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I-84081 Fisciano (SA) Italy

A new methodology based on a superposition of time-dependent Gauss-Hermite wave

packets is developed to describe the wave function of a system in which several inter-

acting electronic states are coupled to a bath of harmonic oscillators. The equations

of motion for the wave function parameters are obtained by employing the Dirac-

Frenkel time-dependent variational principle. The methodology is applied to

study the quantum dynamical behaviour of model systems with two inter-

acting electronic states characterized by a relatively large reorganization

energy and a range of energy biases. The favourable scaling properties make

it a promising tool for the study of the dynamics of chemico-physical processes in

molecular systems.
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I. INTRODUCTION

The study of quantum dynamics of electronic transitions is a fundamental task of the

theoretical analysis of chemico-physical processes in molecular systems.1

A number of methodologies are currently available to deal with this type of problem.

Some are quite general, in the sense that they are almost “independent” on the type of

Hamiltonian operator of the system, while many others are suited for dealing with a certain

class of problems, identified by specific model Hamiltonians, such as spin-boson systems or

similars.2–6

One of the simplest ways to describe the motion of nuclei in molecules is based on the

use of Gaussian wave packets. Heller was among the first to recognize the primary role of

such a simple approximation of the nuclear wave function in the study of chemico-physical

problems, mainly focusing his work on semiclassical theories.7–11 Since then a number of

extensions have been dealing with such a method for multidimensional systems and non-

adiabatic processes, i.e. for the treatment of electronic transitions.

Among others G-MCTDH, DD-vMCG, AIMS, are extremely general and powerful

methodologies that utilizes, in different ways, linear combinations of Gaussian wave pack-

ets to define a time-dependent set of orthonormal basis functions which are then used to

describe the wave function of the entire nuclear system.12–15 Pure Gaussian wave packets,

i.e. coherent states, combined with a time-dependent DVR representation are also em-

ployed in the LCSA methodology16, and are also at the basis of the MCE methodology of

Shalashilin.17,18 Coherent states are also the basis of the so called Davydov ansatz which is

specifically tailored to handle polaron dynamics.19–21

Heller was also the first to suggest that a significant improvement of the semiclassical

description based on Gaussian wave packets could have been obtained by introducing a

polynomial prefactor to the wave function.7,8 Hagedorn later recognized that the natural

extension of the description of quantum dynamics by Gaussian wave packet was the use of

generalized Gauss-Hermite functions,22–25 known in the quantum optics literature as gen-

eralized coherent states,26–28 and in molecular dynamics as Hagedorn’s wave packets.29,30

A similar technique was developed later by Billing31–34 in the framework of semiclassical

mechanics as well as non-adiabatic transitions.35

While semiclassical treatments are amenable for high dimensionality systems, they suffer

2

DOI: 10.1063/1.4943538



a number of criticality when applied to non-classical problems, i.e. to processes involving

more than one potential energy surface. In these methodologies the position and momentum

variables follow classical-like equations which involve only one surface at the time leading

to several problems related to norm and energy conservation.

In this work we develop a methodology that uses generalized Gauss-Hermite (GH) wave

packets to build a simple ansatz of a molecular vibronic wave function. Our approach is based

on the time-dependent Dirac-Frenkel variational principle and provides a new set of equations

in which position and momentum of the wave packet are dynamically coupled to the evolution

of the expansion coefficients of the basis functions. The type of ansatz developed in the

following sections is a powerful extension of the simple Gaussian wave packet approximation,

and is suited to handle problems with a large number of degrees of freedom. With the purpose

of showing how to apply the formalism to large size systems, the methodology is applied

to the study of the dynamics of spin-boson Hamiltonians characterized by relatively large

energy biases.

II. GAUSS-HERMITE WAVE PACKET ANSATZ

Let us consider a physical system which can be described as a set of N interacting

electronic states and d harmonic vibrational degrees of freedom, and whose Hamiltonian

operator can be written in the form

H =

N
∑

l=1

[

d
∑

i

1

2
(−∂2

xli
+ ω2

lix
2
li) + glixli + El

]

∣

∣l
〉〈

l
∣

∣+
∑

l>m

Vlm

∣

∣l
〉〈

m
∣

∣+ h.c. (1)

where
∣

∣l
〉

label a set of N “electronic” degrees of freedom and xl = (xl1, xl2, ..., xld) ∈ R
d

represents a set of d nuclear degrees of freedom (d.o.f.) of the l−th electronic state; ωli

are the frequencies of the i−th oscillator in the l−th electronic state; gli are linear coupling

between the electronic and vibrational d.o.f.’s and El are the electronic energies. This type

of operator is representative of a wide family of chemico-physical processes whose most

important representatives are charge and energy transfer processes.36 Though not strictly

necessary, we will further assume that the coupling operators Vlm are independent on nuclear

coordinates and on time. The system dynamics is described by the Schrödinger equation

i∂tΨ(x, t) = HΨ(x, t), with Ψ(t0) = Ψ0.
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Without loosing any generality we write the wavefunction in the form

Ψ(x, t) =
∑

l,K

ClK(t)ΦlK(xl, t)
∣

∣l
〉

(2)

where K is a multi-index K = (k1, k2, ..., kd) ∈ N
d
0, and the ΦlK ’s are a complete orthonor-

mal set of time-dependent basis functions defined as the product of d single-oscillator wave

functions ϕki

ΦlK(xl1, xl2, ..., t) =
d
∏

i=1

ϕlki(xli, t). (3)

We choose ϕlki(xli, t) as time-dependent Gauss-Hermite wave packets22,31

ϕlk(x, t) = 2−k/2(k!)−1/2a
−1/2
l π−1/4Hk[al(x−ql(t))] exp

{

−a2l (x− ql(t))
2/2 + ipl(t)(x− ql(t))

}

(4)

where k ∈ N0, al, ql, pl ∈ R, ql, pl are functions of the time t andHk is the Hermite polynomial

of degree k. The states ϕlk are concentrated near the position ql and near the momentum

pl, and for any fixed set of parameters ql, pl, al form a complete orthonormal basis in L2(R).

Since in our approach al is a constant parameter, we can define a new set of scaled dimen-

sionless coordinates xl ← alx, and scaled parameters ql ← alql, pl ← pl/al and rewrite the

wave packet as37

ϕlk(xl, t) = 2−k/2(k!)−1/2π−1/4Hk[(xl − ql(t))] exp
{

−(xl − ql(t))
2/2 + ipl(t)(xl − ql(t))

}

.

(5)

If the scaling parameter al is considered as a function of time the more general form 4

should be preferred over 5. It is well known that the size of the expansion 2 is subject to

an exponential growth and cannot be used for practical purposes as such. On the other

hand, by introducing an explicit time dependence of the basis functions and using the

time-dependent variational approach the quantum dynamical problem is formulated on a

Hilbert bundle, and the Gauss-Hermite wave packets evolve in time providing a “locally

optimal” basis for solving the Schrödinger equation. It is therefore physically sound that a

truncation of the above expansion to a relatively small subset of states already provides a

good description of the state of the system. Many reduction schemes can be provided, such

as matrix-product states, tensor networks as well as ML-MCTDH techniques.2,4,38–40

The approach developed in this work is based on the idea of partitioning the entire

Hilbert space in a set of subspaces which differ in the number of vibrations allowed to
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be simultaneously excited. As a consequence the entire Hilbert space H spanned by the

Hamiltonian of Eq. 1 can be partitioned as

H =
⋃

c

Sc

where Sc is the space spanned by the states in which only c basis functions are simultaneously

excited, i.e. have a non-zero value of ki. Obviously for any practical purposes the basis is

truncated to a maximum quantum number. Since in a system with d vibrational degrees of

freedom there will be
(

d
c

)

distinct combinations with c excited modes, using such a partition

the wavefunction of Eq. 2 can be written in the form

Ψ(x, t) =

N
∑

l







d
∑

c=1

(dc)
∑

i1...iC

∑

ki1 ...kic

Clki1 ...kic
(t)Φlki1 ...kic







∣

∣l
〉

=
∑

l

[

Cl0(t)Φl0(xl, t) +

d
∑

i

∑

ki=1

Clki(t)Φlki(xl, t)

+

(d
2
)

∑

ij

∑

(kikj)=1

Clkikj (t)Φlkikj(xl, t) + ...
]

∣

∣l
〉

. (6)

This type of partitioning has been first discussed in the field of molecular spectroscopy

as a technique to simulate molecular electronic lineshapes,41,42 and later applied by the

authors, though in a different theoretical framework, to the study of electron superexchange

in molecular chains.6 This approach provides a remarkable restriction of the active space

of the problem and of the associated numerical complexity. While it might seem just an

operative definition, we will later show that, if properly applied, it allows to retain the most

important features of the dynamical behaviour of the system.

The partition 6 allows us to strongly reduce the dimension of the basis set by limiting

its combinatorial explosion. Indeed, if each mode is allowed to have p basis functions, a

combination with c simultaneously excited modes will introduce pc new basis states, and

since there are
(

d
c

)

such combinations the dimension of the Sc subspace will be
(

d
c

)

pc. Thus,

for c = 1 we will have d possible combinations and dp basis states, for c = 2 we will have
(

d
2

)

p2 states and so on. As an example, in a system with d = 50 and p = 10 (see infra for

applications) the full tensor product basis set will have dimension 1050, which is far beyond

the limit of any modern numerical methodology. By assuming that only the combinations
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up to c = 3 are relevant, the size of the basis set will be about 20 · 106, which is numerically

treatable. This approach can be particularly fruitful in reaction path type Hamiltonian43

and effective mode dynamics,44–47 in which the size of the basis set has to be large only for a

restricted subset of nuclear degrees of freedom. Finally, we notice that since the parameters

(ql(t), pl(t)) of the basis set are different for each electronic state the excitation level, c,

might differ as well. High energy electronic states could have a very small c values reducing

the computational cost of the integration.

Of course the above partitioning of the the Hilbert space has an heuristic

basis and does not guarantee that converged results can be obtained avoiding the

exponential growth of the basis set. In principle the convergence can be tested

by letting c vary until no significant variations of the properties of interest (i.e.

electronic population or coherences) are observed. However, this can be applied

only to systems with a quite small number of degrees of freedom. Furthermore,

in very large systems with thousands of degrees of freedom it is impossible to

have an excitation level larger than c = 2 since the basis set would become too

large for a numerical approach. For theese reasons, in the following we will

restrict our discussion to the ansatz 6 truncated to the excitation level c = 2,

which are the most appealing for treating systems with a large number of degrees

of freedom. Will will not discuss the methodology for excitation levels larger

than two since, while they can certainly provide converged results, we are mainly

interested to applications to large systems.

In the following we adopt a mathematical formulation in which all the parameters of

the wave function are real hence we split each coefficient in its real and imaginary part

ClK(t) = rlK(t)+ islK(t). The equations of motion for the parameters (rlK , slK , ql, pl) can be

derived by using the Dirac-Frenkel time-dependent variational approach with the Lagrangian

L =
i

2
[〈Ψ|Ψ̇〉 − 〈Ψ̇|Ψ〉]−

〈

Ψ
∣

∣H
∣

∣Ψ
〉

which for a real parametrization results in the set of differential equations48–50

∑

j

ηij ẏj = ∂yiH (7)

where y denotes the set of parameters (rlK , slK , ql, pl), ηij is a real antisymmetric tensor, and
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H is the Hamilton function:

ηij = i[〈∂yiΨ|∂yjΨ〉 − 〈∂yjΨ|∂yiΨ〉] = −2ℑ〈∂yiΨ|∂yjΨ〉 (8)

H =
〈

Ψ
∣

∣H
∣

∣Ψ
〉

= H(rlK , slK , ql, pl). (9)

After carrying out the calculations (see appendix) the tensor η can be written in the form

ηrlKsmJ
= −2δlmδKJ (10a)

ηrlKqmh
= δlm[2plhrlK −

√
2
(

sl(K−1h)

√

kh − sl(K+1h)

√

kh + 1
)

] (10b)

ηslKqmh
= δlm[2plhslK +

√
2
(

rl(K−1h)

√

kh − rl(K+1h)

√

kh + 1
)

] (10c)

ηrlKpmh
= −δlm[

√
2
(

rl(K−1h)

√

kh + rl(K+1h)

√

kh + 1
)

] (10d)

ηslKpmh
= −δlm[

√
2
(

sl(K−1h)

√

kh + sl(K+1h)

√

kh + 1
)

] (10e)

ηqljpmh
= −δlmδhj

∑

K

(r2lK + s2lK). (10f)

From the above metric tensor the final equations of motion take the form of the implicit

system

2ṙlK +
d
∑

i

ηslKqli q̇li +
d
∑

i

ηslKpli ṗli = ∂slKH (11a)

2ṡlK −
d
∑

i

ηrlKqli q̇li −
d
∑

i

ηrlKpli ṗli = −∂rlKH (11b)

q̇li
∑

K

(r2lK + s2lK)−
∑

K

ηrlKpli ṙlK −
∑

K

ηslKpli ṡlK = ∂pliH (11c)

ṗli
∑

K

(r2lK + s2lK) +
∑

K

ηrlKqli ṙlK +
∑

K

ηslKqli ṡlK = −∂qliH (11d)

with K = 1, ..., Kmax i = 1, ..., d l = 1, ..., N

We notice that the metric tensor, η, does not directly couple the variables of two differ-

ent electronic states because the electronic wavefunction is not parametrized, however, the

equations are coupled by the “quantum forces” ∂yiH. Equations 11a-11d constitute a set of

2
∑L

l (Nl+ d) differential equations where L is the number of electronic states, Nl is the size

of the basis set in the electronic state l, and d is the number of nuclear degrees of freedom.

From the definition of the Hamiltonian operator 1 the function H can be partitioned as

H(p, q, r, s) = H◦ + V
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where

H◦ =
∑

l,i,K

{[

E◦

l +
ωli

2
(p2li + q2li) + gliqli + ωliki

]

(r2lK + s2lK)
}

+
∑

l,i,K

(ωliqli + gli)
√

2(ki + 1)(rlK+1irlK + slK+1islK)

+
∑

l,i,K

ωlipli
√

2(ki + 1)(rlKslK+1i − rlK+1islK)

V = 2ℜ{
∑

l>m,K,J

VlmC̄lKCmJ〈ΦlK |ΦmJ〉}.

The derivatives ∂yiH can be easily obtained analytically

∂slKH = 2
{

E◦

l +
∑

i

[ωli

2
(p2li + q2li) + gliqli + ωliki

]}

slK (12a)

+
∑

i

√

2(ki + 1)[(ωliqli + gli)slK+1i − ωliplirlK+1i]

+
∑

i

√

2ki[(ωliqli + gli)slK−1i + ωliplirlK−1i] + ∂slKV (12b)

∂rlKH = 2
{

E◦

l +
∑

i

[ωli

2
(p2li + q2li) + gliqli + ωliki

]}

rlK (12c)

+
∑

i

√

2(ki + 1)[(ωliqli + gli)rlK+1i + ωliplislK+1i]

+
∑

i

√

2ki[(ωliqli + gli)rlK−1i − ωliplislK−1i] + ∂rlKV (12d)

∂pliH = ωlipli
∑

K

(r2lK + s2lK) +
∑

K

ωli

√

2(ki + 1)(rlKslK+1i − rlK+1islK) + ∂pliV (12e)

∂qliH = (ωliqli + gli)
∑

K

(r2lK + s2lK) +
∑

K

ωli

√

2(ki + 1)(rlK+1irlK + slK+1islK) + ∂qliV.

(12f)

The explicit formulae for the derivatives of V are given in the appendix. Equa-

tions 10, 11 and 12 and their numerical implementation and application are the

main result of this work.

The zero-th order Hamiltonian H◦ includes a classical-like energy part that depends

explicitly on the wave packet positions and momenta (ql(t), pl(t)), and a purely quantum

contribution that depends on the quantum numbers (k1, ..., kd). The terms 〈ΦlK |ΦmJ〉 ap-
pearing in the potential energy V are Franck-Condon type integrals and depend on time

through the variables (ql(t), pl(t)). Their evaluation is a critical step of the time propa-
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gation and can be performed analytically using the recurrence relations described in the

appendix.

The numerical solution of the set of differential equations 11 is not an easy task. On

one hand, when the number of variables is small a pseudo-inverse of the tensor η can be

computed, e.g. by singular value decomposition, and the system can be solved using standard

methods for ordinary differential equations. On the other hand, for problems with a large

number of degrees of freedom computing a pseudo-inverse of η is not feasible and methods

for implicit differential equations51 must be used. Here we have used a Krylov subspace

method as implemented in the DASPK package.52

III. NUMERICAL TESTS

We will now consider the application of the above methodology to the case of a system in

which two electronic states are coupled to an ensemble of harmonic oscillators. We write

the Hamiltonian in the standard form

H = ǫσz +∆σx + σz

∑

i

giqi +
∑

i

ωi

2
(p2i + q2i )

with the usual definition of the σx, σz Pauli matrices. The ensemble of harmonic oscillators

is defined using a Ohmic spectral density

J(ω) =
π

2
αω exp(−ω/ωc)

where ωc is a cutoff frequency, α is the so called Kondo parameter and determine the strength

of the system-bath coupling; the quantity λ = 2αωc is the reorganization energy associated

to the electronic transition. In order to use a basis set approach the spectral density is

discretized into Nb vibrations in the interval (0, ωm] where ωm is a maximum sampling

frequency, ensuring that the total reorganization energy is recovered. Following established

procedures,53–55 the frequency of the i-th mode will be given by

ωi = −ωc ln
(

1− i
ωo

ωc

)

and its linear coupling term will be

gi =
√

λωiωo
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with ωo = ωc(1−e−ωm/ωc)/Nb. In the following we will present two sets of calculations

in which the spectral density has been discretized by using 15 and 60 degrees of

freedom respectively. We point out that our aim is not to discuss exact results

of spin-boson dynamics which can be found, for example, in references 56 and

57, and the discretization of a continuous spectral density is only a technique to

generate an ensemble of phonons with known properties.

For all set of data we provide the result of our methodology with an excitation

level up to c = 2 and the numerically exact results obtained using MCTDH and

ML-MCTDH methodologies that are de facto the standard reference methods

for studying quantum dynamics in molecular systems.2,57–59 All calculation have

been performed using the MCTDH Heidelberg package version 8.5.59

Figures 1 and 2 show the population dynamics in the system with 15 degrees

of freedom for two different values of the Kondo parameter, 0.3 and 0.5, and

for three values of the energy bias, ǫ = 0,∆, 2∆. It is well known that systems

with large energy detuning represent a difficult case for most numerical methods

and, furthermore, they are the most representative of electronic transitions in

molecular systems in which exact energy degeneracy between electronic states

is seldom achieved. In all cases the system is initially localized in the higher

energy electronic state.

In the unbiased case (ǫ = 0) the agreement is almost quantitative already at

excitation level c = 1 independently of the value of the α parameter (see fig.s1a

and 2a). For c = 2 the Gauss-Hermite ansatz reproduces the exact results.

For ǫ = ∆ the agreement between the MCTDH result and our ansatz with an

excitation level c = 2 is again quantitative with slight deviations appearing after

500 fs.

Upon increasing the energy bias to ǫ = 2∆ the agreement with the exact

MCTDH result worsen. The maximum transition probability is about 5% lower

than the exact value, and the mean lifetime is slightly longer. Interestingly, the

shape of the beatings appearing after the first 100 fs are correctly reproduced.

Therefore, when the electronic energy gaps are large, the results of the method-

ology are not quantitative, still they provide a good qualitative description of

the overall electronic population dynamics.
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It is also worth noticing that the increase in the Kondo parameter affects only

marginally the overall behaviour of the ansatz . By increasing α from 0.3 to

0.5 we can observe a deterioration in the performance only in the more difficult

case of ǫ = 2∆.

We point out that in all the above calculations converged results with respect

to the size of the basis set can be obtained with at most 4 functions per degree

of freedom.

The behaviour observed above is also reproduced when the number of degrees

of freedom in increased from 15 to 60. The results are shown in figures 3 and

4 for two different values of the Kondo parameter and in the biased case ǫ = ∆.

As in the previous case the system is initially localized in the higher energy

electronic state.

For α = 0.3 (fig. 3), at the lowest degree of approximation (c = 0), that is by using a

single Gaussian wave packet for each electronic state, the electronic population decays to

a constant value of approximately 0.5, meaning that the system is not localized at infinite

time. When single excitations are added to the wavefunction (c = 1) the transition proba-

bility becomes significantly larger, reaching a maximum of about 0.82, though a complete

population exchange between the two electronic states cannot be observed. The maximum

transition probability being slightly larger than 0.8. When states with two excited vibra-

tions are included in the dynamics (c = 2) the localization in the lowest energy electronic

states is complete after 500 fs. From a comparison with converged numerically exact

ML-MCTDH results we can observe that both methods provide the same mean

lifetime and converge to completely localized state. However, after the first 200

fs the population dynamics become manifestly different, and the agreement is

not quantitative.

Thus when moving from 15 to 60 degrees of freedom we can observe a deteri-

oration of the performances of the method. This can be understood considering

that the fraction of Hilbert space explored by the ansatz is clearly smaller in

the latter case. Notwithstanding, the qualitative behaviour of the dynamics is

correctly reproduced.

For α = 0.5 (fig. 4) the results are qualitatively similar to the preceding case however

the performance of the methodology slightly worsen. Again, at the lowest degree of approx-
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imation (c = 0) the electronic population decays to a constant value of approximately 0.4.

The addition of single excitations improves the overall result, increasing the maximum tran-

sition probability to 0.75, that becomes about 0.85 when states with two excited vibrations

are included in the dynamics. As in the preceding case comparing our best result

with a ML-MCTDH calculation we observe the same half-life, though the latter

method converges toward larger transition probabilities.

The difference in the performance can be ascribed to the increase in the reorganization

energy with α. In this case states with higher excitation levels, not included in the dynamics,

might become more relevant in the dynamics, but as discussed in the preceeding sec-

tion, this is feasible only for systems with a small number of degrees of freedom.

Thus, while all the curves exhibit the same short time behaviour, a complete localization

of the system in one of the two electronic states can be observed only at excitation level

c = 2. This result is of fundamental importance for the assessment of the methodology since

it shows that it is able to correctly reproduce the qualitative behaviour of such systems at

infinite time.60

It is also clear that a superposition of single complex Gaussian wave packet cannot prop-

erly describe the quantum dynamics in strongly biased systems. The motion of a single

Gaussian wave packet does not provide an efficient energy exchange between the electronic

degrees of freedom and the bath, hence limiting the population transfer. On the other hand

using Gauss-Hermite wave packets it is possible to improve the overall description of the

wavefuntion by introducing vibronic states with different quantum numbers. In this way en-

ergy can be exchanged between the electronic and vibrational subsystems in a more efficient

way, leading to the expected irreversible population decay.

IV. DISCUSSIONS AND CONCLUSIONS

The Gauss-Hermite wave packet method provides a family of ansätze for

the vibronic wave function of a molecular system with interacting electronic

states. The partitioning of the Hilbert into subspaces with different levels of

excitations, albeit heuristic, appears quite effective in selecting the active space.

Increasing the number of simultaneously excited vibrations allows to achieve,

at least in principle, converged results, however this procedure can be applied
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only to small systems and more advanced truncation schemes must be devel-

oped. The method has been applied to the study of model systems comprised

of two electronic states interacting with a discrete set of bosons. It has been

shown that qualitatively correct results can be obtained even in the case of a

system with a large energy detuning, and using at most two simultaneously ex-

cited vibrational modes. This case is of notable interest in the study of electron-transfer

processes in supramolecular assemblies which is mostly controlled by the differences in the

oxidation-reduction potentials of the donor-acceptor pair.61–65

The theory described in the present paper provides a first fundamental step

in the development of a fully variational methodology for the study of quantum

dynamics using Gauss-Hermite wavepackets.

The explicit time-dependent basis and the multi-set formulation allow to

strongly reduce the number of primitive functions in the calculations, which,

from a numerical perspective, implies very low computer memory requirements.

A forseeable advantage of a quantum dynamical method based on Gauss-Hermite

wave packet is the possibility to develop techniques for on-the-fly quantum me-

chanics. GH wave packets are indeed localized in the configuration space al-

lowing, at least in principle, to compute potential energy surfaces using a small

number of points. Further work is required to better address these develop-

ments.

In its current implementation, the method suffers a number of drawbacks

mostly due to the accuracy of the integrator, and to the improvement of the

active space Possible solutions to these problems will be addressed in future

work.

As in any basis set methodology the number of independent coefficients in the

wave function expansion is of main concern. While we have not yet investigated

the possibility of contraction or projection schemes64,66,67 the methodology could

be easily extended to handle such techniques. Finally, Gauss-Hermite wave

packets could also be implemented in the framework of the MCTDH theory,

and work is being currently done along this line.

From a numerical point of view, the evaluation of the derivatives of the potential energy is

the most crucial step of the numerical integration scheme. Indeed, it requires the calculation
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of Franck-Condon type integrals between pairs of time-dependent basis functions. Here we

have developed new recurrence formulae to efficiently compute this type of integrals, that

are akin to the well-known recurrence relations for FC integrals between harmonic oscillators

wavefunctions.68–72
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Appendix A: The metric tensor η

The determination of the metric tensor η requires the evaluation of the derivatives of the

wave function Ψ(x, t) and of its complex conjugate Ψ∗(x, t) with respect to the set of real

parameters {rlK , slK , qli, pli, K ∈ N
d, i ∈ N}. To ease the notation in the following we will

write ΦlK as a short notation for the basis function ΦlK(xl1, xl2, ..., t) =
∏d

i=1 ϕlki(xli, t). By

standard methematical procedures we have

∂rlKΨ = ΦlK (A1a)

∂slKΨ = iΦlK (A1b)

∂qlhΨ = −iplh
∑

K

(rlK + islK)ΦlK + a−1
lh

∑

K

(rlK + islK)
[

√

kh + 1

2
ΦlK+1h −

√

kh
2
ΦlK−1h

]

(A1c)

∂plhΨ = ialh
∑

K

(rlK + islK)
[

√

kh + 1

2
ΦlK+1h +

√

kh
2
ΦlK−1h

]

. (A1d)

The notation K − 1h and alike must be read as subtracting 1 from the h-th elements of

K = (k1, · · · , kd). Of course for any real parameter y we have the relation ∂yΨ
∗ = (∂yΨ)∗.

Here we only report the explicit caculation of the ηqljpnh
tensor elements, the others being

quite straightforward. First we notice that ηqljpnh
= 0 for l 6= n, i.e. for two different

electronic states. Thus we only need to compute the term ηqljplh. By a simple application
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of the rules A1 we have

−2ℑ{∂qljΨ∗∂plhΨ} = −2ℑ
{

iplh
∑

K

(rlK−islK)Φ∗

lK+a−1
lh

∑

K

(rlK−islK)
[

√

kh + 1

2
Φ∗

lK+1h
−
√

kh
2
Φ∗

lK−1h

]

× ialj
∑

U

(rlU + islU)
[

√

uj + 1

2
ΦlU+1j +

√

uj

2
ΦlU−1j

]}

. (A2)

Taking the products, integrating over x and taking into account the orthonormality of the

wave functions ΦlK we have

ηqljplh = 2plhalj
∑

K,U

(rlKslU − slKrlU)
[

√

uj + 1

2
δK,U+1j +

√

uj

2
δK,U−1j

]

− a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[
√

(kh + 1)(uj + 1)δK+1h,U+1j

]

+ a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[

√

khujδK−1h,U−1j

]

− a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[
√

(kh + 1)ujδK+1h,U−1j

]

+ a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[
√

kh(uj + 1)δK−1h,U+1j

]

. (A3)

In the above equations the Kronecker over the multi-indices K and U must be read as

products of one-index Kronecker symbols. The two summations with the factor 2plhalj

cancel so we are left with

ηqljplh = −a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[
√

(kh + 1)(uj + 1)δK+1h,U+1j

]

+ a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[

√

khujδK−1h,U−1j

]

− a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[
√

(kh + 1)ujδK+1h,U−1j

]

+ a−1
lh alj

∑

K,U

(rlKrlU + slKslU)
[
√

kh(uj + 1)δK−1h,U+1j

]

. (A4)
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which can be further reduced to

ηqljplh = −a−1
lh alj

∑

K

(rlKrK+1h−1j l + slKsK+1h−1j l)
√

(kh + 1)(kj + δhj)

+ a−1
lh alj

∑

K

(rlKrlK−1h+1j + slKslK−1h+1j)
√

kh(kj + 1− δhj)

− a−1
lh alj

∑

K

(rlKrlK+1h+1j + slKslK+1h+1j )
√

(kh + 1)(kj + 1 + δhj)

+ a−1
lh alj

∑

K

(rlKrlK−1h−1j + slKslK−1h−1j )
√

kh(kj − δhj). (A5)

It is easy to verify that the third and fourth sums cancel each other leaving us with the final

results

ηqljplh = −a−1
lh alj

∑

K

(rlKrlK+1h−1j + slKslK+1h−1j )
√

(kh + 1)(kj + δhj)

+ a−1
lh alj

∑

K

(rlKrlK−1h+1j + slKslK−1h+1j )
√

kh(kj + 1− δhj). (A6)

If h = j we have

ηqljplj = −
∑

K=0

(rlKrlK + slKslK)(kh + 1) +
∑

K=0

(rlKrlK + slKslK)kh = −
∑

K=0

(rlKrlK + slKslK)

(A7)

and if h 6= j

ηqljplh = −a−1
lh alj

∑

K

(rlKrlK+1h−1j + slKslK+1h−1j )
√

(kh + 1)kj

+ a−1
lh alj

∑

K

(rlKrlK−1h+1j + slKslK−1h+1j)
√

kh(kj + 1) = 0 (A8)

This latter result shows that the metric η directly couple the time-dependent parameters

(ql, pl) and the coefficients ClK .
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Appendix B: The Hamilton function

The Hamilton function H can be easily obtained by using the formulae

−∂2
xi
ϕk =

[

p2 + a2(k +
1

2
)
]

ϕk −
a2

2

[

√

(k + 1)(k + 2)ϕk+2 +
√

k(k − 1)ϕk−2

]

+2iap
(

√

k + 1

2
ϕk+1 −

√

k

2
ϕk−1

)

(B1)

x2ϕk =
[

q2 + a−2(k +
1

2
)
]

ϕk +
1

2a2

(

√

(k + 1)(k + 2)ϕk+2 +
√

k(k − 1)ϕk−2

)

+
2q

a

(
√

k + 1

2
ϕk+1 +

√

k

2
ϕk−1

)

(B2)

xϕk = qϕk +
1

a

(

√

k + 1

2
ϕk+1 +

√

k

2
ϕk−1

)

. (B3)

Furthermore, if we let a4 = ω2 we obtain

1

2
(−∂2

x + ω2x2)ϕk =
1

2
(−∂2

x + a4x2)ϕk =

1

2

[

p2 + a4q2 + 2a2(k +
1

2
)
]

ϕk + a(a2q + ip)

√

k + 1

2
ϕk+1 + a(a2q − ip)

√

k

2
ϕk−1 (B4)

thus

H
∣

∣ΦmK

〉∣

∣m
〉

=
{

∑

l

[

d
∑

i

1

2
(−∂2

xi
+ω2

lix
2
i )+glixi+El]

∣

∣l
〉〈

l
∣

∣+
∑

l>m

Vlm

∣

∣l
〉〈

m
∣

∣+h.c.
}

∣

∣m
〉∣

∣ΦmK

〉

=
∣

∣m
〉

∑

i

{[

Em+(p2mi+a4miq
2
mi)/2+a2mi(ki+

1

2
)
]

∣

∣ΦmK

〉

+(a3miqmi+iamipmi)

√

ki + 1

2

∣

∣ΦmK+1i

〉

+ (a3miqmi − iamipmi)

√

ki
2

∣

∣ΦmK−1i

〉

}

+
∑

i

gmiqmiΦmK +
1

ami

(

√

ki + 1

2
ΦmK+1i +

√

ki
2
ΦmK−1i

)

+
∑

l

Vlm

∣

∣l
〉

(B5)

Introducing a set of scaled coordinates xli ← alix and the set of scaled parameters qli ← aq

and pli ← p/ail gli ← gli/ali we obtain

H
∣

∣ΦmK

〉∣

∣m
〉

=
∣

∣m
〉

∑

i

{[

Em + ωmi(p
2
mi + q2mi)/2 + ωmi(ki +

1

2
) + gmiqmi

]

∣

∣ΦmK

〉

+ [ωmi(qmi + ipmi) + gmi]

√

ki + 1

2

∣

∣ΦmK+1i

〉

+ [ωmi(qmi − ipmi) + gmi]

√

ki
2

∣

∣ΦmK−1i

〉

}

+
∑

l

Vlm

∣

∣l
〉

. (B6)
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The Hamiltonian matrix elements over the basis
∣

∣ΦmK

〉∣

∣m
〉

are

〈

ΦmK

∣

∣H
∣

∣ΦlU

〉

= Vml〈ΦmK |ΦlU〉 for l 6= m (B7)

〈

ΦmK

∣

∣H
∣

∣ΦmK

〉

= Em +
∑

i

[

ωmi(p
2
mi + q2mi)/2 + ωmi(ki +

1

2
) + gmiqmi

]

(B8)

〈

ΦmK

∣

∣H
∣

∣ΦmK+1i

〉

=
∑

i

[ωmi(qmi + ipmi) + gmi]

√

ki + 1

2
for l = m. (B9)

Thus, using the orthonormality of the basis functions ΦlK , we have

H =
∑

miK

{[

Em + ωmi(p
2
mi + q2mi)/2 + ωmi(ki +

1

2
) + gmiqmi

]

|CmK |2
}

(B10)

+
∑

miK

[ωmi(qmi + ipmi) + gmi]

√

ki + 1

2
C̄mK+1iCmK

+
∑

miK

[ωmi(qmi − ipmi) + gmi]

√

ki
2
C̄mK−1iCmK

+
∑

lmKJ

VlmC̄lKCmJ〈ΦlK |ΦmJ〉+ h.c..

By letting E◦

m = Em +
∑

i ωmi/2, we can partition the Hamiltonian as

H = H◦ + V (B11)

where

H◦ =
∑

miK

{[

E◦

m + ωmi(p
2
mi + q2mi)/2 + ωmiki + gmiqmi

]

(r2mK + s2mK)
}

(B12)

+
∑

miK

(ωmiqmi + gmi)
√

2(ki + 1)(rmK+1irmK + smK+1ismK)

+
∑

miK

ωmipmi

√

2(ki + 1)(rmK+1ismK − smK+1irmK)

V =
∑

lmKJ

VlmC̄lKCmJ〈ΦlK |ΦmJ〉 =
∑

JK

∑

m>l

2Vlm

[

(rlKrmJ + slKsmJ )ℜ〈ΦlK |ΦmJ〉 (B13)

+ (rlKsmJ − slKrmJ)ℑ〈ΦlK |ΦmJ〉
]

The overlap integrals 〈ΦlK |ΦmJ〉 are complex numbers, that can be evaluated by using the

recurrence relations described in the next section.

The calculation of the derivatives of the Hamilton function with respect to the coefficients

(rlK , slK) are immediate, and those with respect to (qli, pli) follows easily from the application
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of formulae B1,B2 and B3. After some lengthy but straightforward calculations one obtains

∂qni
V = −2

∑

lKJ

Vln(rlKrnJ+slKsnJ)
[

√

ji + 1

2
ℜ〈Φl

K |Φn
J+1i
〉−
√

ji
2
ℜ〈Φl

K |Φn
J−1i
〉−pniℑ〈Φl

K |Φn
J〉
]

+2
∑

lKJ

Vln(rlKsnJ − slKrnJ−)
[

√

ji + 1

2
ℑ〈Φl

K |Φn
J+1i
〉 −
√

ji
2
ℑ〈Φl

K |Φn
J−1i
〉+ pniℜ〈Φl

K |Φn
J〉
]

(B14)

and

∂pni
V = −2

∑

lKJ

Vln(rlKsnJ − slKrnJ)
[

√

ji + 1

2
ℜ〈Φl

K |Φn
J+1i
〉+

√

ji
2
ℜ〈Φl

K |Φn
J−1i
〉
]

− 2
∑

lKJ

Vln(rlKrnJ + slKsnJ)
[

√

ji + 1

2
ℑ〈Φl

K |Φn
J+1i
〉+

√

ji
2
ℑ〈Φl

K |Φn
J−1i
〉
]

. (B15)

Appendix C: Franck-Condon integrals

The Franck-Condon integrals 〈ΦmJ |ΦlK〉, are the product of d one-dimensional overlap

〈ϕmj |ϕlk〉. By using the generating function technique it is possible to derive simple recur-

rence formulae which allow to compute FC integrals for any pair of quantum numbers.70–72

After some lengthy calculation one obtain the identity

F0 exp







(τ σ)y − 1

2
(τ σ)A

(

τ

σ

)







=
∑

j,k

τ jσk

(j!k!)1/2
〈ϕmj |ϕlk〉 (C1)

where τ, σ are dummy variables; the scalar F0, the matrix A, and the vector y are given by:

F0 =

(

2

1 + α2

)1/2

exp

[

−d
2 + h2 − i2d(pl + αpm)

2(1 + α2)

]

, (C2)

and

y =

√
2

1 + α2





−(dα + ih)

d+ iαh



 , A =
1

1 + α2





α2 − 1 −2α
−2α 1− α2



 (C3)

with

d = qm − αpl, h = pm − αpl, α =
√

ωm/ωl. (C4)

where ωm, ωl are the oscillator frequencies in the two electronic states. From the above

equations it is straightforward to derive the recurrence relations68,70,73

√

j〈j|k〉 = y1〈j − 1|k〉 − A11

√

j − 1〈j − 2|k〉 − A12

√
k〈j − 1|k − 1〉 (C5)

√
k〈j|k〉 = y2〈j|k − 1〉 − A21

√

j〈j − 1|k − 1〉 − A22

√
k〈j|k − 2〉 (C6)
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from which one can obtain the required integrals.

We notice that in the standard formulation of FC integrals between harmonic oscillator

eigenstates y is real number and depends solely on the difference in the parameters (ql, qm).

In the present case y is a complex vector and depends also on the “momenta” (pl, pm).

If h is zero the standard recurrence relations of FC integrals between harmonic oscillators

eigenstates are recovered. In the special case α = 1, i.e. when the the frequency of the

two basis functions is the same in both electronic states, A11 = A22 = 0 and the recurrence

relations simplify to

√

j〈j|k〉 = y1〈j − 1|k〉+
√
k〈j − 1|k − 1〉 (C7)

√
k〈j|k〉 = y2〈j|k − 1〉+

√

j〈j − 1|k − 1〉. (C8)
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21

DOI: 10.1063/1.4943538



22G. A. Hagedorn, Comm. Math. Phys. 71, 77 (Feb. 1980).

23G. A. Hagedorn, Ann. Phys. 135, 58 (Aug. 1981).

24G. A. Hagedorn, Annales de l’institut Henri Poincaré (A) Physique théorique 42, 363
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FIG. 1. Population of the lowest energy electronic state as a function of time in a two electronic

state system. The parameters of the model are ∆ = 100 cm−1, ωc = 10∆, α = 0.3; a) ǫ = 0, b)

ǫ = ∆ c) ǫ = 2∆. The number of bath modes is Nb = 15. Dashed line (- -) excitation levels of the

two electronic states c = 0; dash-dot line(−·) c = 1; full line (–) c2 = 2; (×) MCTDH result.
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FIG. 2. Population of the lowest energy electronic state as a function of time in a in a two electronic

state system. The parameters of the model are ∆ = 100 cm−1, ωc = 10∆, α = 0.3 and ǫ = ∆; a)

ǫ = 0, b) ǫ = ∆ c) ǫ = 2∆. The number of bath modes is Nb = 15. Dashed line (- -) excitation

levels of the two electronic states c = 0; dash-dot line(−·) c = 1; full line (–) c2 = 2; (×) MCTDH

result.
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FIG. 3. Population of the lowest energy electronic state as a function of time in a model spin-boson

system. The parameters of the model are ∆ = 100 cm−1, ωc = 10∆, α = 0.3 and ǫ = ∆. The

number of bath modes is Nb = 60. Dashed line (- -) excitation levels of the two electronic states

c1 = 1 and c2 = 2; dash-dot line(−·) c1 = c2 = 1; full line (–) c1 = 1 and c2 = 2;; (×) ML-MCTDH

result.
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FIG. 4. Population of the lowest energy electronic state as a function of time in a model spin-boson

system. The parameters of the model are ∆ = 100 cm−1, ωc = 10∆, α = 0.5 and ǫ = ∆. The

number of bath modes is Nb = 60. Dashed line (- -) excitation levels of the two electronic states

c1 = 1 and c2 = 2; dash-dot line(−·) c1 = c2 = 1; full line (–) c1 = 1 and c2 = 2; (×) ML-MCTDH

result.
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