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Abstract—Microgrids represent a smart solution to increase
power system reliability through the development of self-supplied
islands that integrate distributed power generation and other
smart technologies. In this paper we propose a solution method
for an optimal generation rescheduling and load shedding prob-
lem in microgrids in order to determine a stable equilibrium
state following outages. To address this problem, focused on MV
distribution systems, a new solution methodology based on the use
of fuzzy numbers is proposed. The approach allows representing
the sources of uncertainty in the data or approximations made
during the computation and considering many possible scenarios
in case of outages. In order to demonstrate the performance and
the effectiveness of the proposed method, several simulations
have been carried out on a 69-bus radial distribution system
and results have been compared with those obtained by using
a stochastic optimization approach. The encouraging results are
presented and discussed.

Index Terms—microgrid, fuzzy numbers, rescheduling, load
shedding.

I. INTRODUCTION

USUALLY, as consequence of the growth in power de-
mand and the requirements of higher power quality

levels, power systems are operated in more and more stressful
conditions. In case of congestion or overloads in one or more
distribution lines, due to unexpected outages of generation,
sudden increase in demand, tripping of lines, or failures of
other equipment, the resulting power imbalance could lead to
instability and security analysis and contingency plans must
be made at regular intervals [1]. Nevertheless, load shedding,
demand side management (DMS) and distributed generation
control can be an opportunity to better manage distribution
systems. In fact, nowadays some distributed energy resource
(DER) units can be programmable (dispatchable) in contrast
to units intuitively not-programmable, (such as wind, solar
etc.) and information and communication technology (ICT)
tools allow implementing smart strategies to manage the power
demand [2]-[4].

In order to take advantage of the new technology opportu-
nities, the distribution network requires advanced management
policies as those based on the concept of microgrids. In fact, in
case of faults, sudden dramatic load changes, and insufficient
generation that can create power mismatch between generation
and power demand, it is possible to define operative microgrid
strategies based on an optimal use of available dispatchable
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DERs, which ensure a rapid and effective service recovery
incrementing the power system reliability: the microgrid can
isolate itself via an utility branch circuit and coordinate
generators and load in order to guarantee power supply.

In the literature, few studies deal simultaneously with
generation rescheduling and load shedding (GRLS) problems.
In [5],[6] sensitivity-based optimum generation rescheduling
and/or load shedding schemes to alleviate overloading of
transmission lines are reported. Optimization techniques are
used for GRLS in the reliability evaluation of conventional
power systems [7]-[9]. More recent works are in [10]-[12]: a
particle swarm optimization method is used to solve a GRLS
multiobjective problem in order to alleviate overload and min-
imize the operation cost [10], a decision tree-based preventive
and corrective method such as GRLS schemes to enhance
the security of power system is proposed in [11]; Wang et
al. propose a risk-based method for coordinating GRLS to
enhance overall transient stability of power systems [12]. Other
papers deal with congestion management by focusing on load
shedding scheme [13]-[15] and generation rescheduling [16]-
[19], separately.

The bibliographic survey gives three suggestions: i) the
possibility to apply GRLS management strategies in micro-
grids that could improve the reliability level of the distribution
systems in the presence of DERs; ii) the necessity to formulate
GRLS problem in microgrids considering the uncertainty due
to not-programmable DERs and no well-known load demand
profiles; iii) to develop a complete strategy to support the
continuity of service in case of faults by completing the
only rescheduling scheme already proposed in [19]. The three
previous points lay the foundations for this paper and represent
also its main contributions. In fact, we formulate and solve a
GRLS problem for microgrids in order to determine a stable
equilibrium state following outage for increasing continuity
of service. The solution takes into account the uncertainty
due to the fact that i) lower and upper limits of some of
the dominant constraints are not sharp but rather soft, ii) the
load profiles in MV distribution system are not deterministic,
and iii) a part of distributed renewable generation introduces
uncertainty in power production. Possibility theory is well
suited for treating such situations where there are inaccurate,
nested, or few data to describe adequately the problem. In
possibility theory, information is modeled by possibility dis-
tributions, which in same cases are analogous to probability
distributions. In fact, possibility distribution should be used as
mathematical description of the event only when information
are inaccurate (uncertain) [20]-[22]; if information are precise,



2

then possibility distribution must not be used because it is a
poor information. In the literature probability and possibility
theory have been largely used in power system in order to
take into account ”uncertain information”. The first approach
appears in the 1970s when a probabilistic load flow were
proposed [23]-[24]. The second approach based on fuzzy set
theory is developed in [25]-[28] when uncertainty is supposed
to be originated by a vague or inaccurate concept, which
is not the case of the probabilistic models highly related to
the statistical behavior of a phenomenon. More recent ideas
is in [29] that includes a representation of the uncertainties
associated with renewable resources and loads based on fuzzy
intervals.

Here, in order to illustrate the proposed approaches, an opti-
mization problem based on the possibility theory is formulated,
the solution method is tested on a 69-bus distribution network,
and the results are compared with a classical stochastic opti-
mization approach.

The paper is laid out as follows: Section II briefly presents
possibility theory and fuzzy set theory. In Section III the
mathematical formulation of the problem is illustrated. In
Section IV, the solution algorithm is shown and in Section
V the methodology is applied to case studies. Sections VI and
VII discuss and conclude the work.

II. UNCERTAINTY BY MEANS OF POSSIBILITY THEORY:
FUNDAMENTAL CONCEPTS

In power systems, problems that treat the uncertainty with
the classical probabilistic approach can be critical because in
many cases we do not have enough data to build reliable
probabilistic distributions, and practical application suffer the
lack of information. These considerations led to formulate a
theory of possibility based on a fuzzy set approach [30]. In
fact, often it is necessary to take into account of both aleatoric
and epistemic effects, so that the uncertainty can be accounted
by the model by possibility distributions. Here, we recall the
fundamental concepts of the possibility theory and fuzzy sets.

A. Possibilistic Theory and Fuzzy sets

Since Zadeh introduced the concept of possibility, the
fuzziness has been handled by possibility distributions, and
a fuzzy variable with its membership function is related to
a possibility distribution in the same manner as the corre-
sponding probability distribution of the random variable [31].
Let A a fuzzy set, a subset of a universal set U , represented
by an ordered pair composed by a generic element and its
membership value:

A = {(x, πA(x))|x ∈ U} (1)

A possibility distribution πA on U is a mapping from
U to the unit interval [0,1] attached to the single-valued
variable A. The function πA represents a flexible restric-
tion, which constrains the possible values of A according
to the available information, with the following conventions:
πA(x)=0 means that A=x is definitely impossible; πA(x)=1
means that absolutely nothing prevents that A=x. Intermediary

levels of plausibility about the possible values of A are
modeled by letting πA(x) between 0 and 1 for some values x.
The quantity πA(x) thus represents the degree of possibility of
the assignment A=x. Then one can acknowledge the fact that
some values of x are more possible than others, according to
available information.

In order to deep the concept of possibility distribution, we
introduce the α-cut of a fuzzy set A, a classical set Aα that
contains all the elements in U with a membership value in A
greater or equal than α, that is,

Aα = {(x ∈ U |πA(x) ≥ α, α ∈ [0, 1]} (2)

A possibility distribution can be seen as a sequence of
nested confidence intervals, coincident with the α-cuts of
a fuzzy set A. The confidence level regarding the truth of
a sentence, like ”the value of the uncertain measurement
belongs to an interval Aα”, represents the necessity (nec),
which is maximum for α=0 and it decreases as α increases:
nec (Aα)=1-α. The possibility (pos) is related to necessity
through the following:

pos(S) = 1− nec(Sc) (3)

where S is a subset of A, and Sc is the complementary
subset.

For each possible event A=x its possibility πA(x) is the
greatest possible probability of the event [32]. The necessity,
instead, is the minimal but certain probability value of the
event occurrence. If the possibility value πA(x) and the neces-
sity ηA(x) value are known then the event A=x occurs with
probability at least equal to the necessity but not exceeding
the possibility. The possibility and necessity measures of an
event occurrence in the solution of real problems correspond,
respectively, to the extremely optimistic and to extremely
pessimistic approach to the problem.

B. Fuzzy numbers representation
A fuzzy number ã is a fuzzy subset in U that fulfills the

following conditions: i) ã is normal, ii) ã is convex, iii) ã has a
bounded support, and iv) every α-cut of ã is a closed interval
in U . Here, we use fuzzy numbers with triangular shape. The
membership function is defined as

πa(x) = πa(x, a1, a2, a3) =

=


(x−a1)
(a2−a1) if a1 ≤ x ≤ a2
(a3−x)
(a3−a2) if a2 ≤ x ≤ a3
0 if x > a3 ∨ x < a1

(4)

The α-cut representation is achieved building α dependent
function for left and right edges of πA. Thus, for the fuzzy
number ã we define:

aα = [a−α , a
+
α ]

where

a−α = (a2 − a1)α+ a1 (5)
a+α = (a2 − a3)α+ a3 (6)
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C. Sum, absolute value and scalar multiplication

Let ã and b̃ be two fuzzy numbers and aα = [a−α , a
+
α ] and

bα = [b−α , b
+
α ] their α-cuts, respectively. The sum of ã with b̃

is a fuzzy number c̃ with the following α-cut:

cα = (a+ b)α = [a−α + b−α , a
+
α + b+α ] = [c−α , c

+
α ] (7)

Thus, the fuzzy number is well defined and if we con-
sider the corresponding membership function, we have the
following:

πa+b(x) = πa+b(x, a1 + b1, a2 + b2, a3 + b3) (8)

For the absolute value the membership function is:

π|a|(x) = π|a|(x, |a1|, |a2|, |a3|) (9)

Here, we define only the scalar multiplication between a
fuzzy number ã with a scalar k. In particular, the product is
a fuzzy number with the following membership function:

πka(x) = πka(x, ka1, ka2, ka3) (10)

D. Comparison of fuzzy numbers

In the literature, quite a few fuzzy ranking methods for
comparing fuzzy numbers are present, but they are able to
guarantee the comparison only in particular conditions [33].
Since the method used here is closely related to the addressed
problem, we use the ranking method for comparing fuzzy
numbers introduced in [19,34]. For our purpose three cases
are considered: inequality between a fuzzy number and a real
number; equality between two fuzzy numbers and inequality
between two fuzzy numbers. In particular, i) a fuzzy number
is less than a real number if each element of the set of the
associate membership function is less than the real number; ii)
two fuzzy numbers are equals if the correspondent elements
of their set are equal to each other; iii) a fuzzy number is
greater than of a fuzzy number if each element of the first set
is greater than of each element of the second set.

Fig. 1. Comparison between fuzzy numbers

E. Fuzzy constraints

The fuzzy constraints can be satisfied in different ways. In
this paper we consider the Soyster’s criterion. Let consider two
fuzzy numbers ã and b̃ with triangular shapes as in Fig. 1, the
inequality ã ≤̃ b̃ is satisfied up to the level h1 if ã ≤̃h1

b̃,
that is the left-hand side satisfies alh ≤ blh and the right-hand
side satisfied for any α-cut h ∈ [h1, 1]. The level h1 (β-level)
is a measurement of the corresponding risk accepted by the
planner and is called exposure. Instead, the value 1-β is a
measurement of robustness of the planning solution.

III. LOAD AND DISTRIBUTED GENERATION MODELING

Uncertainty in planning studies stems from several sources
both internal and external to the distribution power system.
The most relevant uncertainty sources are:

- price of electricity based on competing energy sources;
- lower and upper limits of power production of some of

the dominant constraints, which are not sharp but rather
soft;

- weather conditions;
- improvements on the energy end use.
Here, we face a planning study based on the solution of a

GRLS problem. It is modeled by using fuzzy variables that
represent the possibility distributions of the demand values
and power production in the presence of distributed genera-
tion units with aleatory sources. Forecasting these variations
involves uncertainty, which could be significant especially in
the medium and long term. In the following the uncertainty
associated to power demand and power production will be
modeled by triangular fuzzy numbers. In particular, a linguistic
declaration about the absorption of power as ”power load
may occur between Pa and Pc MW but it is likely Pb”
is modeled by the fuzzy number πP (x, Pa, Pb, Pc) sketched
as in Fig. 2; then we distinguish between programmable
and not-programmable DERs. In particular, we assume that
not-programmable DER is connected at the same bus of
programmable DER, so that the produced power is affected
from an uncertainty degree.

Fig. 2. Example of triangular fuzzy number
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IV. MATHEMATICAL FORMULATION OF THE GENERATION
RESCHEDULING AND LOAD SHEDDING PROBLEM

In this paper, GRLS problem deals with the determination
of a new stable equilibrium state (steady state analysis) fol-
lowing an outage in a distribution network hosting DERs. The
objective of the problem is to reschedule power generation as
close as possible to the power generated in order to minimize
production costs and, if necessary, to reduce the load, classified
with different priorities, in order to guarantee the maximum
continuity of service. The problem formulation is divided in
two parts: the first one describes the rescheduling problem, the
second one formalizes the load shedding problem.

A. Rescheduling problem

Rescheduling problem is formulated as an optimization
fuzzy problem based on an AC power flow, subject to op-
erating constraints. The mathematical model can be expressed
as

min
P̃G∈FNg

F̃1(P̃G) ∀α ∈ [0, 1] s.t. x̃(P̃G) ∈ X (11)

where F is the subset of fuzzy variables, P̃G is the set of
the fuzzy active power variables produced by the DER units,
Ng is the number of the programmable DERs, and

F̃1 =

Ng∑
i=1

P̃Gi − P̃LTOT (12)

In (12) P̃Gi represents the active power of the DER at the
bus i; P̃LTOT represents the overall load active power. The
uncertainty on produced active power is due to the presence
of not-programmable DERs connected to the same bus of the
programmable DERs.

The electrical and operational constraints are summarized
by

X = {r̃(P̃G)|r̃(P̃G) ≤ 0} (13)

where the vector function r̃(P̃G) describes both the equality
constraints (i.e. load flow equations) and the constraints for a
correct system operation as



P̃SPi = Ṽi
∑Nb

i=1 ṼjYij cos(δ̃i − δ̃j − θij) i ∈ nP
Q̃SPj = Ṽj

∑Nb

k=1 ṼkYjk sin(δ̃j − δ̃k − θjk) j ∈ nQ
|Ĩh| ≤ Imaxh h = 1...Nl
PminGi ≤ P̃Gi ≤ PmaxGi i = 1...Ng
QminGi ≤ Q̃Gi ≤ QmaxGi i = 1...Ng
V minGi ≤ ṼGi ≤ V maxGi i = 1...Ng

(14)
where Nb is the number of load buses, nP and nQ are the

list of the buses in which the active and reactive power are
specified, respectively. P̃SPi and Q̃SPi are the real and reactive
power specified at i-th and j-th bus (load and generation);
Ṽi and δ̃i are the i-th bus voltage (magnitude and angle)
and Yij and θij are the ij-th element of the bus admittance
matrix (magnitude and angle). Ĩh is the current on the line

h. The terms with max and min indicate the limits of the
corresponding electrical quantities: VGi and QGi describe the
voltage and the reactive power at the generation i bus. The
terms with the symbol ∼ are fuzzy numbers.

B. Load Shedding Problem

In the load shedding problem we assume that each bus
is associated with an aggregate load with a priority degree,
so that all buses can be clustered in priority classes. This
assumption introduces a constraint in the order of the load
reduction. For this reason a multilevel optimization problem
is formulated. Multilevel optimization recognizes that there is
a hierarchy of decision makers with decision made at different
levels within the hierarchy [36]. The multilevel optimization
was introduced in 1952 by von Stackelberg, who proposed
a two level strategy for systems where policy makers at the
top level influence the decision of private individuals and
companies. According to this strategy, the problem of load
shedding must take into account the load shedding solutions
obtained at lower levels to guarantee the correct order of load
reduction based on the priority of the loads. Analytically, the
optimization problem is formulated as

min
P̃L

L∈F
Nb

F̃1(P̃HL , P̃
M
L , P̃

L
L) ∀α ∈ [0, 1]

s.t. x̃(P̃HL , P̃
M
L , P̃

L
L) ∈ X

(15)

where PML solves

min
P̃M

L ∈F
Nb

F̃2(P̃HL , P̃
M
L ) ∀α ∈ [0, 1]

s.t. x̃(P̃HL , P̃
M
L ) ∈ X

(16)

where PHL solves

min
P̃H

L ∈F
Nb

F̃3(P̃HL ), ∀α ∈ [0, 1]

s.t. x̃(P̃HL ) ∈ X
(17)

in (15)-(18) P̃HL , P̃
M
L , P̃

L
L are the sets of the high, medium

and low priority load, respectively. Furthermore,


F̃1 =

∑Ng

i=1 P̃Gi −
∑Nb

j=1(P̃HLj + P̃MLj + P̃LLj)

F̃2 =
∑Ng

i=1 P̃Gi −
∑Nb

j=1(P̃HLj + P̃MLj )

F̃3 =
∑Ng

i=1 P̃Gi −
∑Nb

j=1 P̃
H
Lj

(18)

where Nb is the number of load buses. Obviously, in (18),
we sum only the demand powers with a priority p, even though
the sum is extended to all buses; we consider null the demand
power at the bus associated to a load with a priority different
from p. The electrical and operational constraints in (15)-(18)
are summarized by

X = {r̃(P̃L)|r̃(P̃L) ≤ 0} (19)

where P̃L = {P̃HL , P̃ML , P̃LL} and the vector r̃(P̃L) describe
both the equality constraints (i.e. load flow equations) and the
inequality econstraints for a correct system operation as
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P̃SPi = Ṽi
∑Nb

i=1 ṼjYij cos(δ̃i − δ̃j − θij) i ∈ nP
Q̃SPj = Ṽj

∑Nb

k=1 ṼkYjk sin(δ̃j − δ̃k − θjk) j ∈ nQ
|Ĩh| ≤ Imaxh h = 1...Nl
V mini ≤ Ṽi ≤ V maxi i = 1...Nl
P̃ shG + (∆fmin)D ≤ ∆P̃L ≤ P̃ shG + (∆fmax)D

(20)
where D is the damping load constant, ∆P̃L is the active

load power to disconnect for the load-shedding. P̃ shL is the
active power lost after the outage and ∆fmin(max) is the
frequency deviation between the rated value and the minimum
(maximum) standard limit. The last inequality allows steady
state frequency to maintain within a permissible range in
steady state analysis. It has been obtained ignoring generator
droops [37].

V. SOLUTION ALGORITHM

The solution method is based on the algorithm whose
flow chart is shown in Fig. 3. When an outage occurs, and
microgrid is formed, first, the algorithm tries to perform a
rescheduling of the dispatchable generators: this operation can
lead to an optimal rescheduling valid for each α or a feasible
rescheduling solution valid only for particular values of α.
If the total generated power is less than the power absorbed
by loads, it will be impossible to perform the rescheduling
procedure, thus a load shedding routine starts, followed by
a power rescheduling in order to find an optimal generators
operating point.

In details, the solution of the rescheduling optimization
problem is obtained in two steps: in the first one the fuzzy
optimization problem (11) is translated to a real number-
based minimization problem by applying α-cuts (α=1), which
corresponds to a deterministic classical problem for rated
values. It is a constrained non-linear optimization problem
that can be solved by using a Hessian, computed by a quasi-
Newton approximation. In particular, the power flow is solved
assuming that one of the microgrid generator takes the slack
node role and limiting its active and reactive power according
to power limits. In the second step the rescheduling algorithm
allows obtaining the solution in terms of fuzzy numbers in
order to verify the possibility degree. The procedure is based
on the following sub-steps:
- translate the deterministic solution to a fuzzy number solution
by applying the same maximum uncertainty width interval
(α=0), as defined before the rescheduling to DER buses (PV
buses) and load buses (PQ buses). In fact, the imprecise
information depends on the not-programmable sources and it
is independent from the obtained solution;
- define an interval for all load flow input variables by setting
a value of α;
- carry out Monte Carlo simulations by using, for all power
flow input variables, values selected in the interval;
- check that the power flow solutions are feasible according
to technical constraints;
- repeat the last two steps in order to obtain a fuzzy number
solution for each α-cut included in A=[0,0.2,0.4,0.6,0.8,1]
(Monte Carlo fuzzyfication block).

Fig. 3. Solution algorithm flow chart

The load shedding problem, instead, is traced back to a
knapsack problem - given a backpack that can withstand
a certain weight and N objects characterized by a value,
the problem aims to choose which of these items to put in
the backpack to get the most value without exceeding the
sustainable weight of the backpack itself. Each load has a
priority value: high, medium, or low. Firstly, the algorithm
minimizes high priority loads to disconnect from the microgrid
according to the generators maximum power (17), then repeats
the same procedure for the lower priority loads (16)-(15).
If two or more loads have the same priority, load shedding
routine disconnects from microgrid loads with higher power
in order to minimize total disconnected loads. The solution
algorithm is coded in MatlabTM.

VI. SIMULATIONS AND RESULTS

In order to show the effectiveness of the proposed method-
ology, a study is presented. The test is performed on a 69
branch, 9 lateral test grid derived from a portion of the
PG&E distribution network (Fig. 4) [38]. We perform a
comparison between the proposed fuzzy method and an ap-
proach well known in literature, as the stochastic optimization.
Total distribution network load is 3802.19 kW for α=1 in
the fuzzy approach and corresponds to the maximum value
of the probability density function (pdf) for the stochastic
optimization. We consider 9 buses with not-programmable
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Fig. 4. C69-bus test network

and programmable DER units, in correspondence of the buses
4, 14, 35, 38, 46, 47, 52, 58 and 65, able to guarantee the
total active power generation equal to 3950 kW, which is
the maximum value of the possibility function (α=1) and the
maximum value of the pdf. For each DER unit we assume an
uncertainty of ± 5% described by using fuzzy numbers in the
proposed approach, and by a probability density function in the
stochastic approach. To better compare the results obtained by
applying the two methods, we suppose the fuzzy membership
function and the pdf similar in shape (symmetrical triangular).
In order to implement the two methods, Monte Carlo simu-
lations are carried out on 10000 different values where input
variables, in the assumed input bounds, are randomly selected.

In the case study, following to the outage of the line 5, the
main part of the network is isolated, so the big microgrid (µG)
is formed and joined results of rescheduling and load shedding
are discussed. The total rated generation power and the total
load are equal to 2.232 MW and 2.676 MW, respectively.
We assign to the load buses connected to the µG one of the
following priority value: LOW, MEDIUM or HIGH.

In Fig. 5 we show the fuzzy membership functions (fuzzy
approach) and the normalized histograms (stochastic ap-
proach) after the outage of the total generation active power
and total demand. If we apply the rescheduling routines by
both methods, it is not possible to obtain a feasible solution
because the maximum total generation power is lower than the

Fig. 5. Total generators and loads active power post outage

total demand, so that the load shedding procedure is run.
Fig. 6 shows the results obtained by load shedding routines:

the algorithm in order to maximize the supplied total load in
the µG, disconnects only one big load (1.244 MW - bus 61)
with LOW priority value. The two approach allow obtaining
similar results. In particular, the fuzzy arithmetic lead to a
more conservative solution since the membership functions,
for α=0, are slightly larger than the normalized histograms
amplitude. It is worth noting that the fuzzy load shedding pro-
cedure implements only arithmetic fuzzy operations without
Monte Carlo simulations, so that we have a feasible solution
with a low computational time-consuming but an increasing
amplitude of the solution interval.

Fig. 6. Total generators and loads active power post load-shedding

The total generators active power, after the performed load
shedding routine, is much greater (2.232 MW) than total
load active power (1.433 MW), as shown in Fig. 6, thus by
applying the rescheduling algorithm, the new total generation
active power matches the total power demand, according to
the values shown in Fig. 7. In the Table I, we list the variation
of the power generation after the rescheduling; in particular,
the second and the fourth columns show the minimum and
maximum value for α=0, the third column the more possible
value for α=1, whereas the fifth column shows the active



7

TABLE I
RESCHEDULING RESULTS

Gen Pinf P Psup ∆P
number [MW ] [MW ] [MW ] [MW ]

14 0.108 0.124 0.125 +0.024
52 0.456 0.491 0.510 -0.309
58 0.317 0.344 0.356 -0.156
65 0.488 0.525 0.556 -0.275
Tot 1.372 1.484 1.535 -

power variation regarding the rated power pre-outage for α=1.

Fig. 7. Total generators and loads active power post rescheduling

Fig. 8. Active power production of the generators G7 and G8

The rescheduling results in terms of generators active power
at the buses 52, and 58 are shown in Fig. 8: we plot in stretched

TABLE II
IMPACT OF THE SLACK NODE ON RESCHEDULING

Slack ∆P14 ∆P52 ∆P58 ∆P65 Loss
number [MW ] [MW ] [MW ] [MW ] [%]

14 +0.024 -0.309 -0.156 -0.275 3.4
52 -0.003 -0.463 +0.072 -0.185 11.6
58 +0.031 -0.168 -0.288 -0.221 7.0
65 +0.005 -0.082 -0.004 -0.613 4.9

red line the membership function after the rescheduling proce-
dure and in dotted red line the pre-outage ones. The solution
shows a decrease of the active power of both generators in
order to match the total load. The results obtained by using
the stochastic optimization method are similar in comparison
with those achieved by the proposed fuzzy approach.

The losses of the system are illustrated in Table II by varying
the position of the slack bus. In particular, in order to imple-
ment the rescheduling algorithm we obtain four rescheduling
solutions changing the slack bus. The best rescheduling so-
lution in terms of losses (3.4 %) is achieved assuming the
generator 14 as the slack bus.

VII. CONCLUSION

The paper proposes a new methodology based on fuzzy
numbers in order to solve an optimization rescheduling and
load shedding problems in microgrids with imprecise in-
formation. The integration of fuzzy possibility theory and
Monte Carlo simulations allow obtaining a large band solution
corresponding to power system scenarios with high or low
possibility. Furthermore, the interpretation of the solutions
is easy because the uncertainty characterizing both load and
power generation is modeled on human’s intuition. The main
benefits of the proposed approach are due to the fact to have
real rescheduling and load shedding solutions with different
degree of possibility, so that technicians and operators can
accept the proposed solutions with an aware risk level. The
optimization procedure is based on a classical solution method
using as input data the central values of fuzzy numbers. The
effectiveness and intuitiveness of the approach is highlighted
by tests run on a 69 bus distribution system and the results
demonstrate that the proposed method is well suited for the
assessment of uncertainty propagation in rescheduling and
load shedding problems. Finally, the comparison between the
proposed fuzzy method and stochastic optimization shows that
the first approach is computationally efficient due to fuzzy
arithmetic and allows obtaining a more conservative estimation
of the solution.
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