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Abstract

A powerful strategy to face the classification of multiple classes is to create a
classifier ensemble that decomposes the polychotomy into several dichotomies.
The central issue in designing a multiclass-to-binary decomposition scheme is
the definition of both the coding matrix and the decoding algorithm. In this
paper, we propose a new classification system based on the Low-Density Parity-
Check codes, a very effective class of binary block codes. The main idea is to
exploit the algebraic properties of such codes both to generate the codewords of
the coding matrix and to define two decoding approaches that allow us to detect
and recover possible errors or rejects produced by the dichotomizers. Experi-
ments on benchmark datasets have shown that the proposed approach provides
a statistically significant improvement in classification performance over state-
of-the-art decomposition strategies.

Keywords: Multiple Classifier Systems, Multiclass-to-binary decomposition,
Coding Theory, Low-Density Parity-Check (LDPC), Reject, Error-Correcting
Output Coding (ECOC)

1. Introduction1

Many real-world applications involve multiclass classification problems. Face2

recognition, image categorization, biometric identification are only some of the3

challenging tasks in Pattern Recognition dealing with multiple classes. A prac-4

tical way to face these problems is to use a monolithic classifier that works by5

modeling the probability distribution functions or by building the decision re-6

gions for each class. An alternative approach is to split the original polychotomy7
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into a series of dichotomies that can be faced through an ensemble of two-class8

classifiers (a.k.a. dichotomizers) each facing a particular dichotomy. The out-9

puts of the dichotomizers are then combined to infer the multiclass prediction.10

There are several approaches to design a multiclass-to-binary decomposition11

scheme. Two well-known strategies are one-vs-all (OVA) [35] and one-vs-one12

(OVO) [21]. The former determines a dichotomy for each class by separating13

it from the remaining classes, whereas the latter considers all pairs of different14

classes and defines each subproblem by discriminating one class from another.15

Another technique is the Error Correcting Output Coding (ECOC) [10]. The16

rationale is to assign each class a unique binary string (referred to as codeword).17

Codewords can be arranged in the rows of a discrete decomposition matrix,18

named coding matrix, where each column defines a binary partition that groups19

the original classes into two superclasses. In the decision stage, for each unknown20

sample, the outputs of the dichotomizers are collected in a word that is used to21

predict a class according to a suitable decoding technique.22

The performance of a decomposition scheme is highly dependent on the23

coding and decoding strategies. As for the coding, there are two groups of24

techniques: data-independent and data-dependent. The first one exploits the25

correction capabilities of predefined codes. In this context, several research26

studies were conducted to improve OVA [17, 42] and OVO [18, 25] or to introduce27

linear codes such as the exhaustive codes [10] and the random codes [1]. The28

second group has recently drawn great attention and focuses on coding strategies29

designed for the multiclass problem at hand. Several approaches were proposed30

to design efficient codes depending on the set of dichotomizers [8], the data31

distribution [2, 40, 54] or the binary subproblems [15]. A method to extend32

the coding matrix with new dichotomizers was proposed in [39], whereas in33

[22] the coding matrix was shrunk by eliminating “useless” subproblems. The34

feature space of an ECOC system was studied in [53], while in [4] an ECOC-35

based feature extraction was proposed. Genetic programming was considered36

in [5, 20] to build the coding matrix, and also the reject rule was introduced37

in an ECOC system [46]. Other methods were proposed to introduce ternary38

codes [1, 14, 52], to embed optimal classifiers in the ECOC approach [11, 49]39

or to reduce the number of employed dichotomizers [6, 43]. In the decoding40

stage, the decision is typically based on the Hamming distance [35] between the41

codewords and the output word. Other decoding strategies [51] were however42

proposed including Euclidean distance [21], probabilistic rules [36], loss function43

[1], weighted loss-based distance [14] or reject rules [45].44

All the described approaches took inspiration from the seminal paper by45

Dietterich and Bakiri [10] which states that the learning task of a decomposi-46

tion scheme can be seen “as a kind of communications problem in which the47

identity of the correct output class for a new example is being transmitted over48

a channel”. However, all the strategies usually employed in the literature have49

drifted away from this statement and, generally speaking, do not exploit the50

capabilities provided by the robust theoretical foundations of Coding Theory.51

In such framework, Error Correcting Codes are usually employed to introduce52

redundancy, i.e., to increase the length of the codewords, with the purpose of53
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recovering the original information from the output of a channel through sets54

of suitably distinct codewords. In this paper, we exploit the features of Coding55

Theory to build a multiclass-to-binary learning system. Since we are interested56

in solving a classification problem, the criteria that guided the design of our57

coding and decoding system are the improvement of the classification perfor-58

mance and, at the same time, an affordable computational complexity. For this59

purpose, the coding matrix of the proposed decomposition scheme is designed60

by exploiting the algebraic properties of a well-known family of binary block61

codes, the Low-Density Parity-Check (LDPC) codes [19].62

A classification system employing LDPC codes for problem decomposition63

was firstly introduced in [49]. In that paper, the emphasis is placed on max-64

imizing the diversity among the used dichotomizers. To this end, a two-stage65

method is proposed to choose the best coding matrix from a large number (e.g.66

10000) of LDPC codes previously generated. The training is realized as in the67

traditional ECOC system, whereas an iterative rule based on the sum-product68

algorithm [27] is applied in the decoding procedure.69

In this paper, we propose a new classification system where the charac-70

teristics of the LDPC codes are fully exploited both in coding and decoding.71

Different from [49], the coding procedure of our method does not require any72

selection of the coding matrix. At the same time, we are able to limit the73

number of dichotomizers to be trained by assigning the same dichotomizer to74

those columns in the coding matrix facing the same binary problem. In the75

decoding stage, the sparsity of the parity-check matrix, that characterizes the76

LDPC codes, allows the use of very efficient algorithms, namely the bit-flipping77

and the recovery algorithm. We have already used such algorithms in [32, 33],78

where the aim was to embed LDPC codes in a traditional ECOC framework.79

Here we considerably extend the approach presented in our previous papers and80

introduce two improved variants of the decoding rules: the block bit-flipping and81

the block recovery algorithms. The first one exploits the redundancy of the code82

to algebraically recover the errors made by dichotomizers. The second decoding83

rule is able to manage rejects, i.e., events where the dichotomizer abstains from84

deciding when it is likely to be in error. To this end, a decomposition scheme85

is presented where all the dichotomizers are designed with a reject option that86

allows us to significantly increase the reliability of their outcomes. The proposed87

framework is particularly suitable to design a strategy that strongly relies on88

trustworthy dichotomizers and algebraically recover the outputs of erroneous or89

unreliable classifiers so improving the performance of the whole classification90

system.91

In this paper, we also present an extensive evaluation of the proposed de-92

composition scheme. Three experiments were performed on several benchmark93

datasets with different aims: (i) to study how the LDPC code parameters in-94

fluence the performance of the whole classification system; (ii) to analyze how95

the use of a reject rule on the two-class classifiers influences the behavior of the96

decoding procedure; (iii) to show that the proposed classification system pro-97

vides a statistically significant improvement in performance over state-of-the-art98

decomposition schemes with a feasible computational complexity.99
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The paper is organized as follows: Sect. 2 reports a brief survey of state-of-100

the-art methods. Sect. 3 gives an overview of Coding Theory concepts, and in101

Sect. 4 the LDPC codes are introduced. Sect. 5 presents the proposed LDPC-102

based classification system. The experimental results have been reported and103

discussed in Sect. 6. Finally, Sect. 7 concludes the paper.104

2. An overview of decomposition schemes105

Generally speaking, the decomposition of a classification problem with M106

classes generates L dichotomies (corresponding to L different two-class aggre-107

gations of the original classes) that can be faced through L dichotomizers.108

A coding matrix C = {cij}i=0,...,M−1;j=0,...,L−1 of dimensions M × L is usu-109

ally employed to represent the decomposition and to connect each class label110

ωi,∀i = 1, . . . ,M to a unique bit string of length L, named codeword. Each111

row of C defines a codeword, whereas each column represents the two-class112

problem on which a dichotomizer has to be trained. The relation between the113

classes and the dichotomizers can be binary if C ∈ {−1,+1}M×L or ternary114

if C ∈ {−1, 0,+1}M×L. The j-th classifier fj is trained according to the di-115

chotomy in the j-th column by building the two-class training set as follows:116

samples of the i-th class belong to the positive class if cij = +1, to the negative117

class if cij = −1, and do not participate in the training of fj if cij = 0.118

In the decision stage an unknown sample x is classified by the L trained di-119

chotomizers. The L outputs are collected in an output word o = (o0(x), . . . , oL−1(x))120

that is used to determine the class of the unlabeled pattern x. To this end, o121

is compared with the codewords of C using a proper measure of distance, and122

x is assigned to the class ω associated with the “closest” codeword:123

ω = arg min
0≤h≤M−1

Dist(ch,o). (1)

Different measures can be adopted [1, 14, 51], but the most common is the124

Hamming Distance.125

Definition 2.1 (Hamming Distance). The Hamming distance DH between126

two words is given by the number of positions where the bit patterns of the two127

words differ.128

Following this definition, the Hamming distance DH between the i-th code-129

word ci and the output word o is given by:130

DH(ci,o) = |{h : cih 6= oh}| , (2)

where the notation | · | denotes the cardinality of a set.131

To reduce multiclass to binary problems, the literature reports several ap-132

proaches that can be grouped in two great families: data-independent and data-133

dependent strategies. In the first case, the coding matrices are designed inde-134

pendently of the learning algorithm and the training data. In the second group135
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the characteristics of the data are considered in the design of the codewords and136

in the number of dichotomizers to be employed.137

2.1. Data-independent strategies138

The most popular approaches in this group of strategies are OVA [35] and139

OVO [21]. In OVA M two-class problems, one for each class, are defined to140

separate a class from the remaining ones, whereas OVO splits the M multiclass141

problem into a set of M(M−1)/2 two-class problems including all combinations142

of pairs of classes. Another common technique is to employ an ECOC to find143

suitable codewords to be assigned to different classes. In this framework, coding144

matrices are usually designed to increase the Hamming distance between both145

rows and columns, with the aim of reducing both the confusion among classes146

and the correlation among dichotomizers. To this end, in [10] exhaustive codes147

are used by considering 2M−1 − 1 possible dichotomies. When M increases,148

randomized hill climbing and Bose-Chaudhuri-Hocquenghem (BCH) codes are149

used to reduce the number of employed dichotomizers. Even two families of150

random codes have been proposed in [1]: dense random codes where the code-151

words are binary with d10 log2Me bits and sparse random codes consisting of152

ternary codewords with length d15 log2Me. Other methods employ genetic pro-153

gramming [6, 20] or diversity measures [28] to build data-independent coding154

matrices.155

2.2. Data-dependent strategies156

The first decomposition method focusing on a data-dependent coding matrix157

has been proposed in [2] where multi-layer perceptrons are used as dichotomiz-158

ers and the backpropagation algorithm is employed to find the codewords.159

Thereafter, a suboptimal decomposition scheme based on the Expectation-160

Maximization algorithm [50] has been proposed, whereas an approach to find op-161

timal codewords by designing continuous codes has been introduced in [8]. More162

recently, several relevant strategies have been designed. In particular, Data-163

Driven ECOC [54] explored data-per-class distributions to optimize the coding164

matrix and the number of base classifiers by measuring the confidence degree165

of each two-class subproblem. Pujol et al. [40] proposed Discriminant ECOC,166

a heuristic method for building ECOC matrices of M − 1 columns through a167

hierarchical partition of the class space. This method has also been extended in168

[11] where different trees are combined in a forest to ensure the required classi-169

fication performance. To improve the performance of an initial coding matrix,170

ECOC Optimizing Node Embedding [39] has been proposed, which iteratively171

adds dichotomizers by discriminating the most confusing subproblems. Even172

ternary codes have been studied: Escalera et al. [14] proposed an approach173

where the code dependence from subclass problems is analyzed by splitting the174

most confusing class to several subsets, whereas in [12] a new sparse random175

coding matrix with ternary distance maximization has been proposed.176
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3. Basics of Coding Theory177

To highlight some useful properties of linear codes, we first recall some basic178

concepts of Coding Theory [34, 41]. Let us consider a particular case of Galois179

fields, the binary field GF (2), defined on a set containing only two elements, that180

usually are {0, 1}1. To describe a linear block code, we have to refer to GFL(2),181

the vector space over the field GF (2), that contains 2L ordered sequences of L182

components belonging to GF (2). Over GFL(2) two operations are defined: the183

mod 2 addition between two vectors of GFL(2) and the mod 2 multiplication184

between an element of the field GF (2) and a vector of GFL(2).185

Definition 3.1 (Linear Block Code). A linear block code C(L,K) is a K-186

dimensional vector subspace of GFL(2): the vectors of the subspace are the187

codewords of C, the sum of any two codewords is a codeword and the product188

of a codeword with 0 or 1 is still a codeword.189

Let us denote with u = (u0, u1, ..., uK−1)) a K-bit source message and with190

c = (c0, c1, ..., cL−1) an L-bit codeword; to encode a source message means to191

take one of the 2K source vectors u and employ a bijective function to associate192

it to one of the 2L vectors of L bits.193

Definition 3.2 (Redundancy). The redundancy of the code C(L,K) is the194

difference L−K.195

Definition 3.3 (Code Rate). The code rate, i.e., the transmission rate of the196

code C(L,K), is the ratio RC = K/L of message symbols to coded symbols.197

Definition 3.4 (Minimum Hamming Distance). The minimum Hamming198

distance dmin of a code C(L,K) is the minimum Hamming distance between199

any pair of codewords in the code: dmin = mini,j DH(ci, cj)200

Since K < L, the selection of the 2K codewords among the 2L possible201

vectors has to be done using the lowest level of redundancy while maximizing202

the distance among the codewords. dmin is, therefore, a measure of the quality203

of the code since it is related to both the redundancy and the error correction204

capability of the code. Basically, it is possible to show that an upper bound205

between the redundancy and dmin is defined by dmin ≤ L −K + 1 and that a206

code can correct an erroneous word if there are no more than b(dmin − 1)/2c207

erroneous bits. Therefore, L and dmin are strictly related, and we can say208

that increasing the redundancy even the error correction capability of the code209

increases. Note that dmin is also related to the code rate: in particular, the210

smaller the code rate, the larger the minimum distance.211

Since C is a K-dimensional vector subspace of GFL(2), there will be K212

linearly independent vectors g0, . . . ,gK−1 that form a basis for GFL(2). The213

1Hereafter, without loss of generality and consistently with Coding Theory, we will consider
0 and 1 as bit values for the code and the coding matrix instead of −1 and +1 as usually
employed in the ECOC literature.
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codeword c corresponding to the source message u can be determined as the214

linear combination of the basis vectors:215

c = u0g0 + . . .+ uK−1gK−1. (3)

The linearly independent vectors gi can be arranged in a K × L matrix G =216 (
g0 . . . gK−1

)T
so that:217

c = uG (4)

Definition 3.5 (Generator Matrix). A K ×L matrix G whose rows form a218

basis for a linear block code C(L,K) is called a generator matrix of the code C.219

It is worth noting that this approach is different from the decomposition220

methods presented in the previous section where the set of codewords does221

not necessarily form a vector space and the correspondence between the source222

message (and thus the class label) and the associated codeword is not based on223

an algebraic relation.224

The structure provided by the linear block code C can be usefully exploited225

in the decoding procedure to take a decision on the output word of the system.226

For this purpose, let us consider the dual vector subspace C∗ associated with the227

same vector space GFL(2) and its basis h0, . . . ,hL−K−1. C∗ contains the set of228

vectors belonging to GFL(2) which are orthogonal to the codewords of C. Thus,229

collecting the vectors hi in an (L−K)×L matrix H =
(

h0 . . . hL−K−1
)T

,230

the following relation holds:231

HGT = 0. (5)

Definition 3.6 (Parity-Check Matrix). An (L−K)×L matrix H such that232

a codeword c ∈ C(L,K) if and only if HcT = 0 is termed parity-check matrix233

of the code C.234

Note that given a generator matrix G we can evaluate the associated parity-235

check matrix H, and, conversely, given a parity-check matrix H, we can evaluate236

the associated generator matrix G.237

The parity-check matrix can also be used to detect and correct errors. Ba-238

sically, in the decoding stage, when a word o is received, it can be seen as a239

codeword containing some possible errors, i.e., as the sum between a codeword240

c and an error pattern e: o = c + e. An error can be detected by studying the241

following condition:242

s = HoT = HcT + HeT = HeT 6= 0 (6)

where s is an L−K-vector called the syndrome of o. Eq. 6 represents a parity-243

check condition: if the error pattern is the all-zero vector, then the syndrome244

is also an all-zero vector, and thus o is assumed as a valid codeword. When245

s contains at least one non-zero component, one or more erroneous bits are246

present in o [34]. There is, however, the possibility that s is the all-zero vector247

also in presence of errors. This happens when the error pattern e is such that248
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the vector c + e corresponds to another codeword, different from the true one.249

We will refer to this situation as an undetectable error.250

4. Low-Density Parity-Check Codes251

Introduced by Gallager [19] in 1963, LDPC codes are linear block codes252

that in Coding Theory provide very high performance by strongly increasing253

the redundancy. The name “low-density parity-check” indicates that they are254

characterized by a sparse pseudo-random parity-check matrix H, containing255

relatively few ones in comparison to the number of zeros. In this way, each256

parity-check condition involves few bits of the output vector and each bit is257

contained in few parity-check equations.258

Definition 4.1 (LDPC Code). A binary LDPC code is a linear code C(L,K)259

whose (L−K)× L parity-check matrix H is sparse, i.e., the number of ones in260

H is much lower than L(L−K).261

Aside from the sparsity of the H matrix, there are two main differences262

between LDPC and classical block codes. First, LDPC codes are designed by263

constructing the parity-check matrix and then by evaluating the corresponding264

generator matrix through eq. 5. Second, classical codes are usually decoded265

through Maximum Likelihood-based algorithms, and thus they are short and266

algebraically designed to make this task less complex. LDPC codes, instead,267

are iteratively decoded taking advantage of the sparsity of H, and thus they are268

designed by making particular attention to the properties of the parity-check269

matrix.270

To describe an LDPC code two values can be defined: the weight per row271

wr and the weight per column wc, respectively given by the number of ones in272

each row and each column of H.273

Definition 4.2 (Regular and Irregular LDPC Code). An LDPC code is274

called regular if H contains exactly wc ones in each column and wr ones in each275

row. Otherwise, it is an irregular LDPC code.276

In the construction of the parity-check matrix of a (wc, wr)-regular LDPC277

code, the following properties have to be satisfied:278

1. wc > 2, it has been shown in [19] that this condition ensures a dmin279

linearly increasing with the code length;280

2. As the number of ones on the rows must equal the number of ones on281

the columns, the parameters L, wc and wr must satisfy the condition282

(L−K)wr = Lwc;283

3. Rows and columns should have at most one overlapping position with284

non-zero values. This is necessary to reduce the possible correlation be-285

tween different parity-check conditions that could affect the validity of the286

iterative decoding rules [19];287
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4. wc << L and wr << L, i.e., the parameters wc and wr should be small288

compared with the code length to respect the requirement of sparsity of289

the parity-check matrix.290

For an irregular code the weights per row and/or per column are not con-291

stant, and thus we can not refer directly to them. We can however consider the292

numbers ci and ri of, respectively, columns and rows with weights wci and wri .293

In this way, a similar condition to property 2 can be expressed as:294

(L−K)

L−K∑
i=0

wriri = L

L∑
i=0

wcici. (7)

This means that, even if the weights are not fixed, it is still possible to relate295

the average number of ones per row with those per column (often called degree296

distributions of the code).297

The original LDPC codes presented in [19] are regular and are constructed by298

randomly determining the positions of ones in H. Later, several algorithms have299

been proposed to construct suitable LDPC codes, both regular and irregular,300

using finite field geometries [3, 26, 47]. In this paper, however, we will refer to301

the pseudo-random approach proposed by MacKay and Neal in [31], where it is302

proved that randomly-built LDPC codes are very effective with high probability.303

A useful graphical translation of the parity-check matrix of an LDPC code is304

the Tanner graph [48], a bipartite graph commonly used to show the connections305

between the bits of the output word and the parity-check constraints. The graph306

is bipartite, i.e., it connects two types of nodes: variable nodes and check nodes.307

There are L variable nodes, each corresponding to a bit of the output word,308

and L−K check nodes for each of the parity-check constraints in H. An edge309

joins a variable node to a check node if that bit is included in the corresponding310

parity-check equation, i.e., a check node i is connected to a variable node j if311

and only if the entry (i, j) of H is equal to 1; the number of edges in the Tanner312

graph is equal to the number of ones in H.313

Definition 4.3 (Cycle). A cycle in a Tanner graph is a sequence of connected314

vertices which begins and ends at the same vertex in the graph without passing315

more than once on the same edge.316

Definition 4.4 (Length of a Cycle). The length of a cycle in a Tanner graph317

is the number of edges it contains.318

Definition 4.5 (Girth). The girth of a Tanner graph is the length of the319

smallest cycle in the graph.320

An example of a Tanner graph for a regular LDPC code and a cycle of length321

6 is shown in Fig. 1. The presence of a cycle in a bipartite graph of an LDPC322

code violates property 3 since the non-zero entries at overlapping positions in H323

will be more than one. Ideally, an efficient LDPC code should not contain any324

cycle in its bipartite graph. The presence of cycles of relatively short lengths is325

however unavoidable, even if it is often possible to remove the shortest ones (of326
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H =


0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0
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Figure 1: An example of parity-check matrix H and its corresponding Tanner graph for a
regular LDPC code with wc = 2, wr = 4 and L = 8. The connections in bold show a cycle of
length 6.

length 4 or 6) to ensure a large girth. Cycles, especially short cycles, influence327

the error correction capability of the LDPC codes and degrade the performance328

of the iterative decoding rules. This is essentially due to some inconsistencies329

that can appear during the information exchange between variable nodes and330

check nodes. For example, the presence of a 4-cycle is equivalent to having331

two variable nodes connected to the same two check nodes; in this case, in332

presence of errors, it can happen that the corresponding parity-check conditions333

are satisfied for different values of the same variable node. Nevertheless, it has334

been shown that the degrading effect of short cycles diminishes as the code335

length increases [34].336

5. LDPC-based classification system337

In this section we show how to build a classification system that takes advan-338

tage of the properties of LDPC codes. This goal is accomplished by integrating339

LDPC codes into a multiclass-to-binary decomposition scheme. To this end,340

first, we analyze how to find a suitable coding matrix, and second, we propose341

two decoding techniques that can suitably manage both errors and erasures in342

the output word.343

5.1. Coding344

To correctly exploit the properties of LDPC codes, the crucial point during345

the coding phase is the definition of the code parameters relative to the dimen-346
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sions (i.e., L and K) and the sparsity of the parity-check matrix (i.e., wc and347

wr).348

Ideally, we need to increase the redundancy, and thus the minimum Ham-349

ming distance between codewords. Therefore, L has to be the highest possible350

value, while K the lowest. L can be considered as a free parameter that can351

be empirically determined striking a balance between the redundancy and the352

complexity of the system. K is the length of source messages to be encoded,353

and, in our classification problem, it is lower bounded by the number of classes354

M : K ≥ dlog2Me. In Coding Theory, high values of K corresponds to high355

code rates, i.e., to a more efficient and quick transmission of the symbols, even356

though at the cost of a lower dmin and a lower error correction capability. In357

a classification system, where we are only interested in decreasing the errors, it358

is convenient, for a fixed L, to keep K as low as possible so as to decrease the359

code rate and consequently to increase the dmin among the codewords. For this360

reason, we use the lowest possible value for K, that is: K = dlog2Me.361

As for the sparsity of H, it can be managed with only one parameter: for362

regular codes wc (or equivalently wr) can be considered as a free parameter,363

whereas wr (wc) can be evaluated through property 2; for irregular codes, the364

weights per column wci (or equivalently the weights per row wri) can be fixed365

by keeping their average constant, and the weights per row wri (the weights per366

column wci) can be evaluated by respecting the constraint in eq. 7.367

Once the parameters have been fixed, it is possible to generate the matri-368

ces H and G as described in Sect. 3. Then, through eq. 4, the codewords369

ci,∀i = 0, . . . ,M − 1, can be determined and arranged in the coding matrix370

C = (c0 . . . cM−1)
T

. Each column of C defines a two-class subproblem on371

which a dichotomizer has to be trained. Note that a code C(L,K) converts 2K372

messages of K bits into 2K codewords of L bits. To build C, among the 2K373

possible codewords we choose the M that maximizes dmin.374

Another important remark is that, for an LDPC-based system, C can contain375

equal columns as well as all-zeros or all-ones columns, whereas this is avoided376

in a traditional decomposition scheme where the columns define distinct and377

feasible subproblems, for which distinct dichotomizers are built. Actually, the378

all-zeros/all-ones columns do not define a dichotomy, and thus they are neglected379

during the training phase. In the decoding stage, it is however necessary to con-380

sider these bits to ensure all the algebraic properties of the code. In particular,381

such bits must be considered when verifying the parity-check conditions, and382

therefore, they must be reinserted in the right position of the output vector383

before the decoding procedure begins. We name these bits as safe bits since384

their values are known a priori in the output word and are intrinsically correct.385

As for the equal columns, they are assigned the same dichotomizer that pro-386

vides a block of bits in the output word. However, such correlated bits are likely387

to be forwarded to different parity-check conditions because of the sparsity of388

the parity-check matrix. In this way, the following decoding procedures are389

not affected by the correlation among the bits of the same block, and we can390

both consider high values for L and maintain reasonably low the number D of391

dichotomizers.392
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D is equal to the number of different columns in C that can be evaluated393

with eq. 4. In particular, by arranging all the source messages in an M × K394

matrix U = (u0 . . .uM−1)
T

, we have C = UG. The columns of C can be395

seen as the linear combination of the K M -dimensional columns of U through396

every column of G; therefore, the number of M -dimensional different columns397

in C is not 2M , but it is at most equal to 2K . Excluding the all-zeros column398

that is always present in C for the sparsity of H, the number of dichotomizers399

employed in the proposed approach is at most equal to 2K−1, i.e., D ≤ 2K−1 =400

2dlog2 Me − 1 << L.401

As an example, let us consider a multiclass problem with 6 classes. In this402

case we have K = dlog2 6e = 3, and thus we can represent our 6 classes with 6403

messages of 3 bits (001, 010, 011, 100, 101, 110). If we consider a code C(100, 3),404

i.e., L = 100, with a redundancy of 97 bits and a code rate equal to 0.03,405

the matrices G and H will have dimensions respectively equal to 3 × 100 and406

97 × 100. Each codeword will thus be made of 100 bits, C will be a 6 × 100407

matrix and the number of dichotomizers to be trained will be D = 23 − 1 = 7.408

5.2. Decoding409

In a decomposition scheme the decoding algorithm is run on an output word410

o = (o0, . . . , oL−1) formed by the set of the L predictions of the dichotomizers411

on an unknown sample x. To this end, we can employ two models of classifiers:412

hard classifiers where the output is a binary-valued prediction (that can be413

correct or wrong), and abstaining classifiers where a decision can be rejected if414

its reliability is not sufficient.415

This is very similar to what happens in a communication system, where416

an output word is the result of the transmission of unknown codewords over417

a channel. The transmitted bits can be contaminated so that the received418

message can contain errors or erasures; in the first case, the received bit is419

wrong, whereas, in the second case, the transmitted bit gets scrambled so that420

the receiver has no idea what it was. In the same way, we can have errors or421

rejects depending on the classifier model, hard or abstaining, we are dealing422

with.423

Our objective here is to deal with these situations through two decoding424

procedures of Coding Theory specifically defined to exploit the features of the425

LDPC codes described in Sect. 4. These decoding rules are termed message-426

passing algorithms because they are based on iterative procedures where the bits427

pass forward and backward between the nodes of a Tanner graph, iteratively428

until a result is achieved. It has been shown that these algorithms guarantee429

good performance when employed with codes of length less than 104 [38].430

5.2.1. Decoding algorithm with hard dichotomizers431

Let us assume that each dichotomizer dj ,∀j = 1, . . . , D outputs a real value.432

In a hard-decision decoding rule the output word o is composed by L binary433

values, i.e., 0 and 1, coming from the dichotomizers. For this purpose, we434

12

https://doi.org/10.1016/j.ins.2016.02.039



consider that a hard decision on an unknown sample x is taken by comparing435

the value dj(x) with a threshold τj , i.e.:436

oj (x) =

{
1 if dj(x) ≥ τj
0 if dj(x) < τj

. (8)

In a decomposition scheme, we can usually take a decision for x by choos-437

ing for the class corresponding to the minimum Hamming distance between438

o and the codewords of C. In our framework, we can apply a more refined439

and beneficial approach: the bit-flipping algorithm [19]. This is an iterative440

message-passing algorithm based on the assumption that a bit of an output441

word involved in many incorrect parity-check equations is likely to be incorrect442

itself. To find the erroneous bits let us focus on the Tanner graph representation.443

The bit-flipping decoding works by passing bit values between the nodes of the444

Tanner graph: a variable node sends its bit value to each of the connected check445

nodes, and each check node replies by determining if its parity-check equation446

is satisfied or not. As shown in Eq. 6, when the syndrome is the all-zero vector,447

a valid codeword has been found, and thus the decoding procedure can termi-448

nate. When some conditions are not satisfied, we are sure that some errors449

are present in o, and thus that some dichotomizers took a wrong decision. To450

correct such errors, for each variable node, we can evaluate the number εi as451

the erroneous checks received in the i-th variable node and flip the bit value of452

the node involved in the maximum number of erroneous checks, i.e., flip those453

bits belonging to the set {oi|εi = max (ε0, . . . , εL−1)}.454

In our classification system, the codeword is composed of L bits, but only455

D << L dichotomizers are used. This means that different variable nodes can456

contain a bit value coming from the same dichotomizer. For this reason, we457

heuristically modified the bit-flipping rule, to propose the block bit-flipping. In458

this algorithm, we do not flip only one bit per time, but we flip the value of all the459

variable nodes hosting the same dichotomizer output. It is worth remembering460

that the variable nodes contain not only bits coming from dichotomizers but also461

safe bits (see Sect. 5.1) that are intrinsically correct. Also these bits contribute to462

the parity-check conditions, but obviously they are not involved in the flipping.463

To identify which dichotomizer should be flipped, we do not refer to each464

variable node independently, but we evaluate the average number of erroneous465

checks per dichotomizer:466

Ej =

∑|Vj |
i=1 εvi
|Vj |

∀j = 1, . . . , D (9)

where Vj is the set of the variable nodes fed by the j-th dichotomizer, vi ∈ Vj467

is the i-th element of Vj and the notation |·| indicates the cardinality of a set.468

The output of the dichotomizer dj for which Ej is maximum is chosen, and469

thus all the bits of the corresponding block are flipped. One could argue that470

the correlation among bits of the same block can affect the capability of the471

code of detecting and correcting the errors. Actually, this does not threaten472
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the effectiveness of the proposed decoding rule in recovering the erroneous bits.473

We have to consider, indeed, that the dichotomizer, whose output has to be474

flipped, is identified by examining all the check nodes in which the dichotomizer475

is involved. As a consequence, the bit flipping is made on all the bits coming476

from the same dichotomizer, but the dichotomizer is chosen on the basis of an477

accumulation of evidence coming from several check nodes, each individually478

reporting an error. In other words, the dichotomizer to be flipped is the one479

with highest evidence to be in error, and this choice makes the decoding rule480

considerably effective.481

A simple step-by-step example of the block bit-flipping algorithm that ter-482

minates in just one round is shown in Fig. 2, where three dichotomizers are used483

to hand out their outputs to the variable nodes of the Tanner graph of Fig. 1.484

The algorithm has two stopping conditions: a maximum number of iterations485

is reached or all the parity-check equations (and thus the syndrome) are equal to486

zero. The first condition is needed to avoid additional iterations when a solution487

can not be reached and, moreover, allows us to detect when the algorithm fails488

to converge to a codeword. In the second case, the algorithm terminates with489

a solution, but this does not ensure that the output word is a codeword of C.490

This can happen since we only consider M codewords among all the possible 2K ,491

and thus the algorithm can fall into an undetectable error (see Sect. 3). In both492

cases, to find a suitable solution, we can refer to the distance rule (see Sect. 2),493

and we choose for the codeword that has the minimum Hamming distance to494

the output word2.495

In Algorithm 1, we describe the block bit-flipping decoding algorithm. The496

complexity of the decoding procedure for LDPC codes has been deeply ana-497

lyzed in the literature [56, 48, 7], where it has been shown that the bit-flipping498

algorithm has a complexity of O(L logL).499

5.2.2. Decoding algorithm with abstaining dichotomizers500

Let us now consider dichotomizers that abstain from deciding, i.e., dichotomiz-501

ers that reject a sample instead of risking a wrong decision. When using such502

classifiers in our decomposition scheme, it is possible to keep out of the output503

word the unreliable bits (as if they are “erased”) and apply an appropriate iter-504

ative decoding rule that recovers the rejected bits using the information carried505

by the reliable dichotomizers.506

To this end, let us introduce a reject option for the dichotomizer dj described507

by eq. 8. According to such rule, dj outputs a real value that is compared with a508

threshold τj to assign an unknown sample to one of the two classes. The choice509

of τj is quite critical since, ideally, it has to completely separate the distributions510

of the dichotomizers scores for the two classes. However, such distributions are511

usually overlapping, and values close to the threshold are difficult to assign a512

class, so generating unreliable decisions. In this context, for each dichotomizer,513

2It is worth noting that the minimum Hamming distance is zero in case the bit-flipping
algorithm converges to a codeword belonging to the coding matrix.
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Figure 2: A step-by-step example of the block bit-flipping algorithm: (a) Three dichotomizers
d1, d2 and d3 output respectively the bits 1, 1 and 0, and, as V1 = {0, 3, 5, 7} ,V2 = {1} ,V3 =
{2, 4, 6}, we obtain the word o = (11010101). (b) The values received by the variable nodes
are transmitted to the check nodes where the parity-check constraints are verified. (c) The
check nodes pass its values back to the variable nodes. (d) The quantities Ej are evaluated
according to eq. 9. (e) The dichotomizer d2 with the maximum Ej flips its decision. (f) The
parity-check equations are now verified.
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Algorithm 1 Block Bit-Flipping Decoding

Require: The coding matrix C = {ch}; the parity-check matrix H; the di-
chotomizers outputs d1, . . . , dD with di ∈ {0, 1}; a maximum number of itera-
tions Nmax

1: for j = 1, . . . , D do
2: Evaluate the set Vj of the variable nodes fed by the j-th dichotomizer
3: for each variable node vi ∈ Vj do
4: Initialize the output word o with blocks of bits: ovi ← dj
5: end for
6: end for
7: Stop← false . Initialize a boolean variable
8: Nit ← 0 . Initialize the number of iterations
9: do

10: Evaluate the syndrome vector: s← HoT

11: if s == 0 then
12: Stop← true
13: else
14: Nit ← Nit + 1
15: for j = 1, . . . , D do
16: for each variable node vi ∈ Vj do
17: Evaluate the erroneous checks εvi

18: end for
19: Evaluate Ej according to Eq. 9
20: end for
21: Flip the dichotomizer output corresponding to the maximum Ej

22: Update the output word o
23: end if
24: while not Stop and Nit < Nmax

25: Choose for the class ω = arg min
0≤h≤M−1

DH(ch,o)

it is reasonable to introduce a safety interval around τj . All the samples corre-514

sponding to outcomes falling in this region are rejected. A simple way to find515

this interval is to employ a decision rule with two thresholds, τ1,j and τ2,j with516

τ1,j ≤ τ2,j , such that the j-th bit in the output vector is:517

oj (x) =


1 if dj(x) > τ2,j

0 if dj(x) < τ1,j

reject if τ1,j ≤ dj(x) ≤ τ2,j
. (10)

The safety interval [τ1,j , τ2,j ] aims at reducing the number of errors due to518

the class overlap by turning them into rejects, and its size has to be accurately519

chosen to meet two contrasting requirements: to be wide enough to eliminate520

as many errors as possible and to be narrow enough to preserve as many correct521
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classifications as possible. In our framework, however, we deal with several522

dichotomizers that usually generate different score distributions, and thus the523

values of the pair of thresholds can not be equal for all the classifiers. Instead524

of using equal thresholds, we decided to make all the dichotomizers work at525

the same level of reliability by imposing a fixed rejection rate ρ to all of them526

through the method presented in [37]. In such approach, the Receiver Operating527

Characteristics (ROC) curve of each dichotomizer is used to evaluate the pair528

of thresholds (τ1,j , τ2,j), so that dj abstains for no more than ρ samples at the529

lowest possible error rate.530

When the reject rule is turned on, the output word can contain rejected bits,531

and the decoding procedure presented in the previous section is not directly532

applicable as the parity-check equations are not completely defined. To solve533

this problem, supposing that no errors are present among the non-rejected bits,534

the parity-check condition HoT = 0 is a linear system where the rejected bits535

are the unknown variables. Assuming R as the index set of the rejected bits and536

R∗ as its dual set (i.e., the index set of non-rejected bits) with |R ∪R∗| = L,537

we have:538

HoT = HRoT
R + HR∗oT

R∗ = 0 ⇒ HRoT
R = HR∗oT

R∗ . (11)

The quantity HR∗oT
R∗ is a known term, and, when H has a subset of |R| inde-539

pendent rows (i.e., rank(HR) = |R|), the system has a unique solution that can540

be evaluated through Gaussian elimination and back substitution. It is therefore541

possible to determine the correct values of the unknowns assuming that the re-542

ceived bits are always correct. However, the dichotomizers can introduce errors543

even when the reject rule is applied. In such a case, to solve Eq. 11 means to544

individuate the best “possible values” for the rejected bits based on the current545

information available.546

To improve the performance of the decoding system, we should guarantee547

the correctness of the non-rejected bits. This is ensured when the parity-check548

conditions, that do not involve any abstaining dichotomizer, are satisfied. Since549

we know the positions of the rejected bits in the output word, we can easily550

individuate such equations. Thus, to make our system more robust, when some551

parity-check conditions are violated, we apply the block bit-flipping algorithm552

to possibly correct the errors on the non-rejected bits. The block bit-flipping553

proceeds as described in the previous section, but in Eq. 9 the number of involved554

dichotomizers is given by the non-abstaining classifiers. Such a number is not a555

fixed quantity but varies according to the output obtained by each dichotomizer556

on the sample to be decoded.557

When the bit-flipping algorithm has been applied, we can presume that558

all the non-rejected bits are correct, and the goal of the decoding procedure559

becomes to determine the value of the unknown bits. To this end, Eq. 11 can be560

solved by means of an iterative message-passing procedure (referred to as direct561

recovery algorithm [44]) borrowed again from Coding Theory, where it is usually562

applied when some erasures are present in the output word. This approach is563

based on the concept that the correct value for a rejected bit can be found by564
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satisfying the even parity constraint in a parity-check equation that includes all565

but one known bits. Focusing on the Tanner graph, we can easily analyze how566

this message-passing algorithm works. A variable node sends its value, i.e., (0, 1567

or reject), to each of its connected check nodes. If there is only one rejected568

bit received by a check node, we can evaluate the missing bit by choosing the569

value that satisfies the parity, i.e., by setting the unknown variable node to the570

mod 2 sum of the other variable nodes connected to the same check node. The571

procedure proceeds iteratively until there are no more check nodes connected to572

only one rejected bit. This means that either all the rejects have been recovered573

or there are check nodes connected with two or more variable nodes with rejects574

which cannot be recovered. The second situation occurs when rank(HR) < |R|,575

and thus, the sparser the parity-check matrix (as in LDPC codes), the higher576

the probability of recovering the rejected bits [41].577

When dealing with blocks of bits per dichotomizer we do not recover only578

one bit per time, but in a single iteration we recover the values of all the variable579

nodes hosting the same classifier output. In this case, different bits coming from580

the same dichotomizer can be involved in different parity-check equations with581

all but one known variables. If there are some errors in the non-rejected bits,582

the values satisfying the parity constraints can be different, and thus we can583

have no information about the right value to be back substituted in the variable584

nodes. To this end, we can evaluate the bit value qh that should be used to585

verify the parity-check condition in the h-th check node, and we introduce the586

quantity Qj that measures how many zeros and ones are needed in the variable587

nodes connected to the j-th dichotomizer to verify the parity-check conditions.588

Assuming N r
j as the set of the check nodes involved in parity-check equations589

with r rejected bits for the j-th dichotomizer and cni ∈ N r
j as the i-th element590

of N r
j , we have:591

Qj =

∑|N 1
j |

i=1 [qcni
= 1]−

∑|N 1
j |

i=1 [qcni
= 0]∣∣N 1

j

∣∣ ∀j = 1, . . . , DAbst (12)

where DAbst is the number of abstaining dichotomizers and the notation [P] is592

the Iverson bracket defined by [P] = 1 if the proposition P is true, and [P] = 0593

if P is false. The dichotomizer for which the absolute value |Qj | is maximum is594

assigned the value 1 if Qj > 0 or the value 0 if Qj < 0. We will refer to this595

heuristic approach as block recovery algorithm. An example of how this method596

works is shown in Fig. 3 where three dichotomizers (one of which abstains from597

deciding) are used to hand out their outputs to the variable nodes of the Tanner598

graph of Fig. 1.599

The block recovery algorithm has two stopping conditions:600

1. no more rejects are present in the variable nodes, and thus we have recov-601

ered the outputs of all the abstaining dichotomizers;602

2. N 1 = ∅ for all the dichotomizers but N r 6= ∅ (with r > 1) for at least one603

dichotomizer, and thus there are some outputs that can not be recovered604

(see Fig. 4). Note that, using blocks of bits, this occurs when rank(HR) <605
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Figure 3: A step-by-step example of the block recovery algorithm: (a) Two dichotomizers d1
and d2 output respectively the bits 1 and 0, whereas the dichotomizer d3 rejects the sample
(the reject is here denoted with the symbol X). As V1 = {0, 3, 5, 7} ,V2 = {1} ,V3 = {2, 4, 6},
we obtain the word o = (10X1X1X1). (b) The values received by the variable nodes are
transmitted to the check nodes. (c) Being N 1

3 = {0, 1} and N 2
3 = {2, 3}, the quantities qcni

are evaluated for the check nodes cni ∈ N 1
3 . (d) The quantities Qj are evaluated according to

eq. 12. (e) The dichotomizer d3 with the maximum |Qj | is assigned the value 0 since Q3 < 0.
(f) The parity-check equations are verified.
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Figure 4: A stopping condition for the block recovery algorithm: (a) The dichotomizer
d1 outputs the bit 1, whereas the dichotomizers d2 and d3 reject the sample. As V1 =
{0, 3, 5, 7} ,V2 = {1} ,V3 = {2, 4, 6}, we obtain the word o = (1XX1X1X1). (b) The values
received by the variable nodes are transmitted to the check nodes, but the rejects can not
be solved through the block recovery algorithm since N 1

2 = N 1
3 = ∅ but N 2

2 = {0, 1} and
N 2

3 = {0, 1, 2, 3}.

DAbst. Since DAbst ≤ |R|, the block recovery algorithm can solve the606

rejects more probably than the direct recovery algorithm.607

When the second condition is met, we can extend the previous approach with608

the guess algorithm [38] that breaks the stopping condition through several609

“guesses” of the unsolved rejected bits. In particular, when a dichotomizer610

feeds several variable nodes, “to guess a bit” means to guess the output of a611

single classifier. The algorithm is more efficient when the dichotomizer to be612

guessed is carefully chosen. Basically, our goal is to break the majority of the613

stopping conditions through a single guess. To this end, we can consider the614

“crucial” parity-check conditions defined as those equations including only two615

unknown bits (i.e., those check nodes belonging to N 2). Therefore, if we choose616

the dichotomizer dj with j = arg max
i=1,...,DAbst

∣∣N 2
i

∣∣ we are solving the highest617

number of crucial equations, so increasing the probability of recovering all the618

rejects. When a dichotomizer output is guessed, the block recovery algorithm619

can be applied again to find the output word. If a new stopping condition is620

met a second guess is made and so on until all the bits are recovered.621

To guess an output means that both values (0 and 1) are considered in622

two separated decoding processes. Therefore, after g guesses we have a list of 2g623

solutions from which we pick up the output word as the ok with k ∈ {1, 2, ..., 2g}624

satisfying all the parity-check conditions HoT
k = 0. The complexity of the guess625

algorithm increases with the number of guesses g that is at most equal to (but626

usually lower than)DAbst. When using LDPC codes, the complexity is mitigated627

by the sparsity of H, and, moreover, in [38] it has been demonstrated that the628

guess algorithm can improve the performance of the decoder when g ≤ 3, a629

condition usually respected in our approach.630

The algorithm terminates when all the rejects have been recovered. In such631

a case, however, it is not sure that the decoding algorithm outputs a word632
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belonging to the coding matrix C. Nevertheless, if some erroneous bits are633

present, it can happen either that the decoding algorithm does not output a634

real codeword or that we are in the case of an undetectable error. In both635

cases, an effective rule is to decide for the codeword of C that has the minimum636

Hamming distance from the output word.637

A pseudo-code describing the whole decoding procedure (block recovery and638

guess algorithms) is reported in Algorithm 2. To evaluate the computational639

complexity of this decoding procedure, we can refer to the analysis made in640

[55, 30] that estimates in O(L logL) the complexity of the recovery algorithm.641

Since we have to consider the extension with the guess algorithm, we obtain a642

total complexity of O(2gL logL).643

6. Experiments644

To evaluate the performance of the proposed LDPC-based classification sys-645

tem, three different experiments were performed on several datasets publicly646

available at the UCI Machine Learning Repository [29]. All the employed647

datasets have numerical input features and a variable number of classes (for648

more details see Table 1). For each data set, 10 runs of a multiple hold-out649

procedure were performed to avoid any bias in the comparison. In each run, the650

data set was split in three subsets: a training, a tuning and a test set containing651

respectively the 50%, the 30% and the 20% of the samples of each class. The652

training set was used to train the base classifiers, the tuning set to optimize653

the dichotomizer parameters and the test set to evaluate the performance of the654

multiclass classification system.655

As base dichotomizer we employed SVM with RBF kernel [24]. The training656

of SVM-RBF required the tuning of the kernel parameter γ and the regulariza-657

tion parameter C. Such parameters were carefully tuned through an exhaustive658

grid search in order to find the best pair (γ,C) over a discretization of the659

parameter space.660

6.1. Analyzing the parity-check matrix structure661

The goal of the first experiment was to verify how the structure of the662

parity-check matrix affected the performance of the proposed approach. For this663

purpose, the characteristics of the H matrix of an LDPC coding architecture664

were analyzed. For each dataset, 50 different H matrices were defined and665

employed in the decoding rule with hard dichotomizers considering both regular666

and irregular codes and varying the parameters wc, wr and L. It is worth noting667

that the value of K depends only on the number of classes (see Sect. 5.1); its668

value for each dataset is reported in Table 1. Five values for L were chosen669

in the range [50, 250] to have a good compromise between the computational670

complexity of the decoding rule and the redundancy of the code. Five pairs of671

values were considered for the parameters wc and wr to ensure a good sparsity672

of the parity-check matrix. We varied wc and wr in percentage of the length673

of the code L. For regular codes we considered wc between the 10% and the674
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Algorithm 2 Block Recovery and Guess Decoding

Require: The coding matrix C = {ch}; the parity-check matrix H; the di-
chotomizers outputs d1, . . . , dD with di ∈ {0, 1, reject}.

1: for j = 1, . . . , D do
2: Evaluate the set Vj of the variable nodes fed by the j-th dichotomizer
3: for each variable node vi ∈ Vj do
4: Initialize the output word o with blocks of bits: ovi ← dj
5: end for
6: end for
7: Apply the Bit-Flipping algorithm to the non-rejected bits
8: Stop← false . Initialize a boolean variable
9: g ← 0 . Initialize the number of guesses

10: do
11: for each check node cni do . Evaluate the syndrome vector s
12: if all the variable nodes connected to cni are known then
13: si ← Hio

T

14: else
15: si ← reject
16: end if
17: end for
18: if no rejects are present in the syndrome vector s then
19: Stop← true
20: else
21: for each abstaining dichotomizer dAbst

j , j = 1, . . . , DAbst do
22: Evaluate the sets N r

j of check nodes involved with r rejected bits
23: end for
24: if N 1

j 6= ∅ for at least one dAbst
j then

25: for j = 1, . . . , DAbst do
26: for each cni ∈ N 1

j do
27: Evaluate the bit values qcni

28: end for
29: Evaluate Qj according to Eq. 12
30: end for
31: j∗ ← arg max

1≤h≤DAbst

|Qh|
32: if Qj∗ < 0 then dj∗ ← 0 else dj∗ ← 1 end if
33: Update the output word o with the new output of dj∗

34: else . Guess Algorithm
35: g ← g + 1
36: j∗ ← arg max

1≤h≤DAbst

|N r
h | for the minimum r > 1

37: Generate two words by updating o with dj∗ ← 0 and dj∗ ← 1
38: for each output word ok, k = 1, . . . , 2g do
39: Repeat recursively lines 9− 42
40: end for
41: end if
42: end if
43: while not Stop
44: Choose for the class ω = arg min

0≤h≤M−1
DH(ch,ok) with k = 1, . . . , 2g22
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Table 1: Datasets and code parameters used in the experiments.

Datasets Classes Features Samples K
Iris 3 4 150 2
Thyroid 3 5 215 2
Wine 3 13 178 2
Vehicle 4 18 846 2
Dermatology 6 33 366 3
Satimage 6 36 6435 3
Glass 7 9 214 3
Segmentation 7 18 2310 3
Ecoli 8 7 341 3
Optdigits 10 62 5620 4
Pendigits 10 16 10992 4
Yeast 10 8 1484 4
Vowel 11 10 990 4
Letter 26 16 20000 5
Abalone 29 8 4177 5

50% of L whereas wr was evaluated through the property 2 reported in Sect. 4.675

For irregular codes, where the weights wc and wr are not constant, we used a676

random number of ones on each column (see Sect. 4), always ensuring that the677

average
∑L

i=0 wcici was between the 10% and the 50% of L. Even the values of678

wri were randomly chosen but always respecting eq. 7.679

In each experiment (i.e., for each coding matrix and for each dataset), we680

evaluated the mean classification error by averaging the error rates obtained681

on the test set in the 10 runs of the multiple hold-out procedure, for a total682

of 50 mean error rates for each dataset. Since such results were obtained on683

different datasets, they were not commensurable, and thus we used a rank-based684

comparison. Separately for each dataset, we evaluated the rank of each coding685

matrix: the best performing matrix got rank 1 while the worst got the maximum686

rank (i.e., 50, since we considered 50 different LDPC coding matrices). In case687

of ties, average ranks were assigned. In this way, if rhk was the rank obtained by688

the h-th coding matrix on the k-th dataset, the average performance of the h-th689

coding matrix on all the datasets was Rh = 1
T

T∑
k=1

rhk , where T is the number of690

datasets considered.691

Table 2 reports the results obtained on all the datasets. Generally speaking,692

we can observe that the best results were attained for relatively high sparsity693

of the parity-check matrix, i.e., low number of ones per row and column. We694

can also note that the performance dropped for high values of L. In this case,695

the bit-flipping procedure did not converge to the right codeword since it had696

to deal with too many erroneous bits.697
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Table 2: Results in terms of mean ranks among the various datasets. The lower the value,
the better performs the corresponding coding matrix.

LDPC type L
% wc/L

10 20 30 40 50
50 15.47 14.67 11.93 22.07 23.60
75 12.33 8.53 10.33 19.47 20.93

Regular 100 9.13 5.67 9.20 13.47 16.33
150 32.53 30.60 30.47 35.47 38.33
250 40.53 39.33 38.07 41.07 45.67

%
∑L

i=0 wci
ci/L

10 20 30 40 50
50 12.00 10.07 17.93 16.40 20.27
75 9.53 12.73 13.27 19.33 19.53

Irregular 100 7.93 15.20 12.73 20.60 14.80
150 29.33 29.20 33.47 35.00 34.00
250 37.33 36.87 40.53 42.27 40.87

6.2. Evaluating the decoding rules698

The second experiment was intended to evaluate how the performance of the699

LDPC-based decoding rules varies when the dichotomizers are provided with a700

reject option. For this purpose, the performance obtained with our approach701

was evaluated in terms of curves reporting the error rate when varying the702

parameter ρ of the reject rate for the two-class classifiers. It is worth noting703

that, unlike the well-known error-reject curve, this curve shows the error rate704

of the whole system with respect to an “internal” reject rate applied on each705

dichotomizer. As explained in Sect. 5.2, our approach recovers all the outputs706

coming from dichotomizers that rejected the sample. In this way, the output707

word is always assigned to a class.708

Fig. 5 shows the results of our experiments for the employed datasets. Each709

plot represents the trend of the test error rate when fixing the percentage ρ of710

internally rejected samples. We show the error rate averaged on the 10 runs711

of the multiple hold-out procedure together with symmetric error bars of two712

standard deviation units in length. The value of ρ was varied in the interval713

[0.00, 0.30] with a step of 0.025. To have a fair comparison, the parity-check714

matrix was selected through a leave-one-dataset-out approach. As in the previ-715

ous section, we considered 50 different parity-check matrices, but we evaluated716

the average ranks on T − 1 = 14 datasets. The parameters corresponding to717

the best performance were then chosen for the experiments on the remaining718

dataset. From the obtained results (available as supplementary material), we719

can see that a regular LDPC code with L = 100, wc = 0.2L and wr = 0.2 L2

L−K720

was the best choice for all the datasets.721

It is worth noting that the curves in Fig. 5 also show the performance ob-722

tained with hard dichotomizers, that are represented by the values for ρ = 0.723

We can note that, when ρ grew and the reject option for the dichotomizers was724
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acting, the performance generally improved. In particular, this happened for 11725

datasets. For 3 datasets (i.e., Iris, Thyroid, PenDigits) we obtained at least one726

point of the curve with the same error rate than the value for ρ = 0, and only727

in one case, i.e., OptDigits, the reject option did not improve the performance728

of hard dichotomizers. This means that the decoding rules were generally able729

to turn in correct classifications a significant number of errors previously made730

by the dichotomizers, and this is even more noticeable when using the reject731

option.732

Looking at the trends of the curves in Fig. 5, we can observe that, in the733

majority of cases, the lowest error rate corresponds to low values of ρ (around734

0.025, 0.05), whereas the error rate is slightly higher (around 0.15) for higher735

number of classes, e.g., for Letter and Abalone datasets. For these datasets,736

the score distributions of the dichotomizers were such that we had to enlarge737

the safety interval in order to include more errors to be possibly corrected by738

the decoding procedure. After the minimum is reached, the error rate increases739

with ρ. This behavior can be easily explained: when ρ (and thus the rejects)740

increases, the bit-flipping applied only to the non-rejected bits (see Sect. 5.2) is741

less meaningful because it works on fewer parity-check equations; moreover, the742

number of guesses may also increase and become greater than 3 (see Sect. 5.2),743

so producing a similar-to-random decision on the rejected bits.744

6.3. Comparisons with other decomposition schemes745

The last experiment was addressed to a comparison of our method with746

several approaches in the literature of multiclass-to-binary decomposition.747

Nine state-of-the-art approaches were considered:748

• One-vs-All (OVA) that discriminates one class against the others.749

• One-vs-One (OVO) that defines as many binary problems as the possible750

pairs of different classes.751

• Standard ECOC codes as reported in the seminal paper of Dietterich and752

Bakiri [10].753

• Dense Random codes and Sparse Random codes, respectively binary and754

ternary random codes, as presented in [1]. In both cases, we generated755

5, 000 different coding matrices, and, through an exhaustive search, we756

chose the coding matrix that maximized the minimum Hamming distance757

between both rows and columns.758

• Discriminant ECOC (DECOC) [40] that constructs the coding matrix759

through a hierarchical partition of the class space performed with a binary760

tree.761

• Forest ECOC [11] where a forest of decision trees is embedded in the762

ECOC framework. As suggested in [11], a set of 3 trees was considered in763

these experiments.764
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Figure 5: The curves plotting the mean error rate (and the symmetric error bars of two
standard deviation units in length) at the output stage towards the rate of rejects in the base
classifiers.
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• ECOC Optimizing Node Embedding (ECOC-ONE) [39], a ternary code765

where a base coding matrix is built and then incremented by adding di-766

chotomies corresponding to different spatial partitions of classes subsets.767

To reduce the number of employed dichotomizers, in our experiments we768

used OVA as base coding matrix.769

• Recursive ECOC (RECOC) [49], this approach is based on the selection770

of a “potential good” LDPC code among 10, 000 LDPC codes to be used771

with an iterative decoding based on the sum-product algorithm [27]. In772

our experiments, we optimized the number of dichotomizers in the interval773

[1, d3 · log2Me], and we used 150 iterations in the decoding procedure as774

suggested in [49].775

All the compared approaches were implemented through the ECOCs Library776

presented in [13] except for RECOC that was re-implemented following [49]. To777

have a fair comparison, for each decomposition scheme, we employed SVM-778

RBF as base classifiers with parameters optimized on the tuning set with the779

previously described technique.780

The evaluation of the error rate for the decoding rule with abstaining di-781

chotomizers (hereafter referred to as LDPC-AD) required the estimation of the782

reject parameter ρ. In these experiments, the value of ρ was chosen for each run783

of the hold-out procedure as the one minimizing the error rate of the correspond-784

ing run on the tuning set. As a consequence, the average values of the error785

rate obtained in these experiments were lower than those shown in Fig. 5. As786

for the parity-check matrix, we referred to the leave-one-dataset-out technique787

performed in the previous section.788

The performance of the ten considered systems are reported in Table 3. In789

such table, we also show the performance obtained by the LDPC-based approach790

when the reject rule is not applied (referred to as LDPC-HD). Each cell of the791

table contains a value relative to the performance of each method on each dataset792

and corresponding to the error rate averaged on the 10 runs of the multiple hold-793

out procedure. In the last row of the table, we also report the mean rank of each794

method averaged on the 15 datasets. The rankings rjk for the j-th method were795

obtained for the k-th dataset by assigning 1 to the best approach and 11 to the796

worst one. In case of ties, average ranks were assigned. The mean ranking R797

was computed as R = 1
T

T∑
k=1

rk, where T was the number of considered datasets.798

To have a statistical validation of the obtained results, we employed the799

Friedman test and the Holm step-down test [9]. The Friedman statistic [16] is800

used as a general test to check if all the compared approaches are equivalent or801

not. In our case, the null hypothesis referred to a not statistically significant802

difference among the error rates of the employed methods. When the null hy-803

pothesis was rejected, we applied the Holm step-down procedure [23], a post-hoc804

test that was executed to find out which methods had statistically significant805

better performance [9]. Both the statistical tests (Friedman and Holm) were806

performed with a significance level equal to 0.05.807
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Table 3: Mean error rates per coding design. Statistically significant performance are marked
in bold.

Datasets LDPC-AD LDPC-HD OVA OVO
Standard Dense Sparse

DECOC
Forest ECOC

RECOC
ECOC Random Random ECOC ONE

Iris 0.0194 0.0323 0.0323 0.0323 0.0487 0.0451 0.0451 0.0258 0.0310 0.0310 0.0261
Thyroid 0.0364 0.0545 0.0545 0.0545 0.0425 0.0568 0.0614 0.0500 0.0340 0.0425 0.0435
Wine 0.0135 0.0297 0.0432 0.0297 0.0297 0.0486 0.0432 0.0270 0.0260 0.0297 0.0250
Vehicle 0.1501 0.1576 0.1945 0.1745 0.1728 0.1984 0.2034 0.1566 0.1725 0.1575 0.1591
Dermatology 0.0205 0.0342 0.0456 0.0562 0.0356 0.0654 0.0612 0.0297 0.0412 0.0515 0.0301
Satimage 0.0826 0.0836 0.1074 0.0846 0.0903 0.0956 0.0991 0.0971 0.0983 0.0972 0.0943
Glass 0.2958 0.3091 0.3977 0.3409 0.3287 0.4342 0.4235 0.3591 0.3621 0.3545 0.3550
Segmentation 0.0406 0.0432 0.0487 0.0436 0.0440 0.0542 0.0560 0.0421 0.0412 0.0435 0.0396
Ecoli 0.1528 0.1584 0.2067 0.1652 0.1876 0.2225 0.2065 0.2056 0.2035 0.2056 0.1458
OptDigits 0.0144 0.0166 0.0313 0.0261 0.0214 0.0295 0.0315 0.0238 0.0254 0.0245 0.0233
Pendigits 0.0051 0.0052 0.0089 0.0109 0.0086 0.0157 0.0202 0.0111 0.0086 0.0057 0.0175
Yeast 0.4054 0.4113 0.4805 0.4335 0.4240 0.4442 0.4456 0.4366 0.4397 0.4429 0.4105
Vowel 0.0291 0.0523 0.0658 0.0754 0.0548 0.0614 0.0654 0.0784 0.0682 0.0578 0.0624
Letter 0.2275 0.2391 0.2691 0.2355 0.2634 0.2413 0.2467 0.2446 0.2617 0.2400 0.2455
Abalone 0.6952 0.7013 0.7912 0.7446 0.8232 0.8452 0.8313 0.7412 0.7453 0.7274 0.7598
Mean Rank 1.20 3.80 8.90 6.20 5.73 9.17 9.87 5.43 5.93 5.30 4.47

Since the null hypothesis of the Friedman test was rejected for all the con-808

sidered datasets, we show in Table 3 only the results of the Holm test. A bold809

value in this table indicates that the corresponding method on that dataset810

had statistically significant higher performance than all the other approaches811

according to the Holm test. If more than one value on a row is marked in bold,812

it means that the corresponding methods were equivalent on that dataset, but813

also that they had statistically significant higher performance than all the other814

not marked approaches.815

The results in Table 3 show a clear superiority of the LDPC-based approaches816

especially when the reject rule was employed. LDPC-AD had the lowest mean817

rank (1.20) and was always in the group of the best classifiers. Even LDPC-HD818

obtained very good performance and had the second lowest mean rank (3.80).819

More in detail, on 9 datasets LDPC-AD was statistically significantly better820

than all the other methods, whereas on Optdigits it was the best one together821

with LDPC-HD. On Satimage also OVO was equivalent to the two proposed822

rules, while on Segmentation and Pendigits several approaches were equivalent823

to the LDPC-based rules. In three datasets, the mean error rate of Forest824

ECOC (on Thyroid) and RECOC (on Segmentation and Ecoli) was lower than825

the LDPC-based rules, but the differences with LDPC-AD were not statistically826

significant, whereas they were with LDPC-HD.827

Another important remark is about the computational feasibility of the pro-828

posed approach. To this end, two measures were considered. The first one was829

the number of dichotomizers since their training represented the most time-830

consuming part of the whole training phase; the second measure was the pro-831

cessing time of the decoding procedure, i.e., the time needed to classify an832

unknown sample. To estimate the decoding time, all the considered methods833

were implemented in Matlab R© and run on a laptop equipped with a CPU Intel834

Core I7-5500U 2.4 GHz and 16.0 GB of RAM. For the LDPC-based techniques,835

it is worth remembering that equal columns in the coding matrix were assigned836
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to the same dichotomizer; in this way, the number of dichotomizers was main-837

tained low (D ≤ 2K−1, see Sect. 5.1) even though the number of total columns,838

and thus the redundancy of the code, was much larger (i.e., L = 100). This was839

computationally beneficial because less classifiers were processed. At the same840

time, the sparsity of the parity-check matrix guaranteed an error correction841

capability linearly increasing with the code length.842

The results obtained for the LDPC-based approaches and all the compared843

strategies are shown in Table 4, where, for each dataset and each coding design,844

we report the number of dichotomizers in the upper rows and the decoding time845

in the lower rows. From Table 4 we can see that LDPC-based techniques were846

competitive in terms of both employed dichotomizers and decoding time, even if847

they were not the fastest ones. For a low number of classes, OVA and DECOC848

used a slightly lower number of dichotomizers than LDPC. When M increased849

(more than 10) even RECOC employed less dichotomizers than our approach.850

Actually, DECOC and OVA use a number of classifiers linearly proportional to851

the classes, whereas this number is logarithmically proportional for RECOC.852

In other words, our approach was still comparable with these three methods in853

terms of number of dichotomizers and much less demanding than all the other854

considered approaches. As for the decoding time, DECOC and OVA were again855

the best approaches. The proposed decoding rules were comparable to RECOC856

and definitely faster than the other approaches, especially when the number of857

classes increased. In summary, we can note that LDPC-AD was not much worse858

than its competitors in terms of number of dichotomizers and decoding time but859

with a much significantly higher classification performance.860

One could have expected a more time-consuming operating phases for the861

proposed decoding rules; actually, their complexity was kept low by the use862

of block of bits, as explained in Sect. 5. In practice, the block bit-flipping863

decoding procedure usually ended in one or two iterations, and, in the worst864

case, its complexity was limited by the maximum number of iterations Nmax865

that depended on the employed dichotomizers. Nmax was experimentally chosen866

equal to the half of the involved dichotomizers, i.e, D/2 for the bit-flipping rule867

and (D−DAbst)/2 for the bit-flipping on the non-rejected bits. As for the block868

recovery and guess algorithm, its computational load depends on the number of869

abstaining dichotomizers and thus on the reject rate. However, the value of ρ870

was estimated on the tuning set by minimizing the corresponding error rate, and871

in these experiments it was never higher than 0.15. As a consequence, only few872

dichotomizers abstained from deciding and the number of guesses was always873

lower than 3 (see Sect. 5.2), thus providing good performance and ensuring874

a reasonable computational complexity. We can therefore conclude that the875

proposed method obtained the best recognition performance with an affordable876

complexity even if, in some cases, it was slightly higher than some other schemes.877

7. Conclusions878

In this paper, we proposed a new multiclass-to-binary decomposition system879

founded on Coding Theory and, in particular, on LPDC codes that allowed us880
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Table 4: Number of dichotomizers (upper rows) and average decoding time in seconds (lower
rows) per coding design for each dataset.

Datasets LDPC-AD LDPC-HD OVA OVO
Standard Dense Sparse

DECOC
Forest ECOC

RECOC
ECOC Random Random ECOC ONE

Iris
3 3 3 3 3 16 24 2 6 4 3

0.0828 0.0786 0.0693 0.0714 0.0713 0.3121 0.4218 0.0437 0.0985 0.0814 0.0771

Thyroid
3 3 3 3 3 16 24 2 6 4 3

0.0650 0.0668 0.0669 0.0618 0.0662 0.03070 0.5413 0.0509 0.1214 0.1012 0.0713

Wine
3 3 3 3 3 16 24 2 6 4 3

0.0720 0.0681 0.0664 0.0760 0.0651 0.2861 0.3612 0.0490 0.1416 0.1621 0.0764

Vehicle
3 3 4 6 7 20 30 3 9 6 3

0.1236 0.1144 0.1268 0.1548 0.1881 0.5961 0.6848 0.1095 0.2715 0.3019 0.1202

Dermatology
7 7 6 15 31 26 39 5 15 9 5

0.2257 0.1836 0.1343 0.3351 0.6012 0.5817 0.7992 0.1174 0.2941 0.1943 0.1742

Satimage
7 7 6 15 31 26 39 5 15 10 8

0.2178 0.1692 0.1394 0.3523 0.6314 0.6821 0.8914 0.1198 0.3512 0.2743 0.1867

Glass
7 7 7 21 63 29 43 6 18 9 6

0.2028 0.1711 0.1435 0.3866 0.6711 0.8064 0.9133 0.1305 0.3943 0.2509 0.1691

Segmentation
7 7 7 21 63 29 43 6 18 11 5

0.1645 0.1700 0.1720 0.4559 1.1621 0.6169 0.8743 0.1359 0.3716 0.2003 0.1381

Ecoli
7 7 8 28 127 30 45 7 21 15 8

0.1497 0.1493 0.1852 0.5055 1.8282 0.7413 0.9112 0.1507 0.4013 0.2051 0.1881

Optdigits
14 14 10 45 31 34 50 9 27 22 10

0.3519 0.3661 0.2359 0.9558 0.6914 0.7251 1.0541 0.2122 0.5814 0.4213 0.3415

Pendigits
14 14 10 45 31 34 50 9 27 23 9

0.4019 0.3275 0.2003 0.8994 0.5609 0.6079 0.9234 0.1863 0.5545 0.2983 0.2763

Yeast
14 14 10 45 31 34 50 9 27 20 10

0.3977 0.3550 0.2334 1.4106 0.6616 0.8115 1.6204 0.2603 0.7418 0.4063 0.3272

Vowel
15 15 11 55 63 35 52 10 30 23 10

0.3316 0.3422 0.2150 1.1763 1.2251 0.6925 1.0816 0.1847 0.5421 0.3267 0.2819

Letter
30 30 26 325 255 48 71 25 75 40 15

1.2332 1.1345 1.0982 11.1254 9.2435 1.8630 2.4351 1.0603 2.8832 1.4544 1.0921

Abalone
31 31 29 406 511 49 73 28 84 55 15

0.9293 0.9021 0.8882 9.9102 11.3049 1.5463 1.9921 0.8723 2.2313 1.0912 0.8992

to design both the coding and the decoding procedures through robust theo-881

retical foundations. Based on the algebraic properties of Galois fields theory,882

LDPC codes are characterized by a sparse parity-check matrix able to generate883

codewords separated by high Hamming distance. The decoding procedure was884

also studied and two iterative rules were proposed, namely the block bit-flipping885

and the block recovery (and guess) algorithms. They exploited the redundancy886

of the code to algebraically recover both erroneous and unreliable outputs. Our887

approach provided many advantages over traditional strategies such as OVA,888

OVO and ECOC solutions. With a limited number of dichotomizers to be889

trained it ensured a high error correction capability and a feasible computa-890

tional complexity, as proved by the extensive experiments performed on several891

benchmark datasets.892
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