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We consider conflict-free colorings of graph neighborhoods: Each vertex of the graph must 
be assigned a color so that for each vertex v there is at least one color appearing exactly 
once in the neighborhood of v . The goal is to minimize the number of used colors. We 
consider both the case of closed neighborhoods, when the neighborhood of a node includes 
the node itself, and the case of open neighborhoods when a node does not belong to its 
neighborhood. In this paper, we study complexity aspects of the problem. We show that 
the problem of conflict-free coloring of closed neighborhoods is NP-complete. Moreover, we 
give non-approximability results for the conflict-free coloring of open neighborhoods. From 
a positive point of view, both problems become tractable if parameterized by the vertex 
cover number or the neighborhood diversity number of the graph. We present simple 
algorithms which improve on existing results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let H = (V , E) be a hypergraph with vertex set V and edge set E . A coloring of (the vertices of) H is a function 
C : V → Z

+ . A k-coloring of H is a coloring C with |C(V )| ≤ k, for some k ≥ 1. A coloring is called proper if no edge e ∈ E
containing at least two vertices is monochromatic. The smallest number of colors needed to properly color the vertices of 
H is called the chromatic number of H and is denoted by χ(H). A coloring is said to be conflict-free if every hyperedge 
contains a vertex whose color is unique among those assigned to the vertices of the hyperedge.

Definition 1 (CF coloring). Let C be a coloring of a hypergraph H = (V , E). C is a conflict-free coloring of H if for each e ∈ E
there exists a vertex v ∈ e such that C(u) �= C(v) for any u ∈ e with u �= v .

The study of conflict-free colorings was initially motivated by a frequency assignment problem in cellular networks [10]. 
Such networks consist of fixed-position base stations, each assigned a fixed frequency, and roaming clients. Roaming clients 
have a range of communication and come under the influence of different subsets of base stations. This situation can be 
modeled by means of a hypergraph whose vertices correspond to the base stations. The range of communication of a mobile 
agent, that is, the set of base stations it can communicate with, is represented by a hyperedge e ∈ E . A CF-coloring of such 
a hypergraph implies an assignment of frequencies, to the base stations, which enables clients to connect to a base station 
holding a unique frequency in the client’s range, thus avoiding interferences. The goal is to minimize the number of assigned 
frequencies.

CF-coloring also finds application in RFID (Radio Frequency Identification) networks. RFID allows a reader device to sense 
the presence of a nearby object by reading a tag attached to the object itself. To improve coverage, multiple RFID readers 
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can be deployed in an area. However, two readers trying to access a tagged device simultaneously might cause mutual 
interference. It can be shown that CF-coloring of the readers can be used to assure that every possible tag will have a time 
slot and a single reader trying to access it in that time slot [23].

Due to both its practical motivations and its theoretical interest, conflict-free coloring has been the subject of several 
papers; a survey of results in the area is given in [23]. The theoretic study of the CF-chromatic number in general graphs 
and hypergraphs was initiated in [22] and has recently raised much interest due to the novel combinatorial and algorithmic 
questions it poses, see [2–4,6,15,16,18].

1.1. CF-colorings of neighborhoods

In this paper we study the conflict-free coloring of hypergraphs induced by the neighborhoods of the vertices of a 
graph [22].

Given a graph G = (V , E) and a vertex u ∈ V , the open neighborhood NG(u) of u is defined as the set consisting of all the 
vertices in G connected to u. The set NG [u] = NG(u) ∪ {u} is called the closed neighborhood of u. We will write N(u) and 
N[u] whenever G is clear from the context.

A conflict-free coloring with respect to the open (resp. closed) neighborhoods of G is defined as the conflict-free coloring 
of the hypergraph with vertex set V and edge set {NG (u) | u ∈ V } (resp. {NG [u] | u ∈ V }). For the sake of simplicity, we 
now reformulate Definition 1 in terms of the graph G .

Given a graph G = (V , E) and a coloring C , we say that the set U ⊆ V has a unique color under C if there exists a color 
c such that |{v ∈ U | C(v) = c}| = 1. Equivalently, we say that c is unique for U . All the graphs considered in this paper are 
supposed to be connected.

Definition 2. Consider a graph G = (V , E).

CF-ON coloring: A coloring C is called conflict-free with respect to the open neighborhoods of G if for each u ∈ V the set 
N(u) has a unique color under C .

CF-CN coloring: A coloring C is called conflict-free with respect to the closed neighborhoods of G if for each u ∈ V the set 
N[u] has a unique color under C .

The smallest number of colors needed by any possible CF-ON (resp. CF-CN) coloring of G is called the CF-ON (resp. 
CF-CN) chromatic number of G and is denoted by χCF(G) (resp. χCF[G]).

It is possible to show (see also [22]) that, given a graph G , the same greedy upper bound ΔG + 1 (where ΔG is the 
maximum degree of a vertex in G) holds for the chromatic number, the CF-ON chromatic number, and the CF-CN chromatic 
number. However, as also noticed in [22], these values can be quite different and no ordering among them is valid for any 
graph. Examples are given in Fig. 1. Consider first the complete graph Kn on n vertices, it is not difficult to see that

χCF[Kn] = 2 < χCF(Kn) = 3 < χ(Kn) = n.

Moreover, it is easy to show that for any tree T

χCF[T ] = χCF(T ) = χ(T ) = 2.

Fig. 1. The graph K8, a tree T , and the graph B4 with the corresponding colorings. For each node c, [c′], (c′′) represent the colors assigned to the node in a 
proper, a CF-CN, and a CF-ON coloring, respectively.
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Finally, consider the bipartite graph B� = (U , V , E) such that |U | = �, V = {vu,w | u, w ∈ U , u �= w}, and E contains the 
edges (vu,w , u) and (vu,w , w), for each u, w ∈ U . It holds

χ(B�) = 2 = χCF[B�] < χCF(B�) = � = ΔB�
+ 1 ≈

√
2
(|V | + |U |).

In this paper we study complexity aspects of the conflict-free colorings of graph open/closed neighborhoods. In Sec-
tion 2, we show that the problem of determining the CF-CN chromatic number of a graph is NP-complete and give 
non-approximability results for the CF-ON coloring problem. On the positive side, in Section 3 we show that both the 
CF-CN and the CF-ON coloring problems are tractable when restricted to graphs with bounded vertex cover number or with 
bounded neighborhood diversity [13]; our results improve on the ones implied by the metatheorems in [20].

2. Computational complexity

In this section we study the computational complexity of computing optimal CF-colorings with respect to open and 
closed neighborhoods. We show that determining whether a graph has a CF-CN coloring of a given size is NP-complete. We 
prove the hardness of approximating the CF-ON chromatic number.

2.1. Conflict-free closed neighborhood colorings

To prove our NP-completeness result, let us consider the decision version of the CF-CN coloring problem.

CF-CNC (CF Closed Neighborhood Coloring)
Instance: A graph G = (V , E) and an integer bound k.
Question: Is there a function C : V → Z

+ such that |C(V )| ≤ k, and for each u ∈ V , the set N[u] has a unique color 
under C?

CF-CNC is clearly in NP. We prove its NP-hardness by a reduction from the well known NP-complete 3-CNF SAT problem. 
Given any 3-CNF formula Φ = K0 ∧ K1 ∧· · ·∧ K�−1, where Ki = (xi

1 ∨ xi
2 ∨ xi

3) for i = 0, . . . , � −1, we outline how to construct 
a graph GΦ = (V , E) which has a CF-CN coloring with 2 colors (CF-CN 2-coloring) if and only if Φ is satisfiable.

Let GΦ(Ki) be the subgraph, given in Fig. 2(a), associated to the clause Ki , for any i = 0, . . . , � − 1, where each vertex 
vi

h corresponds to the literal xi
h in Ki , for h = 1, 2, 3. Furthermore, let ANDi be the gadget, given in Fig. 2(b), that we use to 

join vertex ui in GΦ(Ki) with vertex ui+1 in GΦ(Ki+1),1 for i = 0, . . . , � − 1. The graph GΦ is then obtained as follows:

• Join GΦ(Ki) with GΦ(Ki+1) using ANDi , for i = 0, . . . , � − 1; in particular, connect ui and wi
1 with an edge, and connect 

wi
5 and ui+1 with another edge.

• Connect with an edge, each vertex corresponding to a variable x with each vertex corresponding to the variable x.

The construction of graph GΦ can obviously be done in polynomial time. An example is given in Fig. 2(c).

Lemma 1. Consider any CF-CN 2-coloring of GΦ . If there exists a variable x such that x appears in Ki and x appears in K j , for some 
i �= j, then the color assigned to the vertex corresponding to x in GΦ(Ki) is different from the color assigned to the vertex corresponding 
to x in GΦ(K j).

Proof. Let C be a CF-CN 2-coloring of GΦ . Let vi
h and v j

� be the vertices corresponding to x and x in GΦ(Ki) and GΦ(K j), 
respectively. By contradiction, suppose that C(vi

h) = C(v j
�). Since the neighbors of vi

h include v j
� and two leaves and since 

N[vi
h] has a unique color (recall that the coloring uses 2 colors), then at most one neighbor of vi

h has color different from 
C(vi

h). Hence, at least one of the two neighbor leaves of vi
h has color C(vi

h). This implies that the closed neighborhood of 
such a leaf consists of two nodes of the same color. This contradicts the assumption of a CF-CN coloring. �
Lemma 2. For any CF-CN 2-coloring C of GΦ , we have C(u0) = · · · = C(u�−1).

Proof. For each i = 0, . . . , � − 1, the edge (ui, wi
1) connects GΦ(Ki) to the ANDi gadget and the edge (wi

5, u
i+1) connects 

the ANDi gadget to GΦ(Ki+1). We first prove that C(ui) = C(wi
2). By contradiction, suppose that C(ui) �= C(wi

2). Recalling 
that N[wi

1] = {wi
1, u

i, wi
2, x}, where x is a leaf, must have a unique color under C , we have that C(wi

1) = C(x). Therefore, 
we have a contradiction since N[x] = {x, wi

1} would contain two nodes with the same color.
With a proof similar to the above one, we can prove that C(wi

2) = C(wi
4) and C(wi

4) = C(ui+1). Hence, the lemma 
follows. �

1 The operation + refers to the addition modulo � when applied to the indices of the clauses in GΦ .
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Fig. 2. (a) GΦ(Ki). (b) ANDi gadget. (c) GΦ for Φ = (x0
1 ∨ x0

2 ∨ x0
3) ∧ (x1

1 ∨ x1
2 ∨ x1

3) ∧ (x2
1 ∨ x2

2 ∨ x2
3) = (a ∨ b ∨ c) ∧ (a ∨ c ∨ d) ∧ (a ∨ b ∨ d).

Lemma 3. For each CF-CN 2-coloring C of GΦ , and for any i = 0, . . . , � − 1, if C(ui) = 1 then at least one of the nodes corresponding 
to the literals in Ki has color 1.

Proof. We show that any CF-CN 2-coloring C of GΦ that assigns 0 to the three nodes in GΦ(Ki) corresponding to the 
literals in Ki also assigns color 0 to ui , that is C(vi

1) = C(vi
2) = C(vi

3) = 0 implies C(ui) = 0. We first notice that N[vi
h], for 

h = 1, 2, 3, includes two leaves whose closed neighborhoods must have a unique color. Hence each of these leaves must 
have color 1, otherwise the closed neighborhood would consist of two nodes of the same color 0. It follows that all the 
neighbors of vi

h must have color 1. This forces any CF-CN 2-coloring of the remaining vertices in GΦ(Ki) to be as in Fig. 3, 
thus proving the lemma. �
Theorem 1. CF-CNC is NP-complete.

Proof. We prove that GΦ has a CF-CN 2-coloring iff Φ is satisfiable. Let C be any CF-CN 2-coloring of GΦ . By Lemma 2, 
w.l.o.g. we can assume that

C
(
u0) = C

(
u1) = · · · = C

(
u�−1) = 1. (1)

By (1) and Lemma 3, at least one of the vertices corresponding to the literals in Ki has color 1, for i = 0, . . . , � − 1. 
Hence, if we set

xi
h = true iff C

(
vi

h

) = 1, for i = 0, . . . , � − 1 and h = 1,2,3,

then by Lemma 1, the values assigned to the literals are consistent, and for each Ki there is at least one literal whose value 
is true. It follows that Φ is satisfiable.

Assume now that Φ is satisfiable. We use the truth assignment of Φ to get a CF-CN 2-coloring of GΦ . For each i =
0, . . . , � − 1 and h = 1, 2, 3, we color the vertices corresponding to true literals with color 1 and the vertices corresponding 
to false literals with color 0, that is, we set

C
(

vi
h

) =
{

0 if xi
h = false,

1 if xi = true.
h
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Fig. 3. The CF-CN 2-coloring of GΦ(Ki) when vi
1, vi

2 and vi
3 have color 0.

We then color all the neighbors of vi
h with the color opposed to that of vi

h itself, i.e., if vi
h is colored with 1 then all its 

neighbors are colored with 0, and vice-verse. This implies that N[vi
h] has a unique color under C as well as the closed 

neighborhood of each of the two neighbor leaves of vi
h . Notice that if vi

h has a neighbor v j
h′ , for some j �= i, then vi

h and 
v j

h′ have properly opposite colors since they correspond to a variable and its negation in two different clauses.
Finally, the coloring of vertices vi

h , for i = 0, . . . , � − 1 and h = 1, 2, 3, and the satisfiability of Φ imply that at least one 
vertex vi

h , in each GΦ(Ki), has color 1, i.e., C(vi
h) = 1. It is then easy to verify that any CF-CN 2-coloring of the remaining 

vertices of each GΦ(Ki) assures that ui has color 1, for i = 0, . . . , � − 1. The coloring of the vertices of GΦ(Ki) uniquely 
specify the color that we can assign to the neighbors wi

1 and wi−1
5 of ui and to the neighbors wi+1

1 and wi
5 of ui+1. Now 

we color wi
2 and wi

4 with 1 and wi
3 with 0. Finally, we complete the CF-CN 2-coloring C of GΦ by assigning to each leaf 

connected a vertex wi
j the color opposite to C(wi

j), for each j = 1, . . . , 5. �
The NP-completeness of CF-CNC is proved for k = 2 colors. Hence, Theorem 1 implies the following inapproximability 

result [14].

Corollary 1. CF-CNC chromatic number is hard to approximate within a factor less that 3/2 unless P = N P .

2.2. Conflict-free open neighborhood colorings

Let us consider the decision version of the CF-ON coloring problem.

CF-ONC (CF Open Neighborhood Coloring)
Instance: A graph G = (V , E) and an integer bound k.
Question: Is there a function C : V → Z

+ such that |C(V )| ≤ k, and for each u ∈ V , the set N(u) has a unique color 
under C?

It is easy to see that CF-ONC is in NP. We first prove that CF-ONC is NP-hard by considering k = 2 and showing a reduction 
from the NP-complete problem Not-All-Equal-3-SAT [14]. Moreover, when k ≥ 3, we show a reduction from GRAPH 
COLORING. Since our reduction is gap-preserving [17], it implies corresponding inapproximability results for the problem 
of determining the CF-ONC chromatic number.

Theorem 2. CF-ONC is NP-complete.

Proof. We give a reduction from the NP-complete Not-All-Equal-3-SAT problem [14].

NAE-3SAT (Not-All-Equal-3-SAT)
Instance: A boolean formula Φ that is an instance of 3-SAT.
Question: Is there a truth-value assignment for the variables of Φ such that each of its clauses has at least one true 
literal and at least one false literal?

Consider an instance of NAE-3SAT, that is, a formula Φ = K1 ∧ K1 ∧ · · · ∧ K� , where Ki = (xi
1 ∨ xi

2 ∨ xi
3) for i = 1, . . . , �. 

We outline how to construct a graph GΦ = (V , E) which has a CF-ON coloring with 2 colors (CF-ON 2-coloring) if and only 
if Φ is a yes instance for NAE-3SAT. The graph GΦ is obtained as follows:
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Fig. 4. GΦ for Φ = (x1
1 ∨ x1

2 ∨ x1
3) ∧ (x2

1 ∨ x2
2 ∨ x2

3) ∧ (x3
1 ∨ x3

2 ∨ x3
3) = (a ∨ b ∨ c) ∧ (a ∨ c ∨ d) ∧ (a ∨ b ∨ d).

• For i = 1, . . . , �, the graph GΦ contains a vertex ui and the three vertices vi
1, v

i
2, v

i
3, where vi

h corresponds to the literal 
xi

h in Ki , for h = 1, 2, 3. The vertices ui, vi
1, v

i
2, v

i
3 induce a star with vertex ui and edges (ui, vi

1), (ui, vi
2), (ui, vi

3).

• For each 1 ≤ i ≤ j ≤ � and 1 ≤ h, s ≤ 3 if xi
h = x j

s then the graph GΦ contains the node w(xi
h, x j

s ) and the two edges 
(vi

h, w(xi
h, x j

s )) and (w(xi
h, x j

s ), v
j
s ).

The construction of graph GΦ can obviously be done in polynomial time. An example is given in Fig. 4.
Let C be any CF-ON 2-coloring of GΦ . Since the open neighborhood of each ui , for i = 1, . . . , �, has a unique color then 

N(ui) is not monocromatic, that is among the three vertices vi
1, v

i
2, v

i
3 corresponding to the literals in Ki at least one has 

color 1 and at least one has color 0. If we set

xi
h = true iff C

(
vi

h

) = 1, for i = 1, . . . , � and h = 1,2,3,

then every clause contains at least one true literal and at least one false literal. Moreover, the values of the literals are 
consistent since the colors of the two vertices in N(w(xi

h, x j
s )) are different for each w(xi

h, x j
s ) in GΦ , thus implying that the 

literals xi
h and x j

s get opposite values.
Assume now that Φ is a yes instance for NAE-3SAT. We can use the truth assignment of Φ to get a CF-ON 2-coloring 

of GΦ . For each i = 1, . . . , � and h = 1, 2, 3, set

C
(

vi
h

) =
{

0 if xi
h = false,

1 if xi
h = true.

(2)

Furthermore, we set C(ui) = 1 for each i = 1, . . . , �, and C(w(·, ·)) = 0 for each w(·, ·). The coloring of vi
1, v

i
2, v

i
3 assures 

that N(ui) is not monochromatic. Moreover, the neighborhood of each vertex vi
h consists of the vertex ui with C(ui) = 1

and, of some w(xi
h, ·), if any; this assures that N(vi

h) has 1 as a unique color. Finally, any vertex w(xi
h, x j

s ) has exactly two 
neighbors corresponding to two literals xi

h = x j
s and, by (2), C(vi

h) �= C(v j
s ). �

Theorem 3. CF-ONC chromatic number is hard to approximate within a factor n1/2−ε , for each ε > 0, unless P = N P .

Proof. Consider any graph G ′ = (V ′, E ′) and define the graph G = (V , E) as follows

V = V ′ ∪ {
nuv

∣∣ (u, v) ∈ E ′} and E = {
(u,nuv), (nuv, v)

∣∣ (u, v) ∈ E ′},
where, nuv and nvu , for (u, v) ∈ E ′ , denote the same vertex. The construction of graph G = (V , E) can obviously be done in 
polynomial time. We now show that for any k ≥ 3 the graph G ′ is k-colorable (i.e., G ′ can be properly colored with k colors) 
if and only if G has a CF-ON k-coloring.

First, assume that G has a CF-ON k-coloring C . By construction, for any nuv ∈ V we have N(nuv) = {u, v}; hence, the 
CF-ON k-coloring C assures that C(u) �= C(v). This allows to use the coloring C , restricted to the vertices in V ′ ⊂ V , as a 
k-coloring of G ′ .

Now, assume that G ′ is k-colorable. Let C ′ be a k-coloring of G ′ . The algorithm CF-Visit, given in Fig. 5, gives a coloring 
of the vertices in V that we will show to be a CF-ON k-coloring of G .

The algorithm CF-Visit makes a depth-first graph traversal of G ′ . It assigns to the vertices in V ′ the same color as in 
the coloring C ′ . Moreover, it assigns colors to the vertices in V \ V ′ so that for each u ∈ V ′ exactly one of the neighbors 
of u in G gets the color of u. The algorithm uses, for each node v ∈ V ′ , two sets T v and B v containing the tree edges 
and the back edges, respectively, visited starting from v during the depth first traversal of G ′ . The algorithm starts calling 
CF-Visit(G ′, C ′, r) where r is any node in V ′ .
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1. Set T v = B v = ∅, for each v ∈ V ′ [T v is the set of tree edges visited starting from v]
[B v is the set of back edges visited starting from v]

2. CF-Visit(G ′, C ′, u)

3. C(u) = C ′(u)

4. while there exists (u, v) ∈ E ′ \ (Tu ∪ Bu) with v unvisited
5. Tu = Tu ∪ {(u, v)}
6. if |Tu | = 1 then C(nuv) = C ′(u)

7. else Set C(nuv) to be any color in {0, . . . ,k − 1} \ {C ′(u), C ′(v)}
8. CF-Visit(G ′, C ′, v)

9. while there exists (u, v) ∈ E ′ \ (Tu ∪ Bu) with v visited
10. Bu = Bu ∪ {(u, v)}
11. if |Tu | = 0 and |Bu | = 1 then C(nuv) = C ′(u)

12. else Set C(nuv) to be any color in {0, . . . ,k − 1} \ {C ′(u), C ′(v)}

Fig. 5. The CF-ON k-coloring of G .

We have C(u) = C ′(u) �= C ′(v) = C(v) for each u, v ∈ V ′ such that (u, v) ∈ E ′ . Hence, the neighborhood N(nuv) = {u, v}
has a unique color, for each nuv ∈ V \ V ′ .

To complete the proof we will prove that also the neighborhood N(u) has a unique color, for each u ∈ V ′ . Let u be 
any vertex in V ′ . The algorithm CF-Visit (excepting when u = r is the starting vertex of the algorithm) assures that there 
exists a vertex x such that (x, u) ∈ Tx (i.e., (x, u) has been visited starting from x). As effect of this visit we have either 
C(nux) = C ′(x) or C(nux) in {0, . . . , k − 1} \ {C ′(u), C ′(x)}. In any case

C(nux) �= C(u), (3)

since C(u) = C ′(u) �= C ′(x) (recall that u and x are neighbors in G ′ and C ′ is a k-coloring of G ′).
By algorithm CF-Visit, after u has been visited, each edge (u, v), for v ∈ N(u) \ {x}, is visited and inserted either in Tu or 

in Bu . Then a color to the vertex nuv is assigned. We now distinguish two cases according to the sizes of Tu and Bu and 
prove that in each case N(u) has a unique color.

• Let |Tu | ≥ 1 or |Bu| ≥ 1. For exactly one vertex v ∈ N(u) − {x} (cf. lines 6 and 11 of the algorithm CF-Visit) we have

C(nuv) = C ′(u) = C(u). (4)

For each w ∈ N(u) \{x, v} we have C(nuw) ∈ {0, . . . , k −1} \{C ′(u), C ′(w)}. Recalling that C ′(u) = C(u), we have C(nuw) �=
C(u). By this, (3), and (4) we have

C(nuv) = C(u) and C(nuw) �= C(u) for each w ∈ N(u) \ {v}
and C(nuv) is a unique color in N(u).

• Let |Tu | = |Bu | = 0. In this case N(u) = {nux} has obviously a unique color.

We conclude the proof, by noticing that the above reduction is a gap-preserving reduction [17] from the MINIMUM 
GRAPH COLORING, which is known to be NP-Hard to approximate within n1−ε , for any ε > 0 [24]. �
3. Parameterized complexity

Some NP-hard problems can be solved by algorithms that are exponential only in the size of a fixed parameter while 
they are polynomial in the size of the input. Such algorithms are called fixed-parameter tractable, because the problem can 
be solved efficiently for small values of the fixed parameter [9,21]. Formally, a parameterized problem with input size n and 
parameter t is called Fixed Parameter Tractable (FPT) if it can be solved in time f (t) ·nc , where f is a function only depending 
on t and c is a constant.

In this section, we study FPT algorithms for the CF-CNC and CF-ONC problems. Usually, a problem can be parameterized 
by a parameter that is associated to the problem, such as the number of colors k in CF-CNC and CF-ONC. However, this 
approach does not make the parameterized complexity theory applicable to CF-CNC and CF-ONC according to Theorems 1, 
2, and 3. Courcelle’s Theorem [8] shows that problems that can be expressed by an MSO formula are solvable in linear time 
on graphs of bounded treewidth. Since both CF-CN and CF-ON k-coloring problems can be expressed by MSO formulas for 
any fixed k, both problems are FPT when parameterized by treewidth.

An important quality of a parameter is its easy computability. Unfortunately there are parameters as clique-width whose 
computation is very hard; recently, it has been shown that determining clique-width is NP-hard [11], but the parameterized 
complexity of recognizing graphs of bounded clique-width is still an open problem [7]. Other parameters as treewidth, 
rankwidth, and vertex cover [5,12] are all computable in FPT time when their respective parameters are bounded. Here, 
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we devote our attention to neighborhood diversity, a parameter that was first introduced in [20]. It has recently received 
attention [13,19] since it is less restrictive than other parameters and, in particular, it has the nice property to be computable 
in polynomial time (see [20]). We show that both CF-CNC and CF-ONC become tractable if parameterized by the vertex 
cover or the neighborhood diversity of the graph. We present simple algorithms which improve on existing results.

Definition 3. Given a graph G = (V , E), two vertices u, v ∈ V have the same type iff N(v) \ {u} = N(u) \ {v}.
The graph G has neighborhood diversity t , if there exists a partition of V into at most t sets, V 1, V 2, . . . , Vt , such that all 

the vertices in V i have the same type, for i = 1, . . . , t .
The family V = {V 1, V 2, . . . , Vt} is called the type partition of G .

The proof of the following theorem is given in Section 3.1.

Theorem 4. Let t be the neighborhood diversity of G. It is possible to decide the CF-CNC (resp. CF-ONC) question for a fixed number 
of colors k in time 2O (kt log k) when k ≤ 2t and in polynomial time when k > 2t.

Considering that the type partition V can be obtained in polynomial time, one has that both the CF-CNC problem and 
the CF-ONC problem are in the class FPT when parameterized by the neighborhood diversity. We stress that the existence 
of FPT algorithms is also implied by the results presented in [20]. However, it is easy to verify that the running time of the 
Lampis’ results is 2O (kt2k) . Furthermore, our algorithm characterizes to be very simple.

The result of Theorem 4 can be used to have FPT linear time algorithms with vertex cover size as parameter for both
CF-CNC and CF-ONC. Indeed, if a graph has vertex cover d, it cannot have a type partition with more than 2d +d sets, that 
is, t ≤ 2d + d [13]. We recall that while graphs of bounded vertex cover have bounded neighborhood diversity, the opposite 
is not true since large cliques have a neighborhood diversity 1 [13].

Theorem 5. Given a vertex cover of G of size at most d and a fixed number of colors k, it is possible to decide the CF-CNC (resp., 
CF-ONC) question in time 2O (k2d log k) when k ≤ d (resp., k ≤ 2d) and in polynomial time when k > d (resp., k > 2d).

Again Theorem 5 improves on the results implied by the general ones in [20], indeed the time to decide the CF-CNC
(resp., CF-ONC) coloring question for a fixed number of colors k, applying the algorithm in [20], is doubly exponential in k
and d, namely, 22O (k+d)

.
We end by noticing that fast coloring exist when the number k of colors is large enough with respect to the vertex cover 

size d, namely if we are looking either for a CF-CN k-coloring with k ≥ d + 1 or for a CF-ON k-coloring with k ≥ 2d + 1.

Lemma 4. If G has a vertex cover of size d then

χCF[G] ≤ d + 1 and χCF(G) ≤ 2d + 1.

Proof. Let W be a vertex cover of size d for G and let I = V (G) \ W . We recall that I is an independent set.
A CF-CN (d + 1)-coloring C of G can be obtained as follows:

1. To each u ∈ I assign the color C(u) = 0.
2. To each w ∈ W assign C(w) ∈ {1, . . . , d} so that C(w) �= C(v) whenever w �= v .

According to this coloring, the unique color in N[v] is C(v) if v ∈ W and 0 if v ∈ I .
A CF-ON (2d + 1)-coloring C of G can be obtained as follows:

1. To each u ∈ I assign the color C(u) = 0.
2. To each w ∈ W assign C(w) ∈ {1, . . . , d} so that C(w) �= C(v) whenever w �= v .
3. For each w ∈ W if C(N(w)) = {0}2 choose one node u ∈ N(w) and recolor it with any C(u) ∈ {d + 1, . . . , 2d} that is not 

already used by C .

According to this coloring, each N(w), for w ∈ W , has at least one unique color, that is, either the color of any of its 
neighbors in W or the color of the selected neighbor in I (cf. 3). Furthermore, since I is an independent set, any u ∈ I has 
so many unique colors in N(u) as the number of its neighbors in W . �

2 Notice that if W is minimal then each vertex in W has at least one neighbor in I .
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3.1. Parameterization with neighborhood diversity

Let G = (V , E) be a graph with type partition V = {V 1, V 2, . . . , Vt}. By Definition 3, the vertices of a given type, i.e., the 
vertices of V i , have the same neighborhood (excluding the vertices in V i itself); furthermore, each V i induces either a clique 
or an independent set in G . We will denote by cl(G) and ind(G) the number of sets in the type partition V = {V 1, V 2, . . . , Vt}
of G that are cliques and independent sets, respectively. For each V i, V j ∈ V , we get that either each vertex in V i is a 
neighbor of each vertex in V j or no vertex in V i is a neighbor of any vertex in V j .

We can then define the type graph of G as the graph H = ({1, . . . , t}, E H ) where

E H = {
(i, j) | 1 ≤ i < j ≤ t and each vertex in V i is a neighbor of each vertex in V j

}
.

The vertex size of H is t and the degree of each vertex i in H is degH (i) ≤ t − 1. Hence, if the neighborhood diversity t is 
bounded, then the size and the maximum degree of H have bounded values.

Lemma 5.

(1) χCF[G] ≤ χCF[H] + ind(G) + 1.
(2) χCF(G) ≤ χCF(H) + cl(G) + 1.

Proof. Let us first prove (1). Consider a CF-CN coloring C H of H that uses χCF[H] colors. Let B = {0, b1, . . . , bind(G)} be a set 
of ind(G) + 1 colors not used by C H . We define a coloring CG of the vertices of G by using C H and the colors in B .

• For each i = 1, . . . , t , choose any vertex ui ∈ V i and assign each v ∈ V i the color

CG(v) =
⎧⎨
⎩

C H (i) if v = ui,

0 if v ∈ V i \ {ui} and V i is a clique,

a color in B \ (
⋃i−1

j=1 C(V j) ∪ {0}) otherwise.

Now we prove that the above is a CF-CN coloring of G , that is, the closed neighborhood of each vertex in any V i has a 
unique color. Consider first the vertex ui ∈ V i whose color is CG (ui) = C H (i). Let xi ∈ NH [i] be such that C H (xi) is a unique 
color in NH [i] (i.e., either xi = i or, xi �= i and (xi, i) ∈ E H ). By noticing that C H (xi) is used exactly once in V xi (eventually 
xi = i), and it is not used in any V� such that (i, �) ∈ E H and � �= xi , we get that C H (xi) is a unique color in NG [ui]. Consider 
now v ∈ V i with v �= ui . If C H (i) is not a unique color in NH [i], that is xi �= i, then by using the same argument used 
above we have that C H (xi) is unique in NG [v]. Assume now that C H (i) is a unique color in NH [i], that is xi = i. If V i is an 
independent set then CG (v) is a color in B \ {0} that is not used in any V� such that (i, �) ∈ E H . This implies that CG (v) is 
unique in NG [v]. If V i is a clique then CG (v) = 0. Since ui and v are neighbors in the clique V i and, since CG (ui) = C H (i)
is unique in V i and it is not used in any V� such that (i, �) ∈ E H we have that CG (ui) is the unique color in NG [v].

Now, we prove (2). Consider a CF-ON coloring C H of H that uses χCF(H) colors. Let B = {0, b1, . . . , bcl(G)} be a set of 
cl(G) + 1 colors not used by C H . Define a coloring CG of the vertices of G as follows.

• For each i = 1, . . . , t , choose any vertex ui ∈ V i and assign each v ∈ V i the color

CG(v) =
{ C H (i) if v = ui and V i is an independent set,

a color in B \ (
⋃i−1

j=1 C(V j) ∪ {0}) if v = ui and V i is a clique,

0 if v ∈ V i \ {ui}.
Now we prove that CG is a CF-ON coloring of G . In particular, we show that the (open) neighborhood of each vertex in 
any V i has a unique color. Recall that by the coloring C H , there exists xi �= i with (i, xi) ∈ E H such that C H (xi) is a unique 
color in NH (i). First consider ui ∈ V i . The coloring implies that CG (uxi ) is unique in NG(ui) (recall that uxi has either color 
C H (xi) or a color never used in any other set of the partition type). Let v ∈ V i and v �= ui . Recall that CG (v) = 0. If V i is an 
independent set then CG (uxi ) is unique in NG (v). If V i is a clique then at least one between CG (ui) and CG (uxi ) is unique 
in NG(v). �

In the following we present an FPT-algorithm for the CF-CNC coloring problem with parameter t . To this aim we first 
need some definitions and a preliminary result.

Fix the number k of colors. Let hi = min{|V i |, k +1}. For each V i ∈ V , consider any subset V ′
i ⊆ V i such that |V ′

i | = hi and 
denote by G ′ the subgraph of G induced by the set 

⋃t
i=1 V ′

i . The sets V ′
1, . . . , V

′
t are disjoint and the number of vertices of 

G ′ is upper bounded by t(k + 1).

Lemma 6. If there exists a CF-CN k-coloring of G then G ′ admits a CF-CN k-coloring.
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Proof. We produce a coloring C ′ of the vertices in each V ′
i by using the colors of a CF-CN k-coloring C of G . If V ′

i = V i
then C ′(v) = C(v) for each vertex v ∈ V ′

i . If V ′
i ⊂ V i then |V ′

i | = k + 1 and V i contains at least one color that is used twice; 
hence, if oi colors are used exactly once in V i under C , then C ′ assigns these colors to oi vertices in V ′

i ; moreover C ′ assigns 
to the remaining vertices of V ′

i some other color in C(V i).
We now prove that C ′ is a CF-CN coloring of G ′ . By definition of C ′ , if a color is unique in V i then it is also unique in 

V ′
i , for i = 1, . . . , t . Moreover, for each v ∈ V ′

i there exists w ∈ V i (eventually, v = w) such that C ′(v) = C(w). Recalling that 
NG ′ [v] ⊆ NG [w] and that NG [w] has a unique color, we have that NG ′ [v] has a unique color. �

Lemma 5 gives an algorithm that obtains a CF-CN k-coloring of G when k ≥ χCF[H] + ind(G) + 1. Now we present 
an FPT-algorithm with parameter t that decides the CF-CNC coloring problem for a fixed number of colors k, where 
k ≤ χCF[H] + ind(G).

Our algorithm considers all the possible k-colorings of vertices of G ′ . If none of these colorings is a CF-CN k-coloring of 
G ′ then we answer no to the CF-CNC question for G . Otherwise, we answer yes and use any of the CF-CN k-coloring of G ′
to color the vertices of G as follows: We use the colors of the vertices in V ′

i to color any hi vertices in V i ; if hi = k + 1 then 
we select any color that is used at least twice in V ′

i and we assign it to the remaining |V i | − (k + 1) vertices in V i .

Lemma 7. Let t be the neighborhood diversity of G. It is possible to decide the CF-CNC question for a fixed number of colors k in time 
O (k(k+1)t(k + 1)2t2) whenever k ≤ χCF[H] + ind(G).

Proof. Lemma 6 proves that, when the above algorithm answers no to the CF-CN k-coloring question for G , then it is not 
possible to have a CF-CN k-coloring of G .

We prove now that if the answers is yes then we obtain a CF-CN k-coloring of G . To this aim we show that NG [v] has 
a unique color for any v ∈ V j and V j ∈ V . If v ∈ V ′

j ⊆ V j then NG [v] has a unique color since NG ′ [v] has a unique color. 
If, otherwise, v ∈ V j \ V ′

j then v has the same color of some w ∈ V ′
j and, since NG [v] = NG [w] and NG ′ [w] has a unique 

color, we have that also NG [v] has a unique color.
The number of all possible colorings of the vertices of G ′ is O (k(k+1)t). Moreover, one needs O (((k + 1)t)2) to check 

whether a given coloring is a CF-CN k-coloring of G ′ . Hence, the running time for deciding if a CF-CN k-coloring of G exists 
is

O
(
k(k+1)t((k + 1)t

)2)
.

Notice that the time to extend the CF-CN k-coloring to G is included in the above bound. �
In Lemma 5 we have presented an algorithm that obtains a CF-ON k-coloring of G when k ≥ χCF(H) + cl(G) + 1. Using 

an algorithm similar to that presented above we can obtain an FPT algorithm with parameter t for the CF-ONC problem 
when the fixed number of colors is k ≤ χCF(H) + cl(G). The time required by this algorithm can be proved (as in the proof 
of Lemma 7) to be O (k(k+1)t(k + 1)2t2). Summarizing, we get the desired Theorem 4.

3.1.1. Conclusion and open problems
We have studied some complexity questions concerning colorings of the vertices of a graph that are conflict-free with 

respect to the open/closed neighborhoods of the graph. We have shown that the closed neighborhoods conflict-free coloring 
problem is NP-complete when two color are used; it implies that it is not possible to have approximation factor lower that 
3/2. In the case of open neighborhoods, we have obtained inapproximability results. On the positive side, both closed and 
open neighborhood colorings are fixed parameter tractable problems, when parameterized by the vertex cover number or 
the neighborhood diversity of the graph. With regard to future work, many questions remain open. In particular, it would 
be interesting extend the NP-hardness of the closed neighborhoods conflict-free coloring problem for any k ≥ 3 as well as to 
further study the (in)approximability of CF-CNC chromatic number. It would also be interesting to improve and/or extend 
our results to other important parameters. Furthermore, it would be intriguing to consider the fault-tolerant version of the 
problem, where one requires that each neighborhood contains at least t different unique colors, for some fixed t [1,4,23].
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