

Sm/2−1

µm/2

1− (1− µ)m
. (113)
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Applying L’Hospital’s rule [57], the limit of the RHS as µ→ 0
is: (

2

S

)m/2−1

lim
µ→0

µm/2−1

(1− µ)m−1
, (114)

which converges to 1 for m = 2, and to 0 otherwise,
completing the proof.

APPENDIX B: PROOF OF THEOREM 3

We first list some regularity properties of ψ(t) that will be
applied in the subsequent analysis — see, e.g., [55], [56]:

1) By assumption, ψ(t) < ∞ for all t ∈ R. Since it is
a LMGF, it is infinitely differentiable in R. Also, since
x is a non-degenerate (i.e., non deterministic) random
variable, we have

ψ′′(t) > 0, ∀t ∈ R, (115)

and, hence, ψ(t) is strictly convex in R.

2) With reference to the function
ψ(t)
t appearing in (36),

we note that

lim
t→0

ψ(t)

t
= ψ′(0), (116)

and, hence, ψ(t)
t is continuous for all t ∈ R, and the

integral in (36) is well-posed.
3) For all t ̸= 0, we have

d

dt

ψ(t)

t
=
ψ′(t) t− ψ(t)

t2
, (117)

with

lim
t→0

ψ′(t) t− ψ(t)
t2

=
ψ′′(0)

2
, (118)

implying that d
dt
ψ(t)
t is continuous for all t ∈ R. In

addition, we have:

d

dt

ψ(t)

t
> 0, ∀t ∈ R. (119)

This is immediately verified for t = 0 by using (115)
in (118). For t ̸= 0, since ψ(t) is strictly convex and
differentiable in R, we can apply the first-order condition
for strict convexity — see Eq. (3.3) in [58]:

ψ(a)− ψ(b) > ψ′(b)(a− b), ∀a, b ∈ R, a ̸= b.
(120)

Setting a = 0, b = t ̸= 0, and using ψ(0) = 0,
result (119) now follows from (117).

In the following, we denote by φ(c)µ (t) the LMGF of the
steady-state variable y⋆k,µ that would correspond to a fully
connected network with uniform weights, ak,ℓ = bk,ℓ = 1/S
for all k, ℓ = 1, 2, . . . , S. We start by stating two lemmas (their
proofs are given in the sequel).

LEMMA 1 Define an auxiliary function f1(t) whose values
over the negative and positive ranges of time are scaled as
follows:

f1(t) =
t2

2
×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
τ∈[0,t]

(
d

dτ

ψ(τ)

τ

)
, t ≥ 0,

max
τ∈[t,0]

(
d

dτ

ψ(τ)

τ

)
, t < 0.

(121)

Then, the LMGF of y⋆k,µ for the fully connected solution with
uniform weights is:

φ(c)µ (t) =
S

µ

[∫ µ
S t

0

ψ(τ)

τ
dτ +

∞∑

i=1

ci(t;µ)

]

(122)

where the functions ci(t;µ) are nonnegative and satisfy

∞∑

i=1

ci(t;µ) ≤ f1
(µ
S
t
)
× µ2

1− (1− µ)2
. (123)

!

LEMMA 2 Let λ2 be the second largest eigenvalue of A in
magnitude, and let |λ2| < λ < 1. Define another auxiliary
function as:

f2(t) = |t|×

⎧
⎨

⎩

max
τ∈[0,t]

|ψ′(τ)|, t ≥ 0,

max
τ∈[t,0]

|ψ′(τ)|, t < 0.
(124)

Then, the LMGF of the steady-state diffusion output y⋆k,µ
defined by (19) is:

φk,µ(t) = φ(c)µ (t) +
∞∑

i=1

S∑

ℓ=1

ci,ℓ(t;µ) (125)

where the functions ci,ℓ(t;µ) now satisfy

∞∑

i=1

S∑

ℓ=1

|ci.ℓ(t;µ)| ≤ (CλS) f2(µt)

1− λ(1 − µ)
, (126)

for a positive constant C depending on λ and on the combi-
nation matrix A. !

We can easily show that:

0 ≤ f1(t) <∞, 0 ≤ f2(t) <∞, ∀t ∈ R. (127)

Indeed, f1(t) ≥ 0 from (119), while f2(t) ≥ 0 by definition.
Finiteness of both functions follows from Weierstrass extreme
value theorem [57] since, by the properties of ψ(t) discussed at
the beginning of this appendix, the maxima appearing in (121)
and (124) are maxima of continuous functions over compact
sets for any finite t.

By using the above lemmas (whose proofs will be given soon),
it is straightforward to prove Theorem 3.

Proof of Part i) of Theorem 3: we start by proving that

lim
µ→0

µφ(c)µ (t/µ) = S

∫ t/S

0

ψ(τ)

τ
dτ. (128)

From the above Lemma 1 we have:
∣∣∣∣∣µφ

(c)
µ (t/µ)− S

∫ t/S

0

ψ(τ)

τ
dτ

∣∣∣∣∣

= S
∞∑

i=1

ci(t/µ;µ) ≤ S f1(t/S)×
µ2

1− (1− µ)2
µ→0
−→ 0 .

(129)
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On the other hand, using Lemma 2,

µ
∣∣∣φk,µ(t/µ)− φ(c)µ (t/µ)

∣∣∣ = µ

∣∣∣∣∣

∞∑

i=1

S∑

ℓ=1

ci,ℓ(t/µ;µ)

∣∣∣∣∣

≤ (CλS) f2(t)
µ

1− λ(1 − µ)

µ→0
−→ 0, (130)

and claim i) is proven.

Proof of Part ii) of Theorem 3: From the definition of ω(t)
in (36) we have ω′(t) = ψ(t)/t, which follows by continuity of
ψ(t)/t for all t ∈ R — see property 2) at the beginning of this
appendix. Then, using the result proven in part i), since ω(t)
is differentiable in R, the Gärtner-Ellis Theorem [56] stated in
Sec. IV-B can be applied to conclude that y⋆k,µ must obey the
LDP (29) with rate function given by the Fenchel-Legendre
transform of the function S ω(t/S). It is straightforward to
verify that the Fenchel-Legendre transform of a function scaled
in this way is simply S Ω(γ).

We now prove the two lemmas.

Proof of Lemma 1. For the case of a fully connected network
with uniform weights, the finite-horizon variable introduced
in (90) reduces to

y⋆k(n) =
n∑

i=1

S∑

ℓ=1

µ(1 − µ)i−1 1

S
x′
ℓ(i). (131)

Now since the LMGF is additive for sums of independent
random variables, the LMGF of y⋆k(n) defined above, for any
fixed time instant n, is given by:

S
n∑

i=1

ψ
(
(1− µ)i−1 µ

S
t
)
. (132)

First we notice that, if we were able to show that this quantity
converges as n goes to infinity, the limit will represent the

LMGF, φ(c)µ (t), of the steady-state random variable y⋆k,µ in
the fully connected case, in view of the continuity theorem for
the moment generating functions [59]. Define g(t) = ψ(t)/t
and let us focus initially on t > 0. We introduce the countably
infinite partition of the interval [0, µ

S t] with endpoints

τi = (1 − µ)i−1 µ

S
t, i = 1, 2, . . . ,∞. (133)

A second-order Taylor expansion of the function G(t) =∫ τi
t g(τ)dτ around the point τi gives [57]:
∫ τ1

τn+1

g(τ)dτ =
n∑

i=1

∫ τi

τi+1

g(τ)dτ =
n∑

i=1

G(τi+1)

=
n∑

i=1

g(τi)δi −
n∑

i=1

g′(t̄i)
δ2i
2
,

(134)

for a certain t̄i ∈ (τi+1, τi), and with δi = τi − τi+1. Using
the explicit expressions for τi and g(·), we have

n∑

i=1

g(τi)δi =
n∑

i=1

ψ(τi)

(
1− τi+1

τi

)

= µ
n∑

i=1

ψ
(
(1− µ)i−1 µ

S
t
)
, (135)

and we conclude that we can write

µ
n∑

i=1

ψ
(
(1− µ)i−1 µ

S
t
)
=

∫ τ1

τn+1

g(τ)dτ +
n∑

i=1

ci(t;µ),

(136)
where ci(t;µ) is defined as:

ci(t;µ) = g′(t̄i)
δ2i
2

> 0. (137)

Positiveness follows since g′(t) > 0 for all t ∈ R in view
of (119). Now note that

n∑

i=1

ci(t;µ) ≤
∞∑

i=1

δ2i
2

max
τ∈[0,µt/S]

g′(τ), (138)

and recalling the definition of δi, we have
∞∑

i=1

δ2i =
(µ
S
t
)2 ∞∑

i=1

[(1 − µ)i−1 − (1− µ)i]2

=
(µ
S
t
)2 µ2

1− (1− µ)2
. (139)

The proof for the case t < 0 follows the same line of
reasoning. We now obtain

∞∑

i=1

ci(t;µ) ≤ f1
(µ
S
t
)
× µ2

1− (1− µ)2
, (140)

where f1(·) is defined in (121). As n → ∞ in (136), the

first term on the RHS converges to
∫ µ

S t
0 g(τ)dτ since the τi’s

define a countably infinite partition of [0, µ
S t]. The second term

is convergent from what was just proved. Using now (132),
and letting n→∞, we finally get

φ(c)µ (t) =
S

µ

[∫ µ
S t

0

ψ(τ)

τ
dτ +

∞∑

i=1

ci(t;µ)

]

. (141)

Proof of Lemma 2. Using a first-order Taylor expansion of the
function ψ(·), the LMGF of the variable y⋆k(n) defined earlier
in (90) for diffusion networks using combination weights that
are not necessarily uniform can be written as:

n∑

i=1

S∑

ℓ=1

ψ
(
µ(1− µ)i−1bk,ℓ(i)t

)

= S
n∑

i=1

ψ
(
(1− µ)i−1 µ

S
t
)

+
n∑

i=1

S∑

ℓ=1

ψ′(ti,ℓ)µ(1 − µ)i−1

[
bk,ℓ(i)−

1

S

]
t

︸ ︷︷ ︸
!ci,ℓ(t;µ)

,

(142)

for an intermediate variable ti,ℓ that, focusing first on the case
t > 0, must be certainly contained in the range [0, µt], since
bk,ℓ ≤ 1. This yields:

∞∑

i=1

S∑

ℓ=1

|ci,ℓ(t;µ)| ≤ (CλS) max
τ∈[0,µt]

|ψ′(τ)| µ t

1− λ(1 − µ)
,

(143)
where we used Perron’s Theorem (107). A similar argument
holds for t < 0.
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APPENDIX C: CONVEXITY PROPERTIES OF ω(t) AND Ω(γ)

The following properties hold.

i) ω′′(t) > 0 for all t ∈ R, implying that ω(t) is strictly
convex.

ii) Ω(γ) is strictly convex in the interior of the set:

DΩ = {γ ∈ R : Ω(γ) <∞}. (144)

iii) Ω(γ) attains its unique minimum at γ = Ex, with

Ω(Ex) = 0. (145)

Proof.

i) In view of (36) we have ω′(t) = ψ(t)/t. Positivity of ω′′(t)
follows now from (119).

ii) Consider first the following equation:

γ = ω′(t). (146)

Since ω′(t) is strictly increasing, it makes sense to define

lim
t→+∞

ω′(t) = ω+, lim
t→−∞

ω′(t) = ω−. (147)

Clearly, if ω+ = +∞ and ω− = −∞, Eq. (146) will have
a solution t for any γ ∈ R. Consider the most restrictive
situation that ω− and ω+ are both finite, and that γ /∈ [ω−,ω+].
The case that only one of them is finite follows then in a
straightforward manner.

Recall that the Fenchel-Legendre transform Ω(γ) of the
function ω(t) is defined as:

Ω(γ) = sup
t∈R

[γt− ω(t)], (148)

and let us introduce the function:

h(t) " γt− ω(t). (149)

From the first-order condition for strict convexity (120) applied
to the strictly convex function ω(t), we can write, for t ̸= 0,
ω′(t)t > ω(t), which implies:

h(t) > [γ − ω′(t)] t. (150)

If γ > ω+, the term on the RHS diverges to +∞ as t→ +∞.
Similarly, if γ < ω−, the term on the RHS diverges to +∞
as t→ −∞. This yields:

sup
t∈R

h(t) =∞, (151)

showing, in view of (148) that the condition γ /∈ [ω−,ω+]
implies γ /∈ DΩ.

The proof will be complete if we are able to show that
Ω(γ) < ∞ and Ω(γ) is strictly convex for γ ∈ (ω−,ω+).
Now, since ω(t) is differentiable and strictly convex in R, we
have that, for any γ, the function h(t) in (149) is differentiable
and strictly concave in R, with

h′(t) = γ − ω′(t). (152)

Moreover, for γ ∈ (ω−,ω+) the stationary-point equation

h′(t) = 0⇔ γ = ω′(t) (153)

admits a unique (since ω′(t) is strictly increasing) solution
t(γ). The strict concavity of h(t) allows us to determine the
supremum in (148) as follows:

Ω(γ) = γ t(γ)− ω(t(γ)) <∞, (154)

where finiteness of Ω(γ) follows by the fact that t(γ) ∈ R,
and by finiteness of ω(t). By further noting that ω′(t) is
differentiable and ω′′(t) > 0, the theorem about differentiation
of the inverse function [57, Ex. 2, p. 114] allows concluding
that the derivative of the function t(γ) can be computed as:

d

dγ
t(γ) =

1

ω′′(t(γ))
> 0. (155)

Then we can write

d

dγ
Ω(γ) = t(γ)+γ

d

dγ
t(γ)−ω′(t(γ))

︸ ︷︷ ︸
γ

d

dγ
t(γ) = t(γ), (156)

and
d2

dγ2
Ω(γ) =

d

dγ
t(γ) > 0, (157)

which completes the proof.

iii) We have

Ω(γ) = sup
t∈R

[γ t− ω(t)] ≥ γ 0− ω(0) = 0. (158)

Since ω′(0) = Ex, from (154) we conclude that

Ω(Ex) = (Ex) 0− ω(0) = 0, (159)

and, hence, the minimum allowed value of zero is attained.
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