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Abstract—Signal amplitude estimation and detection from
unlabeled quantized binary samples are studied, assuming that
the order of the time indexes is completely unknown. First,
maximum likelihood (ML) estimators are utilized to estimate both
the permutation matrix and unknown signal amplitude under
arbitrary, but known signal shape and quantizer thresholds.
Sufficient conditions are provided under which a ML estimator
can be found in polynomial time and an alternating maximization
algorithm is proposed to solve the general problem via a good
initializations scheme. In addition, the statistical identifiability of
the model is studied.

Furthermore, an approximation of the generalized likelihood
ratio test (GLRT) detector is adopted to detect the presence of
signal. In addition, an accurate approximation of the probability
of successful permutation matrix recovery is derived, and explicit
expressions are provided to reveal the relationship between the
signal length and the number of quantizers. Finally, numerical
simulations are performed to verify the theoretical results.

Index Terms—Estimation, detection, permutation, unlabeled
sensing, quantization, identifiability, alternating maximization.

I. INTRODUCTION

In many systems, the data is transmitted with time informa-
tion, which may sometimes be imprecise [1], [2], [3], [4], [5],
[6], [7]. One example is the global positioning system (GPS)
spoofing attack which can alter the time stamps on electric
grid measurements [1] and make them useless so that the data
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must be processed without time stamps. Since the exact form
of civilian GPS signals is publicly known and the elements
needed are inexpensive, building a circuit to generate signals
to spoof the GPS is easy. In [2], a refined assessment of the
spoofing threat is provided. In addition, the detailed informa-
tion of receiver-spoofer architecture, its implementation and
performance, and spoofing countermeasures are introduced. As
a case study in [3], the impact of the GPS spoofing attack on
the wireless communication networks, more specifically, the
frequency hopping code division multiple access (FH-CDMA)
based ad hoc network, is investigated. A timing synchroniza-
tion attack (TSA) has been coined to the wide area monitoring
systems (WAMSs), and its effectiveness is demonstrated to
three applications of a phasor measurement unit (PMU) [4].
In [5], the out-of-sequence measurement (OOSM) problem
where the observations produced by sensors are sent to a
fusion center (FC) over communication networks with random
delays is studied, and a Bayesian solution is provided. The
problem of random delay and packet loss in networked control
systems (NCSs) is studied in [6]. In addition, a minimum
error covariance estimator is derived, and two alternative
estimator architectures are presented for efficient computation.
In [7], the effect of an unknown timestamp delay in Automatic
Identification System (AIS) is studied, and a method based on
adaptive filtering is proposed.

In the above examples, the relative order of the data is
unknown, i.e., the samples are unlabeled. Estimation and
detection from unlabeled samples have drawn a great deal of
attention recently [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]. In [8], it is shown that the convex
relaxation based on a Birkhoff polytope approach does not
recover the permutation matrix, and a global branch and bound
algorithm is proposed instead. In the noiseless case with a
random linear sensing matrix, it is shown that the permutation
matrix can be recovered correctly with probability 1, given that
the number of measurements is twice the number of unknowns
[9], [18]. In [10], [19], the noise is taken into account,
and a condition under which the permutation matrix can be
recovered with high probability are provided. In addition, a
polynomial time algorithm is proposed for the scalar parameter
case. Denoising linear regression model with shuffled data and
additive Gaussian noise is studied in [11]. The characterization
of minimax error rate is given. An algorithm for the noiseless
problem is also proposed, and its performance is demonstrated
on an image point-cloud matching task [11]. In [12], several
estimators are compared in recovering the weights of the
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noisy linear model from shuffled labels, and an estimator
based on the self-moments of the input features and labels is
introduced. For the unlabeled ordered sampling problem [13],
an alternating maximization algorithm combined with dynamic
programming is proposed. In [15], a signal detection problem
where the known signal is permuted in an unknown way is
studied.

Compared to the location parameter estimation problem
(xi = ✓ + wi) in [17, eq. (1)], the model in this paper
is a scale parameter estimation problem (xi = hi✓ + wi)
where hi, i = 1, · · · ,K is the shape of a signal, and ✓

is the amplitude of signal. As a result, the scale parameter
estimation problem is much more difficult than the location
estimation in several aspects, and the scale parameter is
especially relevant in relation to the mislabeling/permutation
issue. First, the model in [17] is always identifiable, while
our model may be unidentifiable, as shown later. Second, the
problem in [17] can be solved efficiently via simple sorting,
while we can only prove that the problem in this paper can
be solved efficiently under certain conditions. Third, good
initial points are proposed to improve the performance of
alternating maximization algorithm. Furthermore, we provide
an approximation to the probability of successful permutation
matrix recovery, which reveals the relationship between the
length of signal and the number of quantizers.

In this paper, we focus on the problems of scale estimation
and signal detection from unlabeled quantized samples. In the
first part of this paper we consider the estimation of ✓ from
noisy measurements, and in the second part we address the
detection problem of deciding between the null hypothesis of
observing only noise, against a composite alternative in which
the signal values {hi}

K
i=1 are known except for a common

multiplicative factor ✓. Both problems have very great practical
relevance and have been widely addressed in the literature
of distributed inference, even under the assumption that data
arrives at the fusion center after quantization and is possibly
flipped by noisy links. The main contribution of this paper is to
revise these classical problems under the emerging paradigm
of unlabeled data [1], [3], [4], [7], in which the observations
at the fusion center lack a timing reference. To be specific,
we first provide a sufficient condition for the existence of
a polynomial time algorithm for the unlabeled estimation
problem, and the model is shown to be unidentifiable in
some special cases. Second, good initial points are provided
to improve the performance of an alternating maximization
algorithm. And third, we provide analytic approximations on
probability of permutation matrix recovery in the case of
known signal amplitude, which can be used to predict when
the permutation matrix can be correctly recovered.

The organization of this paper is as follows. In Section
II, the problem is described. Background on ML estimation
and generalized likelihood ratio test (GLRT) detection from
labeled data is presented in Section III. In Section IV, the
model identifiability is studied, and the estimation problem
from unlabeled data is studied. Section V extends the detection
work to unlabeled data, and derives an approximate analytic
formula for permutation matrix recovery probability. Finally,

the numerical results are presented in Section VI, and the
conclusion follows in Section VII.

Notation: The K⇥1 vector of ones is 1K . For an unknown
deterministic parameter ✓, ✓0 denotes its true value. For an
unknown permutation matrix ⇧, ⇧0 denotes its true value.
For a random vector y, p(y; ✓) denotes the probability density
function (PDF) of y parameterized by ✓, and Ey[·] denotes the
expectation taken with respect to y. Let N (µ,�2) denote a
Gaussian distribution with mean µ and variance �

2. Let �(·)
and '(·) denote the cumulative distribution function (CDF)
and probability density function (PDF) of a standard Gaussian
random variable respectively. Let U(a, b) denote an uniform
distribution, whose minimum and maximum values are a and
b. Let B(N, p) denote a binomial distribution, where N and
p denote the number of trials and the probability of event,
respectively.

II. PROBLEM SETUP

Consider a signal amplitude estimation and detection prob-
lem where a collection of N binary quantizers generates
binary quantized samples which will be utilized to estimate
the unknown scaling factor ✓ of a K length signal and detect
the presence of the signal, as shown in Fig. 1. The binary
quantized samples bij are obtained via

bij = Qi(hi✓ + wij), i = 1, · · · ,K, j = 1, · · · , N, (1)

and the corresponding hypothesis problem can be formulated
as
(

H0 : bij = Qi(wij), i = 1, · · · ,K, j = 1, · · · , N,

H1 : bij = Qi(hi✓ + wij), i = 1, · · · ,K, j = 1, · · · , N,

where i and j respectively denote one of the K time indexes
and one of the N quantizers, hi, i = 1, · · · ,K, are the
coefficients characterizing the signal shape and are a priori
known, wij is the i.i.d. noise drawn from the �

2
w-variance dis-

tribution whose PDF is fw(x/�w)/�w and CDF is Fw(x/�w),
where fw(x) and Fw(x) are the corresponding unit-variance
PDF and CDF, and Qi(·) implies a binary quantizer which
produces 1 if the argument is larger than a scalar threshold ⌧i

and 0 otherwise. The thresholds of N quantizers are identical
given any time index1. We assume that the PDF fw(w) is
log-concave, which is often met in practice such as Gaussian
distributions.

The quantized data {bij} is transmitted over a binary
channel with flipping probabilities q0 and q1 which are defined
as Pr(uij = 1|bij = 0) = q0 and Pr(uij = 0|bij = 1) = q1,
where uij is the sample received at the output of the channel,
which we call the FC [21].

We assume that all the sets of data {uij}
N
j=1 are transmitted

to the FC with permuted time indexes. Accordingly, the FC
receives the set of data, say {ũij}

N
j=1, whose time reference

(represented by the index i) is invalid. The FC does not know

1Here we have thresholds fixed across quantizers and varying with time,
with permutation across time. We could, equivalently, have fixed thresholds
of quantizers across time but varying across sensors and permuted across
sensors. Mathematically, it is the same problem and the formulation could as
easily encompass it.
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Fig. 1: System diagram of unlabeled binary quantized
samples generation.

which time index the data {ũij}
N
j=1 belongs to, but knows

that {ũij}
N
j=1 belongs to one of the K time indexes. Let us

introduce the matrix U whose (i, j)�th entry is uij . Then, the
unlabeled samples can be collected in a matrix eU, as follows:

eU = ⇧U, (2)

where ⇧ 2 RK⇥K is an unknown permutation matrix, i.e.,
a matrix of {0,1} entries in which each row or each column
sums to unity. We assume that ✓ is constrained to an interval
[��,�], for algorithm and theoretical reasons [22, p. 4].

It is worth mentioning that GPS spoofing attack on time
synchronization in smart grid networks and wireless networks
can be abstracted to the above model [1], [3]. In smart grid
networks, ✓ can be viewed as the nodal voltage magnitude

which can be unobservable by PMUs at all the generator
nodes in the network. hi is the cosine function value of the
voltage phase describing the shape of voltage signal. The
synchronization delay attack changes the model by adding
an extra factor to the phase, and the attacked signal can
be regarded as a permutation ⇧ of the original signal [1].
In FH-CDMA based ad-hoc network, hi is the known GPS
signal shape. The transmission of the GPS signal is under the
Rayleigh fading channel, whose amplitude gain ✓ is unknown.
The time offsets caused by the GPS spoofing attack impact the
time sequences of received signals and can be modeled by a
permutation matrix ⇧ [3].

III. PRELIMINARIES

In this section, standard materials of parameter estimation
and signal detection using labeled data are presented.

A. Maximum likelihood estimation

The probability mass function (PMF) of uij can be calcu-
lated as

Pr(uij = 1) = q0 + (1� q0 � q1)Fw

✓
hi✓ � ⌧i

�w

◆
, pi,

Pr(uij = 0) = 1� pi.

(3)
The PMF of U is

p(U; ✓) =
KY

i=1

NY

j=1

Pr(uij = 1)uijPr(uij = 0)(1�uij). (4)

Let ⌘i denote the fraction of uij = 1 in {uij}
N
j=1, i.e.,

⌘i =
NX

j=1

uij/N. (5)

Consequently, the log-likelihood function l(⌘; ✓) is

l(⌘; ✓) = N

KX

i=1

(⌘i log pi + (1� ⌘i) log(1� pi)), (6)

where pi is given in (3). In the error free binary symmetric
channel scenario, i.e., q0 = q1 = 0 or q0 = q1 = 1, the
CDF Fw(x) is log-concave because it is the integral of a log-
concave PDF fw(x). Therefore maximizing the log-likelihood
function is a convex optimization problem, which can be
solved efficiently via numerical algorithms [23], [24], [25,
pp. 7-8]. For 0 < q0 + q1 < 2, it is difficult to determine
the convexity of the negative log-likelihood function. In this
case a local optimum is guaranteed. As we show in numerical
experiments, we found that the ML estimator using gradient
descent algorithm works well and approaches the Cramér Rao
lower bound (CRLB).

In addition, the Fisher Information (FI) I(✓) is the expec-
tation of the negative second derivative of the log-likelihood
function l(⌘; ✓) (6) with respect to ✓, i.e. (7). The expectation
E⌘[⌘i/pi�(1�⌘i)/(1�pi)] = 0 is used in (7). Consequently,
the CRLB is

CRLB(✓) = 1/I(✓), (8)
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which is later used as a benchmark performance for ML
estimation from labeled data in Section VI.

B. GLRT detection

Given ✓ is known under the alternative hypothesis H1, the
optimal detector according to the NP criterion is the log-
likelihood ratio test [26, p. 65, Th. 3.1]. Without the knowledge
of amplitude, the GLRT is usually adopted. Although there is
no optimality associated with the GLRT, it appears to work
well in many scenarios of practical interest [26, p. 200].
The GLRT replaces the unknown parameter by its maximum
likelihood estimate (MLE) and decides H1 if

T1(⌘) = max
✓2[��,�]

l(⌘; ✓)� l(⌘; 0) > �, (9)

where � is a threshold determined by the given false alarm
probability PFA.

IV. ESTIMATION FROM UNLABELED DATA

In this section, we study the estimation problem from
unlabeled data, namely we suppose that H1 is in force, that the
FC receives the unlabeled set of data {ũij}

N
j=1, i = 1, . . . ,K,

and the problem is to estimate ✓. In the following sections we
first introduce the ML estimation from unlabeled data. Next
we decompose the original problem into two subproblems,
i.e., permutation matrix recovery problem with knowledge of
amplitude and ✓-estimation problem from labeled data. The
first subproblem is important because ⇧ plays the role of a
nuisance parameter both in the estimation case addressed here
and in the detection problem considered in Section V. We
study the subproblems separately and then address the original
✓-estimation problem. We also pay attention to the identifiabil-
ity of the estimation problem and to the initializations scheme
of the estimation algorithm.

A. Maximum likelihood estimation

Introduce the function ⇡(·) such that m = ⇡(i) if the
permutation matrix ⇧ in (2) maps the ith row of U to the
mth row of Ũ. The PMF of Ũ is

p(eU; ✓,⇧) =
KY

m=1

NY

j=1

Pr(ũmj = 1)ũmjPr(ũmj = 0)(1�ũmj)

=
KY

i=1

NY

j=1

Pr(ũ⇡(i)j = 1)ũ⇡(i)jPr(ũ⇡(i)j = 0)(1�ũ⇡(i)j),

(10)

where (Pr(ũij = 1),Pr(ũij = 0)) is the PMF of ũij . The
corresponding log-likelihood function l(⌘̃; ✓,⇧) is

l(⌘̃; ✓,⇧)

=N

KX

i=1

�
⌘̃⇡(i) log pi + (1� ⌘̃⇡(i)) log(1� pi)

�
, (11)

where ⌘̃⇡(i) =
PN

j=1 ũ⇡(i)j/N =
PN

j=1 ũmj/N . The ML
estimation problem can be formulated as

max
✓2[�,�],⇧2PK

l(⌘̃; ✓,⇧), (12)

where PK denotes the set of all possible K ⇥K permutation
matrices. Please, note that ✓ is the unknown parameter we are
interested in, while ⇧ acts as a nuisance parameter.

Remark 1 The function (11) can also be written as the KL

divergence between the empirical p̃i = ⌘̃⇡(i) and pi, where

⌘̃⇡(i) denotes the fraction of ũ⇡(i)j = 1 in {ũ⇡(i)j}
N
j=1. The

KL divergence between the empirical p̃i = ⌘̃⇡(i) and pi for

each i can be calculated and turns out to be

D(⌘̃||p) =
KX

i=1

✓
⌘̃⇡(i) log

⌘̃⇡(i)

pi
+ (1� ⌘̃⇡(i)) log

1� ⌘̃⇡(i)

1� pi

◆

= �

KX

i=1

�
⌘̃⇡(i) log pi + (1� ⌘̃⇡(i)) log(1� pi) + const

�

= �l(⌘̃; ✓,⇧) + const,

where const denotes the constant terms. As a consequence,

maximizing the log-likelihood function is equivalent to min-

imize the KL divergence D(⌘̃||p), where one looks for the

optimal permutations such that the corresponding empirical

probability distribution is the most similar to the true distri-

bution p [27].

B. Signal amplitude estimation from permuted data

For problem (12), both the permutation matrix ⇧ and the
desired parameter ✓ under H1 are unknown. In order to
estimate the unknown ✓, the permutation matrix plays the role
of a nuisance parameter. Thus, the ✓-estimation problem can
be formalized as the joint estimation of ✓ and ⇧. However,
finding the best permutation matrix is very challenging in most
problems due to non-convexity. One method is to enumer-
ate all the possible permutation matrices, which leads to a
computation complexity of O(K!). To reduce the computation
complexity, we decompose the joint optimization problem into
the following two subproblems and optimize them alternately.

1) Permutation matrix recovery with knowledge of am-

plitude: The first subproblem is to estimate ⇧ with the
knowledge of amplitude, i.e., the amplitude ✓ is fixed under
the alternative hypothesis H1. With reference to the smart grid
example mentioned at the end of Section II, the case of known
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✓ and {hi}
K
i=1 corresponds to the situation in which the nodal

voltage magnitudes and phases are observable by PMUs at all
the generator nodes [1]. The following proposition shows that
the permutation matrix can be recovered efficiently by simple
sorting, which costs O(K logK).

Proposition 1 Assume H1 true. Given that the amplitude

✓ is known, the ML estimation problem (12) reduces to a

permutation matrix recovery problem. The computation of

optimal permutation matrix ⇧ will reorder the rows of eU,

equivalently the elements of ⌘̃, to have the same relative order

as the elements of (1� q0 � q1)(h✓ � ⌧ ).

Proof: The objective function l(⌘̃; ✓,⇧) (11) can be
decomposed as

l(⌘̃; ✓,⇧) = K

NX

i=1

⌘̃⇡(i)si +K

NX

i=1

log(1� pi), (13)

where si = log(pi/(1 � pi)). From (13), we see that the
computation of the optimal permutation matrix amounts to
reordering the rows of U, equivalently the elements of ⌘̃, to
have the same relative order as the elements of s [15, Lemma
1], [17, Proposition 1]. Because si is monotonically increasing
with respect to (1 � q0 � q1)(hi✓ � ⌧i), the elements of ⌘̃
should be reordered by the permutation matrix to have the
same relative order as the elements of (1� q0 � q1)(h✓ � ⌧ )
to maximize the likelihood.

If ⌧i = c0hi, changing ✓ � c0 to �(✓ � c0) would reverse
the ordering. This might help to explain why two solutions
appear in the subsequent Proposition 2 when ✓ is unknown
under H1.

2) Estimation of ✓ from labeled data: The second sub-
problem is to estimate ✓ with given ⇧, which is equivalent
to estimation from labeled data, as discussed in Section
IV. In this settings, one obtains the ML estimate of ✓ via
numerical algorithms and achieves global optimum, provided
that q0 = q1 = 0 or 1. Under the assumption 0 < q0+ q1 < 2,
we do not know whether the negative log-likelihood function
is convex, and only a local optimum is guaranteed.

3) Alternating maximization algorithm: Now we optimize
the two subproblems alternately as shown in Algorithm 1.
The alternating maximization in Algorithm 1 can be viewed

Algorithm 1 Alternating Maximization

1: Initialize t = 1 and ✓̂t�1;
2: Fix ✓ = ✓̂t�1, reorder ⌘̃ according to (1�q0�q1)(h✓�⌧ )

and obtain the corresponding permutation matrix ⇧̂t�1;
3: Solve max

✓
l(⌘̃; ✓, ⇧̂t�1) and obtain ✓̂t;

4: Set t = t+1 and return to step 2 until a sufficient number
of iterations has been performed or |✓̂t� ✓̂t�1|  ✏, where
✏ is a tolerance parameter.

as the alternating projection with respect to ✓ and ⇧. The
objective function is l(⌘̃; ✓,⇧). In step 2, given ✓̂t�1, we
update the permutation matrix as ⇧̂t�1, and the objective
value is l(⌘̃; ✓̂t�1, ⇧̂t�1). Given ⇧̂t�1, we obtain ML esti-
mation of ✓ as ✓̂t, and the objective value is l(⌘̃; ✓̂t, ⇧̂t�1)

satisfying l(⌘̃; ✓̂t, ⇧̂t�1) � l(⌘̃; ✓̂t�1, ⇧̂t�1). Given ✓̂t, we
update the permutation matrix as ⇧̂t, and the objective value
is l(⌘̃; ✓̂t, ⇧̂t) satisfying l(⌘̃; ✓̂t, ⇧̂t) � l(⌘̃; ✓̂t, ⇧̂t�1). Con-
sequently, we have

l(⌘̃; ✓̂t, ⇧̂t) � l(⌘̃; ✓̂t�1, ⇧̂t�1) (14)

and the following claim.

Claim 1 Suppose that the maximum with respect to each ✓

and ⇧ is unique, and consider the relaxed version of the

optimization problem (12) in which the set PK is replaced by

the set of the doubly stochastic matrices with entries in [0, 1].
Then, it can be shown that problem (12) and its relaxed version

have the same solutions, and any limit point produced by the

alternating maximization algorithm for the relaxed problem is

a stationary point.

Proof: The proof is based on [28, pp. 268-269] and is
provided as supplemental material to this paper.

Furthermore, we find a special case in which signal ampli-
tude estimation problem (12) can be efficiently solved. From
the special case, it can be seen that the optimal solution can
be obtained under some circumstances. The special case is
detailed in Appendix VIII-A, and the corresponding Algorithm
2 is also provided.

C. An example for model unidentifiability

Algorithm 2 may generate two solutions (✓̂s1, ⇧̂s1) and
(✓̂s2, ⇧̂s2). Given system parameters h and ⌧ , it is impor-
tant to determine whether the two solutions (✓̂s1, ⇧̂s1) and
(✓̂s2, ⇧̂s2) will yield the same log-likelihood l(⌘̃; ✓̂s1, ⇧̂s1) =
l(⌘̃; ✓̂s2, ⇧̂s2). If l(⌘̃; ✓̂s1, ⇧̂s1) = l(⌘̃; ✓̂s2, ⇧̂s2), two param-
eter values lead to the same maximum likelihood. In this
situation, ✓ clearly can not be estimated consistently since ⌘̃
provides no information as to whether the true value is ✓̂s1 or
✓̂s2. This phenomenon motivates us delving into the identifi-
ability of the model. Statistical identifiability is a property of
a statistical model which describes one-to-one correspondence
between parameters and probability distributions [30, pp. 456-
457]. In this subsection, we provide the following proposition
which justifies that there exist cases in which the model is
unidentifiable, i.e., there exist two different parameter values
✓s1 and ✓s2 leading to the same distribution of the observations
⌘̃ [30].

Proposition 2 Let ha and hd denote the ascending and

descending ordered versions of h, and ⇧ah = ha and

⇧dh = hd, where ⇧a and ⇧d are permutation matrices.

Given ⌧ = c0h and ha = �hd, the model is unidentifiable,

i.e., l(⌘̃; ✓,⇧)|✓=✓s1,⇧=⇧s1 = l(⌘̃; ✓,⇧)|✓=✓s2,⇧=⇧s2 , where

✓s2 = 2c0 � ✓s1 and ⇧s2 = ⇧s1⇧
T
a⇧d.

Proof: Let ⇧s1 be a permutation matrix such that ⇧T
s1⌘̃

has the same relative order as h. Now we prove that ⇧T
s2⌘̃ has

the same relative order as �h. Utilizing ha = �hd = �⇧dh
and ⇧d⇧

T
d = I, we obtain ⇧T

d ha = �h. Note that ⇧T
s2⌘̃ =

⇧T
d⇧a⇧

T
s1⌘̃. Because ⇧T

s1⌘̃ has the same relative order as
h, ⇧a⇧

T
s1⌘̃ has the same relative order as ⇧ah = ha, and

⇧T
d⇧a⇧

T
s1⌘̃ has the same relative order as ⇧T

d ha = �h.












































































































6

Next we prove that l(⌘̃; ✓,⇧)|✓=✓s1,⇧=⇧s1 =
l(⌘̃; ✓,⇧)|✓=✓s2,⇧=⇧s2 holds. Because ✓s2 = 2c0 � ✓s1,
we have

hi✓s1�⌧i = hi(✓s1�c0), hi✓s2�⌧i = �hi(✓s1�c0). (15)

By examining l(⌘̃; ✓,⇧) (13) and utilizing ha = �hd, the
second term of l(⌘̃; ✓,⇧)|✓=✓s1,⇧=⇧s1 is equal to that of
l(⌘̃; ✓,⇧)|✓=✓s2,⇧=⇧s2 . For the first term, note that given ✓s1

and ✓s2, the corresponding s1 and s2 in (13) can be viewed
as evaluating at h and �h according to (15), respectively.
Because ha = �hd, we can conclude that s1 is a permutated
version of s2. The first term of (13) can be expressed as either
(⇧T

s1⌘̃)
Ts1 or (⇧T

s2⌘̃)
Ts2. Because (⇧T

s1⌘̃)
T and s1 have the

same relative order as h, and (⇧T
s2⌘̃)

T and s2 have the same
relative order as �h, one has (⇧T

s1⌘̃)
Ts1 = (⇧T

s2⌘̃)
Ts2. Thus

l(⌘̃; ✓,⇧)|✓=✓s1,⇧=⇧s1 = l(⌘̃; ✓,⇧)|✓=✓s2,⇧=⇧s2 .
Please notice that Proposition 2 provides an example instead

of rigorous conditions on identifiability. For the odd signal
such as the sinusoidal and sawtooth signals with proper fixed
sampling frequencies, the ascending order ha and descending
order hd of the signal shape h satisfies ha = �hd, and the
model is unidentifiable in this scenario.

Now an example is presented to substantiate the above
proposition. Let c0 = 0.5, the true value ✓0 =
1, h = [2,�1,�2, 1]T, ⌘ = [⌘1, ⌘2, ⌘3, ⌘4]T and
⇧0 = [0 0 1 0; 0 1 0 0; 0 0 0 1; 1 0 0 0]. Then
⌘̃ = [⌘3, ⌘2, ⌘4, ⌘1]T, ha = [�2,�1, 1, 2]T, hd =
[2, 1,�1,�2]T and ha = �hd. We can conclude that
l(⌘̃; ✓,⇧)|✓=1,⇧=⇧0 = l(⌘̃; ✓,⇧)|✓=0,⇧=⇧0 , where ⇧0 =
[0 0 0 1; 1 0 0 0; 0 0 1 0; 0 1 0 0].

Proposition 2 shows that two different values of ✓ may
give the same value of the likelihood, which implies that the
estimation of ✓ may not be consistent. In terms of detection,
if ✓ = 0 and ✓ = e✓ 6= 0 give the same GLRT metric, then the
detection performance may degrade significantly. In addition,
if |c0| � �, only one of {✓s1, ✓s2} lies in the interval [��,�],
and the model is identifiable.

D. Good initial points

For the alternating maximization algorithm dealing with
nonconvex optimization problems, an initializations scheme is
important for the algorithm to converge to the global optimum.
In the following text, we provide good initial points for the
alternating maximization algorithm. The key idea is to obtain
a coarse estimate of ✓ via matching the expected and actual
number of ones in observations, and utilizing the orthogonal
property of permutation matrix.

Suppose that the number of measurements K is large.
Consequently, as the number of measurements tends to infinity,
the law of large numbers (LLN) implies

⌘i
p

�! q0 + (1� q0 � q1)Fw ((hi✓ � ⌧i)/�w) , (16)

where p
�! denotes convergence in probability. Given ✓ 2

[��,�], �|hi|� � ⌧i  hi✓ � ⌧i  |hi|� � ⌧i. In the
following text, we only deal with q0 + q1 < 1 case. The case
that q0 + q1 > 1 is very similar and is omitted here. Define

l = min
i2[1,··· ,N ]

(q0 + (1� q0 � q1)Fw((�|hi|�� ⌧i)/�w))

and u = max
i2[1,··· ,N ]

(q0 + (1� q0 � q1)Fw((|hi|�� ⌧i)/�w)).

Then ⌘i should satisfy l  ⌘i  u. Let Il,u(⌘̃i) denotes the
projection of ⌘̃i onto the interval [l, u]. Note that this projection
operation is needed because (16) is valid in the limit as K goes
to infinity. From (16) one obtains

m , �wF
�1
w ((Il,u(⌘̃)� q01N )/(1� q0 � q1))

p�!⇧(h✓ � ⌧ ).

Utilizing ⇧⇧T = I yields

mTm
p

�!hTh✓2 � 2⌧Th✓ + ⌧T⌧ , (17)

which is a quadratic equation in ✓. Accordingly, using the
asymptotic properties of mTm, one obtains (18) via inverting
(17).

✓1,2 =
⌧Th

hTh
±

r
mTm� ⌧T⌧

hTh
+ (

⌧Th

hTh
)2. (18)

The above two solutions can be used for the alternating
maximization algorithm as initial points. Finally, the optimum
with larger likelihood is chosen as the MLE. In Section VI,
to provide a fair comparison of the alternating maximization
algorithm with good initial points, �� and � are used as two
initial points, and we choose the solution whose likelihood is
larger as the MLE.

The result of (18) is consistent with that of Proposition 2.
Given that the conditions in Proposition 2 are satisfied, and
substituting ⌧ = c0h into (18), the solutions are ✓1 = ✓ and
✓2 = 2c0 � ✓.

V. DETECTION FROM UNLABELED DATA

In this section, we study the detection problem from unla-
beled data. In addition, we investigate the permutation matrix
recovery probability.

A. Signal detection from permuted data with knowledge of

amplitude

With the knowledge of amplitude ✓, the statistical test can
be formulated as

T2(⌘̃) = max
⇧2PN

l(⌘̃; ✓,⇧)� max
⇧2PN

l(⌘̃; 0,⇧) > �. (19)

As shown in Proposition 1, the computation of optimal
permutation matrix corresponding to the first term in (19)
corresponds to reordering the elements of ⌘̃ to have the same
relative order as the elements of (1 � q0 � q1)(h✓ � ⌧ ).
Similarly, for the computation corresponding to the second
term in (19), we reorder the elements of ⌘̃ to have the same
order as that of �(1� q0 � q1)⌧ .

B. Signal detection from permuted data without knowledge of

amplitude

Without the knowledge of amplitude ✓, an approximation
of the GLRT decides H1 if

T3(⌘̃) = max
✓,⇧2PN

l(⌘̃; ✓,⇧)� max
⇧2PN

l(⌘̃; 0,⇧) > �. (20)

If ⇧ were known, this statistics would be the GLRT. The qual-
ification approximate refers to the fact that the maximization
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involves also the nuisance parameter ⇧. Algorithm 1 for joint
estimation of ✓ and ⇧ has been described in Section IV-B3.
The performance of the test (20) will be evaluated by using
Algorithm 1 for joint estimation of ✓ and ⇧, see Section IV-B3
and Section V-A.

C. Approximations on permutation matrix recovery probabil-

ity

In this subsection, we investigate the permutation matrix
recovery probability problem. Since errors in permutation
matrix recovery are more likely to happen in the relatively
indistinguishable cases, the performances in terms of signal
detection or estimation tasks may not be closely related to the
recovery of permutation matrix. However, it is meaningful to
extract the accurate timestamp information or sensors’ identity
information which corresponds to recovery of permutation
matrix, as presented in the following.

It is difficult to obtain the permutation matrix recovery
probability without the knowledge of amplitude. Instead, we
assume that ✓ is known under the alternative hypothesis H1,
and analyze the permutation matrix recovery probability in
terms of the recovery algorithm provided in Proposition 1.
Without loss of generality, we also assume that q0 + q1 < 1
in the following analysis. The case that q0 + q1 > 1 is
similar and is omitted here. First, let pi be ordered such that
p(1) > p(2) > · · · > p(K). From (3) we have (hi✓ � ⌧i)(1) >
(hi✓ � ⌧i)(2) > · · · > (hi✓ � ⌧i)(K). Provided q0 + q1 < 1,
the elements of ⌘̃ should be reordered according to the order
of the elements of h✓ � ⌧ in Proposition 1. Therefore the
permutation matrix will be correctly recovered if and only
if ⌘(1) > ⌘(2) > · · · > ⌘(K). Note that the subscripts of
(hi✓�⌧i)(·) and ⌘(·) also correspond to the order of pi, instead
of the order of hi✓ � ⌧i or ⌘i.

Define Ei as the event such that ⌘(i) > ⌘(i+1) and Ēi as the
corresponding complement event of Ei, namely ⌘(i)  ⌘(i+1).
The probability that permutation matrix is recovered correctly
can be written as

Pr(⇧̂ML = ⇧0) = Pr(⌘(1) > · · · > ⌘(K)) = Pr

 
K�1\

i=1

Ei

!

=1� Pr

 
K�1[

i=1

Ēi

!
� 1�

K�1X

i=1

Pr(Ēi),

where union bound Pr

✓
K�1S
i=1

Ēi

◆


K�1P
i=1

Pr(Ēi) is uti-

lized in (21). From (3), we have uij ⇠ B(1, pi) and
N⌘i =

PN
j=1 uij ⇠ B(N, pi). When N is large, the

De Moivre-Laplace theorem [29, pp. 49, equation (3-27)]
implies that the distribution of ⌘i can be approximated by
N (pi, pi(1� pi)/N). As a consequence, ⌘(i) � ⌘(i+1) is ap-
proximately distributed as N (p(i)�p(i+1), p(i)(1�p(i))/N +

p(i+1)(1� p(i+1))/N), and

Pr(⇧̂ML = ⇧0) � 1�
K�1X

i=1

Pr(Ēi)

= 1�
K�1X

i=1

Pr(⌘(i) � ⌘(i+1)  0)

⇡ 1�
K�1X

i=1

�

 
�(p(i) � p(i+1))

p
N

p
p(i)(1� p(i)) + p(i+1)(1� p(i+1))

!

� 1� (K � 1)�
⇣
�t

p

N

⌘

⇡ 1� (K � 1)
1

p
2⇡t

p
N

e
�t2N/2

= 1�
1

p
2⇡

e
ln(K�1)�ln t� 1

2 lnN� t2

2 N , Pr(K,N), (21)

where t = min
i=1,··· ,K�1

vip
p(i)(1�p(i))+p(i+1)(1�p(i+1))

, vi =

p(i)�p(i+1) and the approximation �(�x) ⇡ 1p
2⇡x

e�
x2

2 (x �

0) is utilized.
Utilizing p(i)(1�p(i))+p(i+1)(1�p(i+1))  1/2, we define

t̃ as

t̃ = min
i=1,··· ,K�1

vi 

p
2

2
t. (22)

We conjecture that t̃ is on the order of K
�↵, i.e., t̃ =

O(K�↵), which means that there exists constant ct such that

t̃ ⇡ ctK
�↵

. (23)

We will prove that h can be constructed such that t̃ = O(K�1)
and t̃ = O(K�2) later. According to (22) and (23), the
approximation Pr(K,N) (21) can be further simplified and
relaxed as

fPr(K,N) = 1�
1

2
p
⇡
e
ln(K�1)�ln t̃� 1

2 lnN�t̃2N (24)

⇡ 1�
1

2
p
⇡ct

e
(1+↵) lnK� 1

2 lnN� c2t
K2↵ N

. (25)

From (25), the exponent (1 + ↵) lnK �
1
2 lnN �

c2t
K2↵N of

(25) must be far less than 0 for the recovery of permutation
matrix. Given N is large, the term �

1
2 lnN is small compared

to N . Thus (1 + ↵) lnK �
c2t

K2↵N < 0 will ensure that
the permutation matrix can be recovered in high probability.
Simplifying (1 + ↵) lnK �

c2t
K2↵N < 0 yields

N >
(1 + ↵)

c2t

K
2↵ lnK. (26)

According to the definition of pi (3), equations (22) and (23),
ct / 1 � q0 � q1. From (26), the number of quantizers Nreq

required for permutation matrix recovery probability satisfies

Nreq / 1/(1� q0 � q1)
2
. (27)

From (27), one can conclude that the number of quantizers
for permutation matrix recovery with high probability is
1/(1� q0 � q1)2 times that of unflipped case where q0 = q1 =
0.

Now we give examples to illustrate t̃ = O(K�↵). In
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these cases, the noise is assumed Gaussian such that wij ⇠

N (0,�2
w), and different h correspond to the shapes of ramp

signal, Gaussian signal and sinusoidal signal respectively. For
simplicity, we assume ⌧ = ch(c < ✓) and

a , (✓ � c)/�w > 0. (28)

First, let h be the shape of a ramp signal, i.e., hi = u �
(u�l)(i�1)

K�1 (u > |l|). We prove that t̃ = O(K�1) in Appendix
VIII-B1. Second, let h be the shape of a random signal from
a standard Gaussian PDF, i.e., hi ⇠ N (0, 1). The numerical
results under different a are shown in Fig. 2. Under a = 1,
we prove that t̃ = O(K�2) in Appendix VIII-B2. Third, let
h be the shape of a sinusoidal signal, i.e, hi = sin(2⇡xi)
and xi ⇠ U(0, 1). The numerical results under different a

are shown in Fig. 3. Based on the proofs and the intuitive
numerical results, we conjecture that t̃ = O(K�↵).
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Fig. 2: The relationship of t̃ and K under different a. Note
that q0 = q1 = 0, hi ⇠ N (0, 1) and wij ⇠ N (0,�2

w).

VI. NUMERICAL SIMULATIONS

In this section, numerical experiments are conducted to
evaluate the theoretical results. For simplicity, the Gaussian
distribution N (0,�2

w) is selected as the distribution of noise
wij .

A. Parameter estimation

For the first two experiments, we evaluate the performance
of the ML estimators proposed in Section IV. Parameters are
set as follows: K = 20, ✓ = 1, �2

w = 1, � = 2, q0 = 0.05,
q1 = 0.05 and the tolerance parameter ✏ in Algorithm 1 is
10�7. The number of Monte Carlo trials is 5000.

For the first experiment, the MSE performance of Algorithm
2 is evaluated in Fig. 4. We let ⌧ = 0.5h, which is a
special case mentioned in Proposition 3. The coefficients h
are equispaced with h = [�1.50,�1.29,�1.08, · · · , 2.50]T,
which correspond to a ramp signal. It can be seen that h
do not satisfy the condition in Proposition 2, thus the model
may be identifiable. It can be seen that the ML estimator
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Fig. 3: The relationship of t̃ and K under different a. Note
that q0 = q1 = 0, hi = sin(2⇡xi), xi ⇠ U(0, 1) and

wij ⇠ N (0,�2
w).

from labeled data always works well. Given limited number
of quantizers, there is an obvious gap between the MSEs of
two estimators. As the number of quantizers increases, the
performance of the estimator from unlabeled data approaches
that from labeled data. In addition, we provide a further
comparison. We consider the extrema of the observations as
an estimator of the unknown ✓. Fig. 4 shows that Algorithm
2 performs better than the algorithm utilizing the extrema,
especially when the number of quantizers N is less than 60,
which is of interest in many realistic settings. As the number
of quantizers increases, the algorithm utilizing the extrema
becomes effective but still its MSE performance does not
approach the CRLB.
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Fig. 4: MSE of ✓ vs. number of quantizers for the ML
estimators from labeled and unlabeled data, compared with

the CRLB (8) and the estimator using the extrema for a
ramp signal.

For the second experiment, the MSE performance of Al-
gorithm 1 (for the general case) is evaluated in Fig. 5. The
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elements of the vector h describe the shape of a sinusoidal
signal such that hi = sin(2⇡xi), where xi is drawn indepen-
dently and randomly from the uniform distribution U(0, 1) and
is then sorted in ascending order. The elements of the vector
⌧ are drawn independently and randomly from the uniform
distribution U(��,�). It can be seen that when N < 80, good
initial points improve the MSE performance of the alternating
maximization algorithm from unlabeled data. As N increases
to 80, the MSE performances of both unlabeled ML estimators
approach a common level which is larger than that achieved
by the labeled data. Finally, the MSEs of both estimators
from unlabeled data approach to that from labeled data around
N = 3⇥ 104.
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M
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�
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0.1

M
SE
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Unlabeled data
Unlabeled data, good initial points
CRLB

Fig. 5: MSE of ✓ vs. number of quantizers for the three ML
estimators from labeled data, unlabeled data via initial points

±� and unlabeled data via good initial points (18),
compared with the CRLB (8) for a sinusoidal signal.

B. Signal detection

In Fig. 6, the relationship between PD and the number of
quantizers N is employed. Parameters are consistent with the
first experiment, except that �2

w = 9 and PFA = 0.05.
In subgraph (a), h and ⌧ are the same as those in the

first experiment. It can be seen that the number of quantizers
has a significant effect on the detection probability. As N

increases, the performances of all the detectors increase, and
the detection performance of the approximation of the GLRT
(20) approaches the GLRT (9). In subgraph (b), h and ⌧ are
the same as those in the second experiment, and the similar
phenomena are observed. It seems that in this case little is
gained by the good initializations scheme.

C. Permutation matrix recovery

In this subsection, the approximations for permutation
matrix recovery are verified. Parameters are set as follows:
K = 20 , ✓ = 1.5, � = 2, q0 = 0, q1 = 0 and �

2
w = 1. The

number of Monte Carlo trials is 1000.
First, the relationship of t and t̃ (22) and the conjecture of t̃

(23) are illustrated in three cases. From Fig. 7, one obtains that
t can be approximated as

p
2t̃ in practice. For a ramp signal,

h = [�0.800,�0.705,�0.610, · · · , 1.000]T and ⌧ = 0.5h.
t ⇡

p
2ce/K where ct = ce = 0.4355 is evaluated via (30).
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Fig. 6: Pd vs. number of quantizers N for a ramp signal in
subgraph (a) and a sinusoidal signal in subgraph (b).

Because of the gap between t and
p
2ce/K, we use linear

regression to fit t and obtain cea = 0.6717, which is much
more accurate than ce and will be utilized later to predict the
number of quantizers for permutation matrix recovery. For ran-
dom generated h, h is drawn from standard normal distribution
and ⌧ = 0.5h. It can be seen that t can be approximated by
1/K2. For a sinusoidal signal, h and ⌧ are drawn in the same
way as the second experiment. We use linear regression and
obtain t ⇡ 0.71/K2.23

⇡
p
2t̃ =

p
2ct,s/K↵t,s , ct,s = 0.5020

and ↵t,s = 2.23.
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100

t

Fig. 7: The relationship of t and K, including equispaced,
randomly generated and sinusoidal h cases.

Next, the empirical permutation recovery probability
Pr(⇧̂ = ⇧0) versus N or K are presented in Fig. 8, and
the theoretical approximations Pr(K,N) (21) and fPr(K,N)
(24) are plotted for comparison. In subgraph (a), (b) and (c),
we set K = 20. While in subgraph (d), we set N = 104. All
{hi}

K
i=1 are drawn in the same way as the second experiment.

We also evaluate the empirical permutation matrix recovery
probability from permuted data without the knowledge of
amplitude, which has negligible difference compared to that
with the knowledge of amplitude.

In subgraph(a), it can be seen that the permutation matrix
of the ramp signal can be recovered with high probability
given N � 5000. From N >

1+↵
c2t

K
2↵ lnK (26) where

ct = ce = 0.4355 and ↵ = 1, one can conclude that
N >

2
0.43552K

2 lnK|K=20 ⇡ 12636, which is more than
twice of 5000. Utilizing the fitted parameter cea, one obtains a
more accurate result that N >

2
0.67172K

2 lnK|K=20 ⇡ 5312
ensures permutation matrix recovery with high probability.
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For random h, N > 3K4 lnK|K=20 ⇡ 1.438 ⇥ 106 ensures
recovery with high probability, which is not accurate enough,
as subgraph(b) shows that N ⇡ 105 is enough for recovery of
permutation matrix. In subgraph(c), it is shown that N ⇡ 106

is enough for recovery of permutation matrix, which is also
inaccurate compared to the fitted results of the sinusoidal
signal N >

3.23
0.50202K

4.46 lnK|K=20 ⇡ 2.437 ⇥ 107. The
numerical results show that the theoretical bound Pr(K,N)
is accurate in predicting N with high probability in permuta-
tion matrix recovery, which demonstrates that fPr(K,N) may
be too conservative in predicting the number of quantizers
ensuring perfect permutation matrix recovery. In subgraph(d),
10000 = N >

2
0.67172K

2 lnK|K=26 ⇡ 9763. Thus K  26
will ensure permutation matrix recovery with high probability,
which is consistent with the numerical results.
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Fig. 8: Pr(⇧̂ = ⇧0) vs. N or K for the ramp signal in
subgraph (a)(d), random generated h in subgraph (b) and the
sinusoidal signal in subgraph (c). Pr(K,N) and fPr(K,N)

are evaluated via (21) and (24), respectively.

In Fig. 9, the relationship between flipping probabilities
(q0, q1) and number of quantizers Nreq (27) required for
permutation matrix recovery with high probability is verified.
Parameters are the same as those in Fig. 8-(a) except for the
values of (q0, q1). We use the results of the experiment in
which q0 = q1 = 0 to predict those in which q0 = q1 = 0.05,
q0 = q1 = 0.1 and q0 = q1 = 0.15, and plot the experimental
results for comparison. It can be seen that the predictions
are basically consistent with the experimental results, which
verifies (27).

VII. CONCLUSION

We study a scale parameter estimation and signal detection
problem from unlabeled quantized data for a canonical (known
signal shape) sensing model. A sufficient condition under
which the signal amplitude estimation problem can be solved
efficiently is provided. It is also shown that in some settings
the model can even be unidentifiable. Given that the number
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Fig. 9: Pr(⇧̂ = ⇧0) vs. number of quantizers N for a ramp
signal under different flipping probabilities (q0, q1).

of quantizers is limited, the performance of the unlabeled esti-
mator via reordering and alternating maximization algorithms
is good, although there is a gap between the performances of
labeled and unlabeled ML estimators. In addition, good initial
points are provided to improve the performance of an alternat-
ing maximization algorithm for general estimation problems.
As the number of quantizers increases, the performance of the
unlabeled estimator approaches that of the labeled estimator
due to the recovery of permutation matrix.

Furthermore, the performance of the approximation of
GLRT detector is evaluated, and the numerical results show
that the performance degradation of the approximation of
GLRT detector is significant in noisy environments, compared
to the GLRT given that the number of quantizers is small. As
the number of quantizers increases, the performance of the
approximation of GLRT approaches the GLRT. The explicit
approximated permutation matrix recovery probability predicts
that in order to find the true label of K time indexes, the
number of quantizers N should be on the order of K2↵ logK,
where ↵ is a constant depending on the signal shape and the
distribution of noise.

VIII. APPENDIX

A. Special cases for efficient recovery of ⇧

Proposition 3 In the problem (12), if there exist constants

c, d, e 2 R such that c⌧ + dh = e1, the elements of ⌘̃ should

be reordered according to the order of the elements of (q0 +
q1� 1)⌧ if c = 0, otherwise reordered according to h or �h.

Proof: We separately address the cases c = 0 and c 6= 0.
In the case of c = 0, h must be a constant vector. Reordering
according to (1� q0� q1)(h✓�⌧ ) is equivalent to reordering
according to (q0 + q1 � 1)⌧ . Since (q0, q1) are known in this
problem, ⌘̃ should be reordered according to ⌧ if q0+ q1 > 1
or �⌧ if q0 + q1 < 1. In the case of c 6= 0, we have ⌧ =
(e/c)1�(d/c)h. Consequently, h✓�⌧ = (✓+d/c)h�(e/c)1,
and ⌘̃ is reordered according to h or �h.

The above proposition deals with four cases, i.e., h is a
constant vector (c = 0), ⌧ is a constant vector (d = 0), h
is a multiple of ⌧ (e = 0) and each pair of components of
h and ⌧ lies in the same line c⌧i + dhi = e (cde 6= 0).
In [17] it is shown that reordering yields the optimal MLE
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given h = 1. Proposition 3 extends the special case in [17] to
more general cases. Consequently, we propose Algorithm 2,
an efficient algorithm for parameter estimation.

Algorithm 2 Reordering algorithm
1: If c = 0, reorder the elements of ⌘̃ according to the

elements of (q0 + q1 � 1)⌧ . The corresponding per-
mutation matrix is ⇧̂s0. Solve the parameter estimation
problem by numerical algorithm and obtain ✓̂ML =
argmax

✓
l(⌘̃; ✓, ⇧̂s0);

2: If c 6= 0, reorder the elements of ⌘̃ according to the
elements of h and �h. The corresponding permutation
matrices are ⇧̂s1 and ⇧̂s2;

3: Solve the single variable optimization problems and
obtain ✓̂s1 = argmax

✓
l(⌘̃; ✓, ⇧̂s1) and ✓̂s2 =

argmax
✓

l(⌘̃; ✓, ⇧̂s2). Choose ✓̂ML = ✓̂s1 given that

l(⌘̃; ✓̂s1, ⇧̂s1) � l(⌘̃; ✓̂s2, ⇧̂s2), otherwise ✓̂ML = ✓̂s2.

B. Proof of two special cases t̃ = O(K�↵)

1) t̃ = O(K�1): Let h be the shape of a ramp signal such
that hi = u�

(u�l)(i�1)
K�1 (u > |l|), and wij ⇠ N (0,�2

w). Then
the ordered sequence p(i) = pi, and t̃ can be approximated as

t̃ = min
i=1,··· ,K�1

pi � pi+1

=
a(1� q0 � q1)(u� l)

K � 1
min

i=1,··· ,K�1
fw(a⇠i)

⇡
a(1� q0 � q1)(u� l)fw(au)

K � 1
⇡ctK

�1
,

(29)

where mean value theorem is utilized for ⇠i 2 (hi+1, hi),
⇠1 ⇡ h1 = u is utilized when K is large, and

ct = a(1� q0 � q1)(u� l)fw(au). (30)

Therefore t̃ can be reshaped in the form of (23).
2) t̃ = O(K�2): Let hi be independently drawn from the

same distribution of wij/�w. The CDF of pi is

Fpi(x) = Pr(pi  x)

= Pr(q0 + (1� q0 � q1)Fw(ahi)  x)

= Pr

✓
hi 

1

a
F

�1
w

✓
x� q0

1� q0 � q1

◆◆

= Fw

✓
1

a
F

�1
w

✓
x� q0

1� q0 � q1

◆◆
.

(31)

Now we prove that t̃ = O(K�2) under certain conditions.
Given that hi and wij/�w are i.i.d. random variables and a =
1, the CDF Fpi(x) = (x� q0)/(1� q0 � q1), and the PDF of
pi is

fpi(x) =

(
1

1�q0�q1
, q0  x  1� q1,

0, otherwise.
(32)

Then the variates p(1), p(2) · · · , p(K) are distributed as K

descending ordered statistics from an uniform (q0, 1 � q1)
parent. For x  (1 � q0 � q1)/(K � 1), the CDF of t̃ can
be derived as [31, p. 135, equation (6.4.3)]

Ft̃(x) =Pr

✓
min

i=1,··· ,K�1
vi  x

◆

=1� Pr(v1 > x, v2 > x, · · · , vK�1 > x)

=1�


1�

(K � 1)x

1� q0 � q1

�K
.

(33)

For x � (1� q0 � q1)/(K � 1), Ft̃(x) = 1. Then the PDF of
t̃ is

ft̃(x) =

8
<

:

K(K�1)
1�q0�q1

h
1� (K�1)x

1�q0�q1

iK�1
, 0  x 

1�q0�q1
K�1 ,

0, otherwise.

(34)

The expectation of t̃ is

Et̃[t̃] =

Z 1

0
xft̃(x) dx =

Z 1�q0�q1
K�1

0
t̃ft̃(x) dx

=
K(K � 1)

1� q0 � q1

Z 1�q0�q1
K�1

0
x


1�

(K � 1)x

1� q0 � q1

�K�1

dx

=
1� q0 � q1

K2 � 1
.

(35)
Hence the probability that t̃ falls into [c1/K2

, c2/K
2] is

Pr(c1/K
2
 t̃  c2/K

2)

=Ft̃(c2/K
2)� Ft̃(c1/K

2)

=


1�

c1(K � 1)

(1� q0 � q1)K2

�K
�


1�

c2(K � 1)

(1� q0 � q1)K2

�K
. (36)

When K is large, (K � 1)/K ⇡ 1 and (1 � 1/(c0K))c
0K

⇡

1/e(c0 > 0). Equation (36) can be approximated as

Pr(c1/K
2
 t̃  c2/K

2) ⇡ e
� c1

1�q0�q1 � e
� c2

1�q0�q1 . (37)

Provided that q0 = q1 = 0, when c1 = 0.1 and c2 = 10,
Pr(0.1/K2

 t̃  10/K2) ⇡ 0.94; when c1 = 0.01 and
c2 = 100, Pr(0.01/K2

 t̃  100/K2) ⇡ 0.99. It can be
seen that t̃ falls near the order of magnitude of K

�2 with
high probabilities. Thus it is reasonable that t̃ = O(K�2).
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