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Abstract— This paper deals with the identification of Time

Petri net systems. An identification algorithm for timed net

systems must take into account that the firing of a transition

requires not only that the enabling condition is met, as in untimed

net systems, but it is also required that the firing interval of a

transition is congruent with the observed firing instant times. The

key idea behind the approach is to express these conditions by a

set of logical propositions that can be directly transformed into

linear mixed-integer inequalities. The identification algorithm

consists of building the logical propositions from the observed

behavior and solving a mixed-integer linear programming prob-

lem.

I. INTRODUCTION

A. Position of the paper

System identification of discrete event processes/systems

from external observation of their behavior is a challenging

problem that received a lot of attention in the last decade.

The interest for the identification of Discrete Event Systems

(DESs) usually comes from reverse engineering for (partially)

unknown systems, fault diagnosis, or system verification . In-

put and/or output sequences are observed during the operation

of the system within its environment. The methods presented

in the literature for the identification of DESs produce a

mathematical model expressed as a Petri Net (PN) or a finite

state automaton model of the system behavior from sequences

observed during the system operation [1], [2]. When the

resulting model is a PN, the net structure (places, transitions

and arcs) and its initial marking must be identified.

There are approaches to DES identification where it is

assumed that either the whole state space of the system, or

the whole language generated by it is known [3], [4], [5],

[6]. If this is the case, the tackled problem is more a net

synthesis problem, rather than a net identification one. When

dealing with net synthesis, the net system is typically built

offline starting from the available data.

When a set of observed strings, i.e., a subset of the system

language, and/or a set of observed net markings are available,

the related problem is a proper net identification problem [7],

[8], [9]. In such a framework, the periodical execution of an

identification algorithm that provides a model able to generate

the observed strings is the main goal.
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Both net identification and net synthesis are very complex

problems. Restricting net subclass, efficient results can be

obtained as in [10] where safe Interpreted PNs are identified

in polynomial time.

Process mining [11], [12] aims to discover, monitor and im-

prove real processes by extracting knowledge from a collection

of sequential events and information about the system. This

problem is strongly related to the identification problem treated

by Discrete Event System community. In [13] an algorithm

to mine (identify) a workflow is presented. Such an algorithm

allows to identify a particular class of PN, called workflow net,

by analyzing the direct casuality between firings of transitions.

A workflow net is an acyclic net with one source place, called

an input place, and one sink place, called an output place,

strongly connected and sound (i.e., it is live and safe).

The explicit consideration of time is crucial for the spec-

ification and the verification of some DESs such as com-

munication protocols, circuits, real-time systems, automated

warehouse systems [14], urban traffic systems [15], automated

manufacturing systems [16]. Two main techniques were devel-

oped from PNs to associate a timing structure to transitions:

Timed PNs [17] and Time PNs (TPNs) [18]. In the first one, a

fixed firing duration is associated with each transition while, in

the second one, the firing duration of a transition t can assume

any value of a given interval I(t). Two other techniques are

available to deal with time intervals: P-TPN [19] and Arc-

TPNs [20]. In P-TPNs the timed behavior is implemented by

means of the tokens in the net (each token has its own age)

and the time intervals associated to the places, which restrict

the age of tokens that can be used in order to fire the output

transition from the places. In Arc-TPNs the timed behavior is

implemented by means of the tokens in the net (each token

has its own age) and the time intervals associated to arcs from

places to transitions, which restrict the age of tokens that can

be used in order to fire the respective transition. Both P-TPN

and Arc-TPNs model the death of tokens, i.e., a token is too

old to enable a transition, and the dependency of transition

firings on local clocks (the age of tokens that enable it), so

they are suitable to application in the field of batch process

control. In [21] a nice comparison of the expressiveness power

of these techniques is presented.

In [9] the identification of the net structure of a deterministic

timed PN system is treated. The firing duration of transitions

is assumed to be known and the proposed algorithm identifies

the structure and the initial marking of the timed PN. Timing

information is used to accelerate the net identification with

respect to the classical untimed approaches.

In [22] the identification of the net structure and the initial

marking is carried out at a first stage and then the timing

structure is inferred from additional observations, using the

net structure identified at the first stage. Stochastic and deter-



ministic stochastic PNs with deterministic and exponentially

distributed transition firing durations are considered. In [23]

the identification is considered for timed interpreted PN sys-

tems, a net subclass where the timing structure represents the

time interval during which a token remains available in a place.

The net marking is assumed to be observable in addition to the

event occurrences. The timing structure is inferred from the

observation of the net marking. Then, even if both the timing

structure and the net structure are identified, the identification

can be seen as a two stage identification process.

B. Contribution of the paper

This paper focuses on the identification of TPN, which

can model manufacturing systems where the age of tokens is

not relevant, as for example assembly processes and material

handling systems, from a set of observed timed sequences.

No specific assumptions are made about the topology of the

identified net system, its net structure is not required to belong

to a specific subclass and may be cyclic.

The goal of this paper is not only the identification of the

net structure and the initial marking but the identification of

the firing duration of transitions (timing structure) as well.

To the best of the authors’ knowledge, only few works have

been published on this topic.

Given a set of observed timed sequences (i.e., sequences of

transition firings with their firing time instants), a number of

places m and a set of transitions T , the considered identifi-

cation problem consists in determining the structure of a net

N , i.e., the pre and post incidence matrices Pre and Post

and its initial marking m0, the timing structure I(t), i.e., the

firing interval of each transition t ∈ T , such that the set of

timed sequences generated by this net system contains all the

observed ones. As usual in DES identification, the identified

system can also produce timed sequences that do not belong

to the unknown system behavior, as well as, it can reproduce

sequences of the original system that have not been observed.

The presence of a timing structure implies that when a

transition t fires at a time τ , i) it has been enabled at a

time τ ′ ≤ τ (= stays for immediate firings) and ii) its firing

duration δ = τ − τ ′ is congruent with the observation, i.e.,

δ ∈ I(t). Enabling of transitions and their firing time instants

are characterized in terms of mixed-integer linear constraints

as in [3].

To accelerate the identification, an estimation of the timing

structure is assumed to be known. More precisely, the mim-

imal lower and the maximal upper bound of transition firing

intervals are assumed to be known.

The use of the timing information allows to accelerate the

identification process with respect to the untimed approach.

Indeed, the set of markings that can enable an observed firing

of a transitions is reduced, since markings reached at time

smaller than the lower bound or greater than the upper bound

must not be considered.

The identification process reduces to a single stage, using

a unique set of observations, proving to be more convenient

than a two stage approach that works on a complete (or partial)

knowledge of the system language to identify the net structure

and afterwards to infer the time duration of the transitions from

the timed sequences.

Moreover, the proposed approach works on effective obser-

vations produced by these systems considering that two events

can occur at the same time. In untimed/logical PN models it

is assumed the occurrence of two events cannot happen simul-

taneously [24], [25] even if they model concurrent activities

with no causal relationship.

This paper focuses on the context of automated manufac-

turing systems, where a controlling agent interacts with a

plant. In this context, some events are managed by the control

architecture, enabling or forcing their occurrence by sending

proper signals to the actuators in a plant. These events, called

controllable events, are usually known, being the outputs of

the controlling agent that is usually accessible, and have null

firing duration, i.e., they are immediate events.

For selecting among different solutions, a performance

index is used. As for example, in this paper a very general

index involving the arc weights, the number of tokens in

the initial marking and the firing interval of transitions, is

minimized. However, different choices can be made for the

cost function depending on the context.

A preliminary version of this approach has been presented

in [26] where the authors chose a different treatment of timed

and immediate transitions and assumed to know the whole set

of immediate transitions and their firing order. Here, timed

and immediate transitions are treated in the same way, but a

distinction between immediate and timed firings of a transition

is made. In particular, immediate firings include the firings of

immediate transitions and the firings of timed transitions with

null firing duration. Finally, the classification of transitions in

controllable and uncontrollable ones is introduced. The first

ones, as stated above, are assumed to be only immediate and

their set is assumed to be known; the second ones can be timed

as well as immediate - no preliminary information about them

is given.

The motivation for this research comes also from two in-

teresting application domain, fault detection and model repair,

that are briefly recalled in the following.

Fault detection of discrete event systems is usually carried

out using models that included the faulty behavior [27]. From

a practical point of view, a fault-free model would have much

more sense, but in this case fault isolation and identification

may not be possible because the model does not include

the faulty behaviour and, therefore, the diagnosability of a

given fault is not guaranteed. However, one may remove

the requirement that the nature (or behavior) of the faults is

known, and this is realistic, but at the same time an algorithm

could be used to identify the faulty behavior, so obtaining

a faulty model from real data. PNs and their extension are

largely used in this context [27], [28]. A fault is detected

if an observed behavior of the system cannot be reproduced

by its model. The approach proposed in this paper may be

used to identify the timed faulty model (a model that includes

the effects of timed faults) adding to the fault-free model a

new subsystem that is able to include the faulty observed

behavior, not included in the system nominal language. A

similar approach has been used in [29] for untimed systems,



and in [30] to obtain a fault detection and recovery strategy

in robot task executions, using an untimed system too. The

availability of a timed faulty model of a system can accelerate

significantly the fault diagnosis with respect to the untimed

case.

The approach presented in this paper may be adapted also

to identify system anomalies in order to obtain a “repaired

model” where also discrepancies about activities duration are

considered. Model repair is a relevant problem that has re-

ceived a lot of attention in the field of Workflow Management

Systems community, where it has been treated as a part of

Process mining problem. It consists in modifying the nominal

model of a system as consequence of the occurrence of

discrepancies (named anomalies) between the system nominal

behavior and the system observed behavior [?]. As stated in

[31] detection and automated modeling of anomalies can sim-

plify the task of finding potential errors in business processes.

II. PN BACKGROUND

In this section, a brief recall of the PNs and Time PNs

theory is done. For a complete review on PNs the reader can

refer to [32].

A Place/Transition net (P/T net) is a 4-tuple N = (P, T,
Pre,Post), where P is a set of m places (represented by

circles), T is a set of n transitions (represented by boxes),

Pre : P × T → N (Post : P × T → N) is the pre (post)

incidence matrix. Pre(p, t) = w (Post(p, t) = w) means

that there is an arc with weight w from p to t (from t to p);

C = Post − Pre is the incidence matrix. The symbols •p
(•t) and p • (t •) are used for the pre-set and post-set of a

place p ∈ P (transition t ∈ T ), respectively, e.g. •t =
{

p ∈
P | Pre(p, t) 6= 0

}

.

A marking is a function m : P → N that assigns to each

place of a net a nonnegative integer number of tokens, drawn

as black dots. It is useful to represent the marking of a net

with a vector m ∈ Nm. A net system S = 〈N,m0〉 is a net

N with an initial marking m0. A transition t is enabled at m

iff m ≥ Pre(·, t) and this is denoted as m[t〉. An enabled

transition t may fire yielding the marking m′ = m+C(·, t)
and this is denoted as m[t〉m′.

A firing sequence from m is a sequence of transitions

σ = t1 . . . tk such that m
[

t1〉m1

[

t2〉m2 . . .
[

tk〉mk, and

this is denoted as m[σ〉mk. An enabled sequence σ is denoted

as m
[

σ〉, while ti ∈ σ denotes that transition ti belongs

to the sequence σ. A marking m′ is said to be reachable

from m0 iff there exists a sequence σ such that m0[σ〉m′.

R(N,m0) denotes the set of reachable markings of the net

system 〈N,m0〉.
Given a sequence σ it is denoted with |σ| its length.

The function σ : T → N, where σ(t) represents the number

of occurrences of t in σ, is called firing count vector of the

firing sequence σ. As it has been done for the marking of a net,

the firing count vector is often denoted as a vector σ ∈ Nn.

Note that, if a sequence is made up of a single transition, i.e.,

σ = ti, then the corresponding firing count vector is the i-th
canonical basis vector denoted as ei.

If m0[σ〉m, then it is possible to write in vector form

m = m0 +
(

Post−Pre
)

· σ = m0 +C · σ , (1)
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Fig. 1. Graphical representation of the different considered languages.

which is called the state equation of the net system.

Definition 1 (Time Petri net system, [33]): Let I be the set

of closed intervals with a lower bound in Q and an upper

bound in Q
⋃

∞. A Time Petri net (TPN) system is the 3-ple

T = 〈N,m0, I〉, where N is a standard P/T net, m0 is

the initial marking, and I : T → I is the statical firing time

interval function which assigns a firing interval [lj, uj ] to each

transition tj ∈ T .

It is assumed that there is a start-up transition that fires

only once at time zero producing tokens considered by the

initial marking. A transition tj can be fired at time τ if the

time elapsed from the enabling belongs to the interval I(tj);
moreover, when enabled, tj must fire if the upper bound of

I(tj) is reached, thus enforcing urgency. If lj = uj = 0 (and

consequently I(tj) = [0, 0]) transition tj is said immediate

otherwise it is said timed. Timed and immediate transitions

will be represented by empty and filled boxes, respectively.♦

Given a set S, |S| denotes the cardinality of S. In the

following T t is denoted as the set of timed transitions, with

cardinality nt = |T t| and T im is denoted as the set of

immediate transitions, with cardinality nim = |T im|.
Definition 2 (Timed firing sequence): A sequence

σT = (T1, τ1) . . . (Tq, τq) . . . (TL, τL) ,

where Tq is the set of transitions fired at time τq , τ1 < τ2 · · · <
τL denote firing time instants, is called timed firing sequence.

The position q the couple (Tq, τq) occupies in the sequence is

called time step, so (T1, τ1) is associated with step 1, (T2, τ2)
is associated with step 2 and so on; the number of couples

(Tq, τq) in σT is called length L = |σT | of the timed firing

sequence.

The notation m[(Tq, τq)〉m′ denotes that m′ is reached

from m by firing the transitions in the set Tq at time τq .

The notation m[σT 〉m′ denotes that m′ is reached from m

by firing σT . Moreover, the notation m[Tq〉m′ denotes that

m′ is reached from m by firing the transitions in the set Tq

at the same time but without referring to any specific time. ♦

Definition 3 (Timed Language): Given a TPN system

T = 〈N,m0, I〉, its timed language, named L(T ), is

defined as the set of timed firing sequences generated by T
from the initial marking m0. ♦

III. IDENTIFICATION OF TIMED DESS

The goal of this paper is the identification of a TPN model

that is able to generate the observed language of an unknown

timed system, starting from a subset of the language the

system can generate. Inspired by [34], the relation between
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the unknown system language, the observed language and the

identified language is graphically represented in Fig. 1.

The complete language of the unknown system, namely L
in Fig. 1, can be divided in two subsets of sequences: the

subset of the observed timed sequences, which represents the

observed language of the system, namely Lobs, and the subset

of the unobserved ones, which represents the unobserved

language of the system, namely Lunobs = L \ Lobs.

The considered identification problem consists in determin-

ing the structure of a time PN, i.e., the matrices Pre, Post

and its initial marking m0, the timing structure I(t), ∀t ∈ T
such that the set of timed sequences generated by this net,

called Lid in Fig. 1, is such that Lid ⊇ Lobs.

The language of the identified system, in general, contains

a subset of timed sequences that belong to Lid but do not

belong to L. Such a subset represents the exceeding language

of the identified system and it is indicated as Lexc = Lid \ L
in Fig. 1.

The language of the unknown system, in general, contains

a subset of timed sequences that belong to the unknown

system but not to the identified one. Such a subset represents

the unidentified language of the unknown system and it is

indicated as Lunid = L \ Lid in Fig. 1.

As example, consider the unknown system shown

in Fig. 2(a) and assume that Lobs =
{

σT =
(
{

t1
}

, 1)(
{

t2
}

, 2)(
{

t3, t4
}

, 3)(
{

t1
}

, 6)(
{

t2
}

, 8)(
{

t3, t4
}

, 10)
}

.

The identified net is the one shown in Fig. 2(b).

For these nets it is possible to find at least one timed

sequence that belongs to Lunid as well as one timed sequence

that belongs to Lexc. As for example, the sequence σ′
T =

(
{

t1
}

, 1) (
{

t3
}

, 3) (
{

{t2, t4
}

, 4) ∈ L does not belong to

Lid, i.e., σ′
T ∈ Lunid, while the sequence σ′′

T = (
{

t1
}

, 3)
(
{

t2
}

, 5) (
{

t3, t4
}

, 8) ∈ Lid does not belong to L, i.e.,

σ′′
T ∈ Lexc.

Moreover, the language Lid also contains a set of sequences

that belong to L
⋂

Lid but do not belong to Lobs. Such a

set represents the inferred language of the unknown system

and it is indicated as Linf = L
⋂

Lid \ Lobs in Fig. 1. This

means that the identified system is able to reproduce also

sequences of the unknown system language without directly

observing them. With reference to the previous example,

σ′′′
T = (

{

t1
}

, 2)(
{

t2
}

, 3)(
{

t3, t4
}

, 5) ∈ Linf .

A desirable characteristic of an identification algorithm is to

obtain a language Linf as larger as possible with a language

Lobs as smaller as possible.

An identification algorithm returns a model of the system

every time a new observation is available, in contrast with

approaches that can work only when all the observations the

system can generate are available.

Each time a new timed sequence σT is observed, it is

added to the observed language and it is tested via simulation

if such a sequence belongs to the language of the system

that is currently identified: if so, the algorithm waits for

a new observation, otherwise a new identification problem,

which takes into account the updated observed language, is

solved. The solution of the problem is assumed as the current

identified model of the system. Then a new observation can

be considered.

However, if the system dynamic is too fast, i.e., the time

required to process the event observed at a given time instant

is great with respect to the event interarrival time, observation

and identification problem resolution can be also executed

separately, processing the observation in batches : it is possible

to collect a certain number of timed sequences observed in real

time from the unknown system behavior and then to solve the

corresponding identification problem to obtain the new model.

IV. ASSUMPTIONS

In this section, assumptions and definitions, needed for

developing the proposed net identification approach, are pre-

sented.

Assumption 1 (Properties of the unknown system): The

observed system can be modeled by a TPN system with the

following assumptions

1) Free labeled nets, i.e., there is an isomorphism between

the label set E and the transition set T . Observing the

evolution of a net, it is common to assume that a label

is assigned to each transition t, and the firing of t is

an event that generates the label as observable output.

This assumption restricts the net subclass that can be

identified by the proposed approach to free labeled nets,

but it allows to speak of event observation as well as of

firing of transitions without any difference. Moreover, it

implies that the firing of each transition can be directly

observed.

2) k-bounded nets, i.e., the number of tokens in each place

of the net is never greater than k.

3) Single-server firing semantic (more details in [33]), i.e.,

no concurrent firings of the same transition are possible.

4) Enabling memory policy of timed transitions, i.e., when

a new marking is reached and a timed transition is not

enabled, the elapsed time is reset. ♦

The transition set T is partitioned into the set T c of

controllable transitions, with cardinality nc, and the set T uc

of uncontrollable transitions, with cardinality nuc.

Assumption 2 (Controllable transitions): It is assumed

that:

1) All controllable transitions are known and immediate

since they are managed by the controller.

2) All transitions that make up a choice – i.e., all transitions

t ∈ p• with |p•| > 1 – must be controllable. Hence

if |p•| > 1 ⇒ I(t) = [0, 0] ∀ t ∈ p• , for all

the places in P . This assumption is motivated by the

consideration that, when a timed activity is associated



 

t1, [2,4] 

t2, [0,2] 

… 

t3, [0,0] 

… 

… 

(a)

 

t1, [2,4] 

t2, [0,2] 

… 

t3, [0,0] 

… 

… 

(b)

Fig. 3. Evolution of the net system of Example 1.

with conflicting transitions, a conflict resolution policy

may be a race between conflicting transitions, which is

pointless in the context of manufacturing systems. Then,

conflicts only include controllable transitions which are

immediate and known, so a set of constraints, which must

be fulfilled in order to guarantee this assumption holds,

can be devised. It is presented in Section V-B. ♦

The approach presented in this paper does not perform any

controlling action on the system by means of controllable

events, but only assumes that the set of controllable events

is known. This is realistic in the context of manufacturing

systems, where controllable events are the outputs of the

controlling agent, which is usually accessible.

Assumption 3: A transition can fire only once at the same

time instant. ♦

This assumption is motivated by the consideration that the

multiple firings of a transition at the same time are pointless

in the context of manufacturing systems where, in practice,

the interaction between the plant and the controller occurs

according to a scan time faster than the evolution time of

the system. However, the results presented in this paper

are still valid removing this assumption, introducing some

technicalities.

For a better presentation of the approach proposed in this

paper it is useful to collect all transitions that fire at the same

time τ in the same set.

The set Tq is made up of nq = |Tq| transitions whose firing

is observed at the same instant τq . The marking the system

reaches after the firing of all the transitions in Tq is called

mq. The firings of these transitions are enabled either by a

marking mk, reached at a time τk < τq , or by the firing of

another transition fired at τq with null firing duration.

Definition 4 (Firing Interval): Given a timed transition tj
fired at q-th step, enabled at k-th step, so that mk[tj〉, let mk

be the first marking that enables tj since its previous firing,

the function δ(tj , k, q) : T × N × N → Q returns the time

elapsed from the enabling of tj at τk until its firing at τq , i.e.,

δ(tj , k, q) = τq − τk . ♦

From now on, δ(tj , k, q) is referred as the firing duration of

tj ∈ T t from the marking mk. When δ(tj , k, q) = 0 the firing

of tj at τq is called immediate, otherwise, when δ(tj , k, q) > 0
it is called timed.

In the following, two simple examples are discussed to

motivate the partition of Tq in two disjoint sets, the set T t
q

of transitions with timed firings and the set T im
q of transitions

with immediate firings at time τq , as well as a further partition

of the last one according to a firing order. Obviously, since the

firing of a controllable transition is always immediate, each

tj ∈ T c ∩ Tq will belong to T im
q . For the sake of simplicity,

in the next two examples controllable transitions are not con-

sidered, i.e., all transitions are assumed uncontrollable, since

the scope of these examples is to discuss some differences

between timed and immediate firings.

Example 1: In this example it is discussed that immediate

firings of transitions in the set Tq always come after the timed

ones, even if they are observed at the same instant.

Consider the system shown in Fig. 3(a) at time τ0: under

the current net marking, named m0, t1 fires at a time τ1 ∈
[τ0 + 2, τ0 + 4] and the marking m1, shown in Fig. 3(b),

is reached, where both t2 and t3 are enabled. Obviously t3
fires at τ1, since it is immediate. If t2 fires at τ1 too, the firing

duration of t2 from m1 is δ(t2, 1, 1) = 0, and the marking m2

is reached. Marking m1 results to be a vanishing marking1,

since it enables an immediate firing. The marking m0 is said

tangible marking because only timed firings are enabled.

The timed firing of t1 precedes the immediate firings of t2
and t3, but the firings of t1, t2 and t3 are observed at the same

time and so they belong to the same set T1. Moreover, it is

not possible to know a priori the firing order of the transitions

from the observation. ♦

Example 2: In this example it is discussed that transitions

firing at the same instant, with timed firings, can have been

enabled by different tangible markings and that the immediate

firings of transitions can occur sequentially even if they have

been observed at the same time.

Consider the net system in Fig. 4(a) at time τ0. Under the

initial net marking, named m0, both t1 and t4 are enabled.

Assume transition t4 fires at τ1 = τ0 +1, then m1 is reached

(see Fig. 4(b)) where t5 is enabled. If the firing duration of

t1 from m0 is equal to 2, at time τ2 = τ1 + 1 = τ0 + 2 both

t1 and t5 fires, leading to the marking m2 (Fig. 4(c)). The

marking m2 results to be vanishing since t2 is immediate and

fires immediately after t1 at time τ3 = τ2, leading the system

in the marking m3 where t3 is enabled. Finally, suppose that

t3 fires at τ4 = τ3 = τ2, i.e., δ(t3, 3, 4) = 0. The timed

sequence ({t4}, τ1)(
{

t1, t2, t3, t5
}

, τ2) is observed. As it is

shown in Fig. 4(d), there are two different tangible markings,

m0 and m1, that enable two timed firings at τ2, so each timed

firing in Tq can be enabled at a different tangible marking.

Moreover, immediate firings observed at τ2 are enabled at the

two vanishing markings m2 and m3, resulting to be sequential

even if they are observed simultaneously. ♦

Let m0 be the initial marking of the system, the set of

candidate markings for the enabling of a transition tj ∈ Tq can

be formally defined as M(tj , q) =
{

mk | ∃σ
′

T , σ
′′

T , σT =

σ
′

Tσ
′′

T , m0[σ
′

T 〉mk[σ
′′

T 〉mq, with tj ∈ σ
′′

T , k < q : τk +
lj ≤ τq ≤ τk + uj

}

, having cardinality |M(tj , q)|.
The set Tq can be partitioned into the couple (T t

q , T
im
q ):

T t
q = {tj ∈ Tq| ∃k,mk ∈ M(tj , q)} is the set of transitions

fired at τq with timed firing, with cardinality nt
q = |T t

q |, T
im
q =

Tq \ T t
q , with cardinality nim

q , is the set of transition fired at

τq with immediate firing.

With reference to the example of Fig. 4, T t
2 = {t1, t5}, and

T im
2 = {t2, t3}.

1A vanishing marking is a marking in which at least one immediate
transition is enabled, otherwise the marking is called tangible marking [35].
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Fig. 4. (a)-(c) Evolution of the net system of Example 2; (d) enabling and
firing time of each transition of the net: for timed firings of transitions, dots
represent the enabling instant, the arrow points individuate the firing instant
and the length of the arrows coincides with the firing duration value; diamonds
individuate enabling and firing instant for immediate firings of the transitions.

However, on the basis of the observed firing sequence, the

composition of T t
q and T im

q is unknown and all the possible

combinations must be considered. Denote (T t
q,h, T

im
q,h) the h-

th possible couple (T t
q , T

im
q ). With reference to the example

of Fig. 4, the following cases are allowed:
• T t

2,1 = {t1}, T im
2,1 = {t2, t3, t5};

• T t
2,2 = {t2}, T im

2,2 = {t1, t3, t5};

• T t
2,3 = {t3}, T im

2,3 = {t2, t1, t5};

• T t
2,4 = {t5}, T im

2,4 = {t2, t3, t1};

• T t
2,5 = {t1, t2}, T im

2,5 = {t3, t5};

• T t
2,6 = {t1, t3}, T im

2,6 = {t2, t5};

• T t
2,7 = {t1, t5}, T im

2,7 = {t2, t3};

• T t
2,8 = {t2, t3}, T im

2,8 = {t1, t5};

• T t
2,9 = {t2, t5}, T im

2,9 = {t1, t3};

• T t
2,10 = {t3, t5}, T im

2,10 = {t1, t2};

• T t
2,11 = {t1, t2, t3}, T im

2,11 = {t5};

• T t
2,12 = {t1, t2, t5}, T im

2,12 = {t3};

• T t
2,13 = {t1, t3, t5}, T im

2,13 = {t2};

• T t
2,14 = {t2, t3, t5}, T im

2,14 = {t1};

• T t
2,15 = {t1, t2, t3, t5}, T im

2,15 = ∅.

In general, the number of all possible couples (T t
q,h, T

im
q,h)

is cq =
∑nq

i=1

(

nq

i

)

=
∑nq

i=1
nq !

i!(nq−i)! .

All the transitions of T t
q,h fire concurrently. Denote as mq1

the marking reached by firing the transitions belonging to T t
q,h,

i.e., with reference to the example of Fig. 4, after the firing of

transitions {t1, t5} ∈ T t
2 marking m21 is reached. Notice that

the marking mq1 is vanishing if T im
q,h is not empty.

On the other hand, transitions in T im
q,h may fire sequentially.

This means that given the set of transitions T im
q,h, these tran-

sitions can fire in any order, included concurrently. Denote

as mqs , with s ≥ 2 the vanishing marking reached after the

immediate firings of transitions in T im
q,h , then, with reference

to the example of Fig. 4, considering T im
2,7 = {t2, t3}, the

following firing sequences may be allowed:
m21

[t2〉m22
[t3〉m23

;
m21

[t3〉m22
[t2〉m23

;
m21

[{t2, t3}〉m22
.

The number of all possible firing sequences is cq,h =
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Fig. 5. Possible firing sequence for T2 of Example 2.
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Fig. 6. Set of candidate markings (in red) for the enabling of transition tj
fired at τq .

(nim
q,h)! +

∑nim
q,h

j=2

(nim
q,h

j

)

· (nim
q,h − j + 1)!, where nim

q,h is the

cardinality of T im
q,h . The length of such a sequences is 1 when

all transitions in T im
q,h fire concurrently, while it is nim

q,h when all

the firings are sequential. Then, the firing of the transitions in

T im
q,h can be considered as a sequence of concurrent transition

firings that define subsets of T im
q,h.

Given the f -th firing sequence associated to the set T im
q,h,

it can be considered made up of the union of Sq,h,f disjoint

subsets of concurrent transition firings. Hence, firing of tran-

sitions in T im
q,h can be considered occurred in Sq,h,f substeps;

each substep is denoted qs, with s ∈ [2, Sq,h,f +1]. Finally, it

holds that T im
q,h =

⋃Sq,h,f+1
s=2 T im

qs,h,f
.

As indicated in Fig. 5, the marking reached after the firing

of transitions in the last of these subsets is a tangible marking

corresponding to mq .

With reference to Example 2, in Fig. 5, a possible solu-

tion when T2 = {t1, t2, t3, t5} is shown. In detail, T t
2,7 =

{t1, t5}, T im
2,7 = {t2, t3}; moreover, since it is assumed that

t2 and t3 fire sequentially according to the second possible

firing sequence of the previous example, T im
22,7,2 =

{

t3
}

,

T im
23,7,2 =

{

t2
}

. In figure, triangles indicate the firing of timed

transitions, which leads to the reaching of the first vanishing

marking m21 , while diamonds indicate the immediate firings

of transitions in T im
2,7 .

The firing of controllable transitions at the q-th step

(i.e., T c
⋂

Tq 6= ∅) reduces the number of pos-

sible couples (T t
q,h, T

im
q,h). As example, with reference

to Fig. 4, assuming that t2 is a controllable tran-

sition entails that t2 ∈ T im
2 and hence the cou-

ples (T t
2,2, T

im
2,2 ); (T t

2,5, T
im
2,5 ); (T t

2,8, T
im
2,8 ); (T t

2,9, T
im
2,9 );

(T t
2,11, T

im
2,11); (T t

2,12, T
im
2,12); (T t

2,14, T
im
2,14); (T t

2,15, T
im
2,15) are

inadmissible.

Hence the number of all possible couples reduces to cq =
∑nq

i=1

(

nq

i

)

−
∑nc,q

k=1

(

nc,q

k

)

·
∑nq−nc,q

j=0

(

nq−nc,q

j

)

where nc,q =
|T c

⋂

Tq|.
Assumption 4: A maximum firing time upper bound

umax(tj), i.e., a time such that uj ≤ umax(tj), and a

minimum firing time lower bound lmin(tj), i.e., a time such



that lj ≥ lmin(tj) are available for each timed transition

tj ∈ T .

Given a marking mk, reached at time τk, if a timed

transition tj fires later than τk + umax(tj) then mk does

not enable the firing of tj . When umax(tj) is not explicitly

defined, then it is assumed umax(tj) = ∞ and consequently

firing of tj at step q can be enabled by any marking mk

reached at time τk < τq . Given a marking mk, reached at time

τk, a transition tj , enabled by mk fires in a time greater than

or equal to lmin(tj). When lmin(tj) is not explicitly defined,

then it is assumed lmin(tj) = 0. ♦

As example, in red in Fig. 6 it is shown the set of markings

that can enable the firing of tj at τ6, assuming umax(tj) = 4
and lmin(tj) = 2: marking m1 does not enable the firing of

tj because τ6 − τ1 > umax(tj) as well as m5 cannot enable

the firing of tj because τ6 − τ5 < lmim(tj).
Assumption 4 reduces to the knowledge of minimum and

maximum bounds for the timing structure. This is reasonable

in a manufacturing system where an estimate of activities time

duration is available, since at least the order of magnitude of

such activities can be devised from considerations on their

nature (e.g. thermal, electrical, etc). This helps to devise

counterexamples, that are sequences that do not belong to the

timed language of a TPN.

Note that the approach used in the paper works also

without Assumption 4, since the knowledge of minimum and

maximum bounds for the timing structure just accelerates

the identification procedure by introducing a reduced set of

counterexamples.

Definition 5 (Timed Firing Subsequence): Given a timed

firing sequence σT of length L, σT,q is a subsequence of length

q of σT if it exists a sequence σT,L−q of length L − q such

that σT = σT,qσT,L−q . Subsequence σT,0 is equal to (ǫ, 0),
i.e., the firing of empty string at τ = 0. ♦

Definition 6 (Counterexample): Given an observed timed

firing sequence σT , having length L and a transition tj ∈ T \Tq

then

σT,q−1(tj , τq), with q ∈ [1, L[, is a counterexample iff

(i) ∃k : δ(tj , k, q) = τq − τk ∈ I(tj) and τk + uj ≤ τL
(ii) ∄(Tx, τx) : τx ∈ [τk + lj , τk + uj ] and tj ∈ Tx. ♦

In words, σT,q−1(tj , τq) is a counterexample iff for each step

q of the observed timed firing sequence σT , for each transition

tj that does not fire at time τq: i) there exists at least a step

k at which the firing of tj at τq could have been enabled; ii)

there does not exist a time instant τx ∈ [τk+ lj , τk+uj ] when

the firing of tj has been observed.

The computation of all counterexamples requires the knowl-

edge of the timed net language L(T ), which is assumed to

be not available in this paper. Indeed, the proposed approach

is based on a set of observed timed sequences, that are a

subset of the timed net language. However, by using lmin(tj)
and umax(tj) in Definition 6 instead of lj and uj , which are

unknown in the problem considered in this paper, a reduced

set of counterexamples is obtained.

As example, consider the net system of Fig. 7(a): assume

that σT = ({t1}, 1) ({t2}, 2) ({t1}, 4) ({t2}, 6) ({t1}, 8)
({t2}, 9). On the basis of Definition 6, since I(t1) = I(t2) =
[1, 2], the set of counterexamples is made up of the following
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Fig. 7. The sequence σT,3({t1}, 6) is a counterexample while σT,0({t2}, 1)
is not a counterexample, in view of the fact that condition (ii) is violated, since
τk + l2 = 1 and τk + u2 = 2 and ∃(T2, τ2) : τ2 = 2 and t2 ∈ T2.

timed firing sequences:

σT,4({t2}, 8) = ({t1}, 1) ({t2}, 2) ({t1}, 4) ({t2}, 6)
({t2}, 8)
σT,3({t1}, 6) = ({t1}, 1) ({t2}, 2) ({t1}, 4) ({t1}, 6)
σT,2({t2}, 4) = ({t1}, 1) ({t2}, 2) ({t2}, 4).

Consider the second counterexample: condition (i) of Def-

inition 6 is satisfied for k = 3 since τk = 4; condition (ii) is

satisfied too, since τk + l1 = 5 and τk + u1 = 6 and it exists

τ5 ∈ [5, 6], but t1 /∈ T5. Instead the sequence σT,0({t2}, 1) is

not a counterexample: condition (i) of Definition 6 is satisfied

for k = 0 since τk = 0; condition (ii) is violated, since

τk + l2 = 1 and τk + u2 = 2 and ∃(T2, τ2) : τ2 = 2
and t2 ∈ T2 (see Fig. 7(b)).

If l1 (l2) and u1 (u2) are replaced with lmin(t1) = 0
(lmin(t2) = 0) and umax(t1) = 3 (umax(t2) = 3) no

counterexamples are found.

V. IDENTIFICATION OF TPN SYSTEMS

In this section the formal definition of the identification

problem is given. In Subsection V-A all the logical conditions

that must be satisfied to identify the unknown system are

presented and explained, in Subsection V-B the constraints

that must be fulfilled to impose that choices involve only

controllable transitions are presented and explained, in Sub-

section V-C the Mixed Integer Linear Programming Problem

(MILPP) is presented. A set of rules transforming logical

propositions into linear inequalities, representing the enabling

and disabling conditions for the firing of transitions included

in each observed timed sequence, are presented in V-D, while

in Subsection V-E an example of transformation of one MILPP

logical condition in a set of linear constraints is given. Finally

in Subsection V-G an example to show the effectiveness of

the approach is discussed.

The identification problem is formally stated as follows:

Given the observed language Lobs of the unknown system

T ′ and a set of places P of cardinality m, the problem consists

in the identification of the net structure N , the timing structure

I , and the initial marking m0 such that the timed language

generated by T = 〈N,m0, I〉, named L(T ), contains Lobs,

i.e., L(T ) ⊇ Lobs.

The unknowns are the matrices Pre, Post, the vector m0

and the firing time lower and upper bounds of each transition

tj ∈ T .

The proposed approach is based on the formulation of

a MILPP where the constraints are obtained by the set of

logical conditions, named G(σT ), representing the enabling

and disabling conditions for the firing of transitions included



in each observed timed sequence σT . These linear inequalities

are obtained transforming the logical conditions presented in

Subsections V-A according to rules presented in Section V-D

and they are linearized as shown in Section V-E. After such

a linearization, G(σT ) provides a linear algebraic characteri-

zation of the TPN system with m places and n transitions,

such that L(T ) ⊇ Lobs. Notice that while n is known, m
is unknown. A common approach [22] is to assign to the

number of the places a starting value (e.g. m = m) and try

to solve the system of equations: if it gives no solutions, m
is incremented. On the other hand, if a solution is found, m
can be progressively reduced of one place at time to obtain a

more compact model until no solution is found. In words, the

cardinality of the set P is assumed to be known when G(σT )
is written. The chosen of the starting value of the number of

places comes from heuristic reasoning that is not the focus of

this paper. As example, for a sequential process the number

of transitions and places is equal. When a system includes

concurrent processes, usually the number of places is greater

than the number of transitions, at least one additional place

for each concurrent process must be considered.

A. Enabling and disabling conditions for transitions

To write in a more compact way the enabling and disabling

conditions for transitions, the function Prev(tj , q) : T ×N →
R+

0 is introduced; it is the function that, given a transition tj
fired at τq , returns (if there exists) the time of the last firing

of tj , occurred before of step q, otherwise it returns τq. As

example, if σT = (t1, 1)(t2, 3)(t1, 4), Prev(t1, 3) = 1 while

Prev(t2, 2) = 3.

The function τen(tj , k, q) : T × N × N → R+
0 is defined

as follows: τen(tj , k, q) = τk if τk ≥ Prev(tj , q), otherwise

τen(tj , k, q) = Prev(tj , q). It is a function that, given a

transition tj fired at τq , a step k preceding the step q, and

the step q, returns the time τk if there is not any other firing

of tj occurred at any steps between k and q, otherwise it

returns the time of the last firing of tj . As example, if σT =
(t1, 1)(t2, 3)(t1, 4)(t2, 6), since τk = 1 and Prev(t2, 4) = 3,

τen(t2, 1, 4) = 3.

Let rk,j,q be a boolean variable equal to 0 iff marking mk

enables the timed firing of tj at time τq .

Proposition 1: Consider the set Tq = T t
q,h

⋃

T im
q,h of

transitions fired at τq (see Section IV), the marking

mk : m0[σT,k〉mk enables the firing of tj ∈ T t
q,h if the

following logical condition is satisfied:

Mt
e(tj , q, k) :

mk ≥ Pre(·, tj)
︸ ︷︷ ︸

2.1

∧
(lj ≤ τq − τen(tj , k, q) ≤ uj)
︸ ︷︷ ︸

2.2

∧
q−1
∑

q=1

rk,j,q ≥ 1

︸ ︷︷ ︸

2.3

∧
mk � 2 ·Pre(·, tj)
︸ ︷︷ ︸

2.4

∧
lmin(tj) ≤ τq − τk ≤ umax(tj)
︸ ︷︷ ︸

2.5

(2)

Proof: The proof follows straightforward by the follow-

ing considerations.

Condition (2.1) imposes that marking mk enables the firing

of tj ∈ T t
q,h; condition (2.2) imposes that the time elapsed

from the enabling of tj and its firing belongs to its firing

interval. Condition (2.3) imposes that just one firing of each

transition tj can be associated to each marking mk; condition

(2.4), moreover, imposes each marking mk cannot enable a

number of contemporaneous firings of tj greater than 1. The

conditions (2.3-4) are needed since single server semantic

policy has been assumed. Condition (2.5) comes from the

knowledge of the maximum upper bound and minimum lower

bound of the tj firing time.

From now on it is referred to (2.1) as state enabling

condition, to (2.2) as time constraint condition and to (2.3-

4) as single server semantic condition.

TPN semantic imposes that an enabled transition tj must fire

in a time belonging to its firing interval, this means that any

marking satisfying condition (2) can be selected as responsible

of the firing of transitions belonging to T t
q,h.

To make a conservative choice with respect to the a priori

knowledge of the value of the minimum and maximum bound

of each I(tj), if more than one marking mk satisfies condition

(2) then the oldest one must be selected as responsible of the

firing of transitions belonging to T t
q,h. At this aim an additional

logical condition must be considered.

Consider the logical predicate

LP (x) =
∧

j

aj · x+ bj ≤ 0 (3)

where x is a vector variable and aj and bj are vectors of

known coefficients, with the same size of x, and consider the

ordered set {x0,x1 . . . ,xn} of values of the vector variable

x.

The following logical statement imposes that ri = 0 iff xi

is the first value that satisfies the predicate (3).

IF LP (x0) THEN r0 = 0
ELSE IF LP (x1) THEN r1 = 0

.

.

.
ELSE IF LP (xn) THEN rn = 0

(4)

Let hq be the number of markings that meet condition

(2.5). The logical condition used to select the oldest marking

mk that satisfies condition (2) is obtained from (4), replacing

in (3) LP by Mt
e(tj , q, k), with n = hq, and it is called

Mrules(tj , q).

The logical condition for the enabling of a single tran-

sition in T t
q,h can be extended to the whole set of transi-

tions T t
q,h. Denote as Mrules(T

t
q,h, q) the logical condition

∧

∀tj∈T t
q,h

Mrules(tj , q).

Proposition 2: Consider the set T im
q,h =

⋃Sq,h,f+1
s=2 T im

qs,h,f
.

The marking mqs : mq[T
t
q,h〉mq1 [

⋃s
s=2 T

im
qs,h,f

〉mqs ,

where mq is a reachable marking, enables the firing of each

transition tj ∈ T im
qs,h,f

if the following logical condition is

satisfied:

Mim
e (T im

qs,h,f
, q, s, f) :



mqs ≥
∑

∀tj∈T im
qs,h,f

Pre(·, tj)

︸ ︷︷ ︸

5.1∧

∀tj∈T im
qs,h,f

lj = 0
︸ ︷︷ ︸

5.2∧

∀tx∈T im
q,h

\T im
qs,h,f

mqs < Pre(·, tx)
︸ ︷︷ ︸

5.3

(5)

Proof: Condition (5.1) imposes that mqs enables the

firing of all transitions in T im
qs,h,f

; since all transitions in T im
qs,h,f

are enabled by the firing of transitions in T t
q,h, they are enabled

by a vanishing marking and their lower bound is equal to

zero, consequently condition (5.2) holds. Consider a transition

tx ∈ T im
q,h \ T im

qs,h,f
, i.e., a transition that does not fires in qs,

then mqs does not enable its firing, since if ad absurdum

marking mqs enabled the firing of tx ∈ T im
q,h \ T im

qs,h,f
, as

consequence tx would fire at qs and hence tx ∈ T im
qs,h,f

.

The logical condition for the enabling of concurrent firings

of the transitions in the set T im
qs,h,f

can be extended to the

whole subsets of transitions T im
q,h. Denote as Mim

e (T im
q,h, q, f)

the logical condition
∧Sq,h,f

s=1 Mim
e (T im

qs,h,f
, q, s, f).

Proposition 3: For each couple (T t
q,h, T

im
q,h), the set of

markings that enables each firing of the transitions in T t
q,h

and T im
q,h , satisfies the logical condition

Mh
e (T

t
q,h, T

im
q,h) :

Mrules(T
t
q,h, q)

cq,h
∧

f=1

Mim
e (T im

qs,h,f
, q, f) (6)

Proof: Proof follows straightforward from the previous

discussion.

Let EMjq be the set of tangible markings satisfying con-

dition (2.5) for transition tj .

Given the h-th couple (T t
q,h, T

im
q,h), let rq,s,j,h,f (rk,j,h) be

a variable equal to 0 iff: i) tj ∈ T im
q,h,f (tj ∈ T t

q,h) and ii) the

vanishing marking mqs (tangible mk) enables its firing; then

the following equation can be written:

cq∑

h=1

( ∑

∀mk∈EMjq

rk,j,h +

cq,h∑

f=1

Sq,h,f∑

s=1

rq,s,j,h,f
)
= 1, ∀tj ∈ Tq (7)

Equation (7) assures that the enabling of each timed (imme-

diate) firing of tj is associated to just one tangible (vanishing)

marking.

Proposition 4: The set of tangible and vanishing markings

that enable each firing of transitions in Tq, satisfies the logical

condition

Me(Tq, q):

∧cq
h=1

Mh
e (T

t
q,h

, T im
q,h

, h)
∧

∑cq
h=1

(∑

∀mk∈EMjq
rk,j,h +

∑cq,h
f=1

∑Sq,h,f

s=1
rq,s,j,h,f

)
= 1,

∀tj ∈ Tq

(8)

Proof: Proof follows straightforward from the previous

discussion.

If a marking mk does not satisfy (2.5), it cannot enable the

firing of tj at step q. This allows to devise an additional set

of linear constraints as shown in Proposition 5.

Proposition 5: Consider the transition tj ∈ Tq fired at step

q. Given a marking mk whose indexes satisfy conditions k <
q , τk + umax(tj) < τq , τk > Prev(tj , q) then the following

condition holds

Md(tj , q, k) :
mk < Pre(·, tj) (9)

Proof: A marking mk reached at time τk such that τk+
umax(tj) < τq and τk > Prev(tj , q) cannot enable the firing

of tj at time τq since a transition surely fires if a time equal

to uj is elapsed from its enabling.

This means that mk < Pre(·, tj), i.e., condition (2.1) is

violated.

Proposition 6 is used to obtain the constraints that charac-

terize the counterexamples of the observed timed sequence.

Proposition 6 (Counterexample system): Consider a coun-

terexample σ′
T = σT,q−1(tj , τq) such that σ′

T /∈ Lobs and

a marking mk whose indexes satisfy conditions k < q,

lmin(tj) ≤ τq−τk ≤ umax(tj). The following condition must

hold

Mc(tj , q, k) :

mk < Pre(·, tj)
∨

τq − τen(tj , k, q) /∈ [lj , uj ] (10)

Proof: Proof follows from definition of counterexample

given in Proposition 6.

B. Controllable Choices Conditions

The following lemma, that is a slightly modified version of

the one presented in [9], introduces a set of linear algebraic

constraints that must be fulfilled in order to guarantee that,

according to point 2) of Assumption 2, all transitions that make

up a choice are controllable.

Lemma 1: Consider a net N = 〈P, T,Pre,Post〉, the set

{t ∈ T | t ∈ p•, |p•| > 1}, i.e., the set of transitions involved

in a choice, is composed by only controllable transitions if

and only if the following set of linear algebraic constraints is

fulfilled

B(pi) :







eTi ·Pre · ej − zijV ≤ 0 ∀ tj ∈ T (11a)
∑

∀α|tα∈Tuc

ziα ≤ 1 (11b)

(
n− nuc

)
·

∑

∀α|tα∈Tuc

ziα +
∑

∀β|tβ∈Tc

ziβ ≤ n− nuc (11c)

Pre ∈ Nm×n (11d)

zij ∈ N (11e)

for all places pi ∈ P . The constant V is such that V >
maxi ,j e

T
i ·Pre·ej where ei is the i-th canonical basis vector.

Proof: (if). Let pi be a place such that |p•i | > 1. Suppose,

ad absurdum, that constraints (11) are fulfilled but there exists

an uncontrolled transition tj ∈ T uc, such that tj ∈ p•i . In

order to fulfill (11a) it should be zij = 1. Since |p•i | > 1, there

should exist at least another transition tl ∈ T , with l 6= j, such

that zil = 1 in order to fulfill the constraint (11a). It readily

follows that condition (11c) cannot be fulfilled anymore, which

contradicts the initial hypothesis.

(only if).Given a place pi, let suppose that constraints (11)

are not fulfilled and, ad absurdum, that the assumption that all

transitions that make up a choice are controllable holds. It is



straightforward to show that if just one of the constraints (11a)-

(11c) is not fulfilled, then it is |p•i | > 1, hence assumption

cannot hold, contradicting the initial hypothesis.

Constraint (11a), when zij = 0, imposes that Pre(pi, tj) ≤
0, i.e., there does not exist an arc that starting from pi enters

in tj , while it is redundant for zij > 0 ; constraint (11b)

imposes that each place pi belongs to the preset of no more

than one uncontrollable transition, i.e., there does not exist

a choice involving two or more uncontrollable transitions;

constraint (11c) imposes that there does not exist a choice

involving both controllable and uncontrollable transitions.

C. MILPP formulation of identification problem

For the sake of brevity, from now on, G(σT ), Me(Tq, q),
Md(tj , q, k) and Mc(tj , q, k) denote both the logical condi-

tions and the set of linear constraints obtained applying the

rules presented in Section V-D.

The following set of equations, named C(Tq, τq) is obtained

converting the logical conditions devised in Subsections V-A

into linear constraints:

C(Tq , τq) :







Me(Tq, q) (12a)

Md(tj , q, k), ∀tj ∈ Tq (12b)

∀k : τk + umax(tj) < τq

Mc(tj , q, k), ∀tj ∈ T \ Tq, (12c)

s.t. σT,q−1(tj , τq) is a counterexample

∀k : lmin(tj) ≤ τq − τk ≤ umax(tj)

Let Lobs be the observed language of the unknown system.

A solution to the identification problem can be computed

solving the system of equations
⋂

σT ∈Lobs
G(σT ), where

G(σT ) :







C(Tq, τq), ∀ (Tq , τq) ∈ σT (13a)

uj − lj ≥ 0, ∀ tj ∈ T (13b)

uj = 0, ∀ tj ∈ T c (13c)

lj = 0, ∀ tj ∈ T c (13d)

mk ≥ 0, ∀ k ≤ L (13e)

Equation (13b) imposes that, for each tj ∈ T , value of

uj (the tj maximal firing time) is greater than or equal to

lj (the tj minimum firing time); equations (13c-13d) impose

I(tj) = [0, 0] for each controllable transitions; equation (13e)

imposes that each marking mk, reached by the identified net,

is a feasible marking.

In general the solution of the G(σT ) is not unique, thus there

exists more than one TPN system T such that L(T ) ⊇ Lobs.

To select one among these systems a performance index is

given and, solving an appropriate MILPP, a TPN system that

minimizes the considered performance index is determined.

In particular, if f(m0,Pre,Post, l,u) is the considered

performance index, where l,u ∈ Qn are, respectively, the

vectors of the firing times lower and upper bounds, given the

place set P of the system to identify, an identification problem

can be formally stated as follows

min
s.t.G(σT )∀σT ∈ Lobs, B(pi)∀pi ∈ P

f
(

m0,Pre,Post, l,u
)

(14)

where B(pi) has been defined in Lemma 1.

Different choices can be made for the cost function, in

particular if the cost function is chosen as

f
(
m0,Pre,Post, l,u

)
=

1
T
m ·m0 + 1

T
m ·

(
Pre+Post

)
· 1n − 1

T
n · l+ 1

T
n · u ,

(15)

the solution minimizes the sum of the tokens in the initial

marking, the sum of the arc weights [3] and the width of the

firing interval I(tj) for each transition.

D. Transformation of logical propositions into linear inequal-

ities

In the following a set of rules transforming logical propo-

sitions, devised in Section V, into linear inequalities are

presented. Two rules from [3] are first recalled, then new

transformations are presented.

R 1: Inequality constraints. Consider the constraint
∨r

i=1 ai ≤ 0n where ai ∈ Rn, i = 1, . . . , r, and
∨

denotes

the logical or operator. Such constraint can be rewritten as

linear algebraic constraints:






a1 ≤ z1 ·K
.
.
.
ar ≤ zr ·K
z1 + · · ·+ zr = r − 1
z1, . . . , zr =

{
0, 1

}

(16)

where K is any constant vector in Rn that satisfies the

following relation:

Kj > maxi∈{1,...,r} ai(j), j = 1, . . . , n ♦

R 2: Equality constraints. Consider the constraint
∨r

i=1 ai = bi where ai, bi ∈ Rn, i = 1, . . . , r. Such

constraint can be rewritten as linear algebraic constraints:







a1 − b1 ≤ z1 ·K
a1 − b1 ≥ −z1 ·K
.
.
.
ar − br ≤ zr ·K
ar − br ≥ −zr ·K
z1 + · · ·+ zr = r − 1
z1, . . . , zr =

{
0, 1

}

(17)

where K is any constant vector in Rn that satisfies the

following relation:

Kj > maxi∈{1,...,r} |ai(j)− bi(j)|, j = 1, . . . , n ♦

Inspired by the results in [36] and [3], some other rules to

convert logical propositions into linear inequalities are here

presented.

R 3: The logical propositions

a ≥ b (a < b) ↔ z = 0; (z = 0)

where a, b ∈ Rn and ↔ stands for “if and only if ”, can be
rewritten in terms of algebraic constraints as:







a+ z ·K ≥ b (18a)

a− z ·K < b (18b)

z + z = 1 (18c)

z, z ∈
{
0, 1

}
(18d)

a, b ∈ Rn (18e)

with K ∈ Rn : Kj > |a(j)− b(j)| ♦

Proof: (if) Suppose a ≥ b and ad absurdum z = 1.

Eq.(18c) imposes z = 0 consequently Eq. (18a) is satisfied

for each value of a but Eq. (18b) is violated;



(only if) suppose now that z = 0 and ad absurdum a < b:

Eq.(18a) is violated.

R 4: The logical proposition

a = b (a 6= b) ↔ z = 0 (z = 0)

where a, b ∈ Rn and can be rewritten in terms of algebraic
constraints as:







a+ z ·K ≥ b (19a)

a− z ·K ≤ b (19b)

a− z ·K + zg ·K > b (19c)

a− z ·K − zl ·K < b (19d)

z + z = 1 (19e)

zg + zl = 1 (19f)

z, z, zg, zl ∈
{
0, 1

}
(19g)

a, b ∈ Rn (19h)

with K ∈ Rn : Kj > |a(j)− b(j)| ♦

Proof: (if) Suppose a = b and ad absurdum z = 1. Eq.

(19a) and (19b) are satisfied for each value of a; Eq.(19e)

imposes z = 0 consequently, to satisfy Eq.(19c) that imposes

a > b, it is necessary that zg = 1 and, at the same way, to

satisfy Eq.(19d), that imposes that a < b, it must be zl = 1
but in this way Eq.(19f) is violated;

(only if) Suppose z = 0 and ad absurdum a 6= b: it means

that either a > b or a < b but if a > b, Eq.(19b) is violated

while if a < b, Eq. (19a) is violated.

R 5: The logical proposition

IF a = b THEN c ≥ d ELSE e ≤ f

where a, c, e, b,d,f ∈ Rn, can be rewritten in terms of
algebraic constraints as:







a+ z ·K ≥ b (20a)

a− z ·K ≤ b (20b)

a+ z ·K + zg ·K > b (20c)

a− z ·K − zl ·K < b (20d)

c+ z ·K ≥ d (20e)

e− z ·K ≤ f (20f)

z + z = 1 (20g)

zl + zg = 1 (20h)

z, zl, zg ∈
{
0, 1

}
(20i)

with K ∈ Rn : Kj > max(|a(j) − b(j)|, |c(j) −
d(j)|, |e(j)− f(j)|) ♦

Proof: (then) Suppose a = b, consequently z = 0 (see

R4). As consequence of Eq.(20g), z = 1 and Eq.(20c) and

(20d) are satisfied for each value of a, zl and zg. To satisfy

(20h) it can be chosen zl = 0 and zg = 1 or vice versa.

Eq. (20f) is satisfied for each value of e and finally Eq.(20e)

imposes c ≥ d.

(else) Suppose now that a 6= b and consequently z = 1 and

z = 0. If a > b Eq. (20c) and (20d) are satisfied with zg = 0
and zl = 1, otherwise they hold on if zg = 1 and zl = 0. Eq.

(20a) and (20b) are satisfied for each value of a as well as Eq.

(20e) holds on for each value of b, while Eq. (20f) imposes

e ≤ f .
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t2,[1,1] 

t3,[2,2] 
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t2,[1,1.3] 

t3,[2,2] 

t4,[3,3] 

t5,[1.7,2] 

t7 t6,[0,0] 

(d)

Fig. 8. (a) System of the example: two cars going towards right and returning;
(b) TPN system modeling the system; (c) identified system with Lobs =
{σT , σ′

T }; (d) identified system with Lobs = {σT , σ′
T , σ′′

T }.

E. Transformation of the logical conditions into linear con-

straints

Applying the rules introduced in Section V-D, the logical

conditions in the set G(σT ) can be rewritten as sets of linear

constraints.

As example the set of constraints equivalent to logical

condition Mt
e(tj , q, k) is shown, but the same procedure can

be applied to conditions Mrules(T
t
q,h, q), Mim

e (T im
q,h, q, f),

Mh
e (T

t
q,h, T

im
q,h), Me(Tq, q), Md(tj , q, k), Mc(tj , q, k), to

obtain the corresponding set of linear constraints.

Given the timed sequence σT,k , σT,k : T → N is its

firing count vector, where σT,k(t) represents the number of

occurrence of t in σT,k.

Proposition 7: Mt
e(tj , q, k) is equivalent to the following

set of linear constraints








m0 +Post · σT,k −Pre · (σT,k + ej)+
+zk,j,q ·K1 + zsk,j,q

·K1 ≥ 0m

m0 +Post · σT,k −Pre · (σT,k − ej)+
−zk,j,q ·K1 − zsk,j,q

·K1 � −1m

zk,j,q + zk,j,q = 1
zk,j,q , zk,j,q ∈

{
0, 1

}







(21.1)

uj + zk,j,q ·K2 + dk,j,q ·K2 ≥ τq − τen(tj , k, q)
lj − zk,j,q ·K2 − dk,j,q ·K2 ≤ τq − τen(tj , k, q)
lj + zk,j,q ·K2 + dk,j,q ·K2+

+zgksjq
·K2 > τq − τen(tj , k, q)

uj − zk,j,q ·K2 − dk,j,q ·K2+
−zlk,j,q

·K2 < τq − τen(tj , k, q)

dk,j,q + dk,j,q = 1
zgk,j,q

+ zlk,j,q
= 1

dk,j,q , dk,j,q, zgk,j,q
, zlk,j,q

∈
{
0, 1

}







(21.2)

∑q−1

q=1
rk,j,q + zsk,j,q

·K4 ≥ 1
∑q−1

q=1
rk,j,q − zsk,j,q

·K4 ≤ 0

rk,j,q + zsk,j,q
·K5 ≥ 1

rk,j,q − zsk,j,q
·K5 ≤ 1

zsk,j,q
+ zsk,j,q

= 1

zsk,j,q
, zsk,j,q

, rk,j,q ∈
{
0, 1

}






(21.3)

m0 +Post · σT,k −Pre · (σT,k + 2ej)+
+zk,j,q ·K1 + rk,j,q ·K1 ≥ 0m

m0 +Post · σT,k −Pre · (σT,k − 2ej)+
−zk,j,q ·K1 − rk,j,q ·K1 � −1m







(21.4)

(21)

Proof: From R3 it follows that equations (21.1) imple-

ment condition (2.1), equations (21.2) implement condition

(2.2), equations (21.3) implement condition (2.3) and (21.4)

implement condition (2.4).

In equations (21.1) and (21.4), K1 ∈ Rm and it is such

that K1 > |m0 + Post · σT,k − Pre · (σT,k + ej)|; in

equations (21.2), K2 ∈ R and K2 > |uj−(τq−τen(tj , k, q))|;
in equations (21.3), K4,K5 ∈ N and K4,K5 > 1.

Since all its terms are known, condition (2.5) is not converted

into linear constraints but it is used to restrict the set of the

indexes k used to individuate the markings mk to test.

F. Identification Algorithm

In Fig. 9 the overall identification algorithm is shown.

The algorithm is made up of three steps. In the first one, the

observation of a new timed firing sequence σT is considered.

Step 2 starts when it is verified that σT does not belong to

the language of the current model T of the system, i.e., the

current TPN cannot generate σT . In this step the set of logical

conditions associated to σT are built, then they are transformed

into the corresponding linear constraints G(σT ). After that,

Step 3 (building and resolution of the MILPP) can be executed:

a new model of the system is obtained and Step 1 can be

repeated.

The algorithm considers the case in which the identification

of the model is executed soon after an observation, but it can

be easily modified to adapt it to the case in which observation

and identification are executed separately (as stated at the end

of Section III), according to a batch processing approach.

Moreover, the algorithm consider the possibility that a

system can be reset. In this case, the algorithm restarts from

Step 0, σT = ǫ but Lobs contains the whole set of previous

observed timed sequences. Then, the MILPP is solved on the

basis of all the observed timed sequences.

Lobs := ∅
Step 0: Initialization of a new firing sequence

q := 1
σT,q−1 := ε
Step 1: Observation of a new firing sequence

observe a new couple (Tq , τq)
σT := σT,q−1(Tq , τq)
*The new couple is appended to the current timed firing sequence*
q:=q+1
Lobs := Lobs

⋃
σT

*The new timed firing sequence is added to the observed language*
Step 2: Building of the logical conditions associated to the sequence σT

Step 2.a: Logical conditions about transition firings

build all the possible combinations (T t
q,h

, T im
q,h

)

for each h-th combination (T t
q,h

, T im
q,h

)

write the logical condition Mrules(T
t
q,h

, q)

build all the possible firing sequences that can be obtained from T im
q,h

for each f -th firing sequence write the logical condition Mim
e (T im

q,h
, q, f)

write the logical condition Mh
e (T

t
q,h

, T im
q,h

)

for each tj ∈ T t
q,h

for k:=0 to q-1
if lmin(tj) ≤ τq − τk ≤ umax(tj)
EMjq := mk

if τk ≥ Prev(tj , q), τen(tj , k, q) = τk
else τen(tj , k, q) = Prev(tj , q)

end
end
*The set EMjq of each timed firing has been built*

end
write the logical condition Me(Tq , q)
for each tj ∈ Tq

for k=1 to q
if τk + umax(tj ) < τq and τk > Prev(tj , q),

write the logical condition Md(tj , q, k)
end

end
Step 2.b: Computation of the counterexamples

for each tj ∈ T \ Tq

if ∃k : mk = m0[σT,k〉mk , δ(tj , k, q) = τq − τk ∈ I(tj )
v and τk + uj ≤ τL

if ∄(Tx, τx) : τx ∈ [τk + lmin(tj ), τk + umax(tj )] and tj ∈ Tx

CE := CE
⋃

σT,q−1(tj , τq)
end

end
end
*If σT,q−1(tj , τq) satisfies all conditions of Definition 6,
it is added to the set of counterexamples CE*

Step 2.c: Logical conditions about counterexamples

for each σq−1(tj , τq) ∈ CE write the logical condition Mc(tj , q, k)
Step 2.d: Building of the system G(σT )

for each place pi ∈ P write the logical conditions B(pi)
for q:=1 to |σT | write linear constraints C(Tq , τq)
write G(σT )
if T is the current identified model of the system and σT ∈ L(T ), goto Step 4
*When the observed sequence belongs to the language of the current
identified model a new observation starts, otherwise the MILPP is resolved*

Step 3: Resolution of the MILPP

write the optimization function f
(
m0,Pre,Post, l,u

)

build the MILPP (14)
solve the MILPP (14)

Step 4: Start of a new observation

if the system has been reset goto Step 0
goto Step 1

Fig. 9. Identification algorithm

G. Example

The considered example is an adapted version of the system

used in [22]. It is made up of two cars C1 and C2 (Fig. 8(a)),

that start from an arbitrary position in the home space (delim-

ited by points h1A and h1B for C1 and h2A and h2B for C2,

in the figure) and move independently to reach points a and

b respectively. When C1 (C2) arrives at a (b), the car starts to

move along right direction until c (d) is reached (the time units

(t.u.) a car takes to arrive in the designed points are shown

in the figure). Then, C1 (C2) stops and remains in this state

until both cars are in their right positions. It takes from 1.7

to 2 t.u. to return cars in home position, then a new cycle is



TABLE I

MEANING OF TRANSITIONS OF THE EXAMPLE.

Transition Event
controllable uncontrollable

t1 (t2) C1 (C2) arrives at a (b).
t3 (t4) C1 (C2) arrives at c (d).
t5 Both cars have returned in

their home position.
t6 Both cars are ready to start

a new cycle.
t7 Cycle starts again.

immediately started.

The net modeling such a system is shown in Fig. 8(b); in

Table I the meaning of each transition is reported.

Cplex© has been used as mathematical programming solver.

The choice of the starting value of the number of places,

as said in Section V, comes from a heuristic reasoning that

is not the focus of the paper. In a completely sequential

process, a good practice can be to start with m equal to

the number of the events. This number should be increased

when the process includes concurrent activities, since some

places may be required to synchronize them. The proposed

example consists in two cars that move concurrently and 7
events. Then, the number of places has been initially set to 9
and then reduced to 7. For smaller values of m, no solution

has been found to the MILPP.

The solution of the identification problem (14) formu-

lated from two observed timed sequences, σT = ({t7}, 0)
({t1, t2}, 1) ({t3}, 3) ({t4}, 4) ({t5, t6}, 6) (of length L1 = 5)

and σ′
T = ({t7}, 0) ({t2}, 1) ({t1}, 1.2) ({t3}, 3.2) ({t4}, 4)

({t5, t6}, 5.7) (of length L2 = 6), when the objective function

is the one in (15) and m = 7, leads to the PN model

represented in Fig. 8(c).

The following values for the minimum lower bound and

the maximum upper bound have been fixed: lmin(t1) =
lmin(t2) = lmin(t6) = 1, lmin(t3) = lmin(t4) = lmin(t5) =
0, umax(tj) = 3 ∀tj of the system.

The algorithm autonomously builds the following set of 46

counterexamples:

σT,0({t1}, 0), σT,4({t1}, 4), σT,5({t1}, 6), σT,0({t2}, 0),
σT,4({t2}, 4), σT,5({t2}, 6), σT,5({t3}, 6), σT,0({t4}, 0),
σT,1({t4}, 1), σT,0({t5}, 0), σT,1({t5}, 1), σT,3({t5}, 3),
σT,0({t6}, 0), σT,1({t6}, 1), σT,3({t6}, 3), σT,1({t7}, 1),
σT,3({t7}, 3), σT,4({t7}, 4), σT,5({t7}, 6), σ′

T,0({t1}, 0),
σ′
T,3({t1}, 3.2), σ

′
T,4({t1}, 4), σ

′
T,4({t1}, 5.7), σ

′
T,0({t2}, 0),

σ′
T,3({t2}, 3.2), σ

′
T,4({t2}, 4), σ

′
T,4({t2}, 5.7), σ

′
T,0({t3}, 0),

σ′
T,1({t3}, 1), σ′

T,4({t3}, 5.7), σ′
T,0({t4}, 0), σ′

T,1({t4}, 1),
σ′
T,0({t5}, 0), σ

′
T,1({t5}, 1), σ

′
T,2({t5}, 1.2), σ

′
T,3({t5}, 3.2),

σ′
T,4({t5}, 4), σ

′
T,0({t6}, 0), σ

′
T,1({t6}, 1), σ

′
T,2({t6}, 1.2),

σ′
T,3({t6}, 3.2), σ′

T,4({t6}, 4), σ′
T,2({t7}, 1.2),

σ′
T,3({t7}, 3.2), σ

′
T,4({t7}, 4), σ

′
T,5({t7}, 5.7).

In Table II, for each step q of σT and of σ′
T , it is reported the

set Tq of fired transitions, the set EMjq of possible markings

that enable the firing of each transition tj ∈ Tq (for which

constraints (8) are written), the set of marking that surely do

not enable the firing of each transition tj ∈ Tq (for which

constraints (9) are written), called DMjq .

TABLE II

FIRING TRANSITIONS, SET EMjq OF POSSIBLE ENABLING MARKINGS

AND SET DMjq OF DISABLING MARKING FOR EACH TRANSITION OF THE

SET OF THE OBSERVED TIMED FIRING SEQUENCE BELONGING TO Lobs .

q Tq EMjq DMjq

σT

1 {t7} EM71={m0}
2 {t1, t2} EMj2={m0,m1},

j = [1, 2]
3 {t3} EM33=

{m0,m1,m2}
4 {t4} EM44={m2,m3} DM44={m0,m1}
5 {t5, t6} EMj5={m3,m4} DMj5=

j = [5, 6] {m0,m1,m2},
j = [5, 6]

σ′
T

1 {t7} EM71={m0}
2 {t2} EM22={m0,m1}
3 {t1} EM13={m0,m1}
4 {t3} EM34={m2,m3} DM34={m0,m1}
5 {t4} EM45= DM45={m0,m1}

{m2,m3,m4}
6 {t5, t6} EMj6={m4,m5} DMj6=

j = [5, 6] {m0,m1,m2,m3}
j = [5, 6]

Notice that L(T ) ⊇ Lobs but the net has a smaller number

of places and arcs than the one in Fig. 8(b).

For these nets it is possible to find at least one timed

sequence that belongs to Lunid, as example, the sequence

σ̂T = ({t7, 0})({t1, t2}, 1.3) ∈ L does not belong to L(T ),
i.e., σ̂T ∈ Lunid. On the other hand the identified system

produces all sequences that belong to the unknown system

too, i.e., Lexc = ∅.

The inferred language Linf is not empty, indeed the timed

sequence σ̃T = ({t7, 0}) ({t1, t2}, 1) ({t3}, 3) ({t4}, 4)
({t5, t6}, 5.8) ∈ L(T ) belongs to Linf too.

The size of Lunid and Linf depends on the set of

the observed sequences. As example if the new sequence

σ′′
T = ({t7, 0})({t1, t2}, 1) ({t3}, 3) ({t4}, 4) ({t5, t6, t7}, 6)

({t2}, 7) ({t1}, 7.2) ({t3}, 9.2) ({t4}, 10) ({t5, t6, t7}, 11.7)
({t1, t2}, 13) ({t3}, 15) ({t4}, 16)
({t5, t6, t7}, 17.9) ({t1}, 19) ({t2}, 19.1) ({t3}, 21)
({t4}, 22.1) ({t5, t6}, 24.1) is considered, the net of

Fig. 8(d), is identified, for which Lunid = ∅.

Notice that, even if a finite timed firing sequence has been

used, a cyclical net has been obtained. This occurs because

of the particular cost function used in the MILPP that tries to

minimize the number of arcs.

VI. COMPUTATIONAL COMPLEXITY

The approach presented in this paper is based on the solution

of a MILPP, whose complexity is known to be NP-hard. The

focus of this section is the size of the MILPP (14).

Problem (14) can be characterized in terms of the number

of constraints and unknowns that composed it, i.e., the number

of constraints and unknowns of each G(σT ) and B(pi).
Number of constraints and unknowns of the MILPP – sys-

tem G(σT ) and constraints B(pi) – depends on the following

parameters:

• L = length of the timed firing sequence σT (i.e., the

number of couples (Tq, τq) sequence σT is made up of).



• n = cardinality of T .

• m = number of places.

• nc = cardinality of T c.

The number of constraints of G(σT ) is given by the number

of constraints of C(Tq, τq) plus n+2·nc+m·(L+1) constraints

due to equations (13b-13e). The number of constraints of

C(Tq, τq) is given by the sum of the number of constraints

of systems Me, Mc and Md, named as yMe
, yMd

and yMc
,

respectively.

The set of unknowns of G(σT ) is composed of two com-

ponents: a) the set of Na unknowns and b) the set of ubv
G(σT )

boolean variables.

Consequently the total number of unknowns of G(σT ) is

uG(σT ) = Na + ubv
G(σT ) (22)

The set of unknowns consists of m integer unknowns,

representing the initial marking m0 of the net, 2 ·n ·m integer

unknowns, representing the Pre and Post incidence matrices

of the net and 2 · n real unknowns, representing the bounds

lj and uj of the firing interval I(tj) of each transitions of the

net.

As consequence

Na = m+ 2 · (n ·m) + 2 · n (23)

The number of constraints introduced by B(pi) is:

yB(pi) = (m · n) + 2m (24)

while the corresponding number of boolean variables is:

ubv
B(pi)

= (m · n) (25)

Therefore the total number of constraints of the identifica-

tion problem (14) is given by

yMe
+ yMd

+ yMc
+ n+ 2 · nc +m · (L+ 1) + yB(pi)

while the total number of unknowns is given by

uG(σT ) + ubv
B(pi)

In the following, the size of the problem associated to the

example of Section V-G, when Lobs = {σT , σ
′
T }, is shown.

Values of parameters of the example are:

L1 = 5, L2 = 6, n = 7, nc = 1, m = 7.

Each observed sequence belonging to Lobs introduces a certain

number of constraints and boolean variables. Such a number

is shown in Table III. The total number of constraints and

variables is obtained by the sum of those introduced by each

observed sequence.

By using a machine having Intel© Core™ i7 CPU at 2.67
GHz, 8.00 GB of Ram and a 64 bit operative system, reso-

lution of (14) with Cplex©, running in Matlab© environment,

takes 8.74 seconds. The same problem takes 17.43 seconds

with m = 9.

The complexity of the proposed approach is not trivial and

the most complex step is the solution of a MILPP. However,

it is a standard tool, and so a lot of efficient solvers can be

used to solve it, and so this makes it effective in practice,

especially for workflow and manufacturing systems which are

TABLE III

NUMBER OF CONSTRAINTS AND UNKNOWNS OF THE EXAMPLE, WITH

n =7, nc = 1, m = 7.

constraints
Na

boolean variables
L1 = 5 L2 = 6 L1 = 5 L2 = 6

Me 1377 1476 350 350
Md 108 72 156 104
Mc 1032 672 602 392

Eq.(13b) 7 7 0 0
Eq.(13c) 1 1 0 0
Eq.(13d) 1 1 0 0
Eq.(13e) 84 84 0 0
B(pi) 63 63 49 49

119

total 2673 2376 1157 895

characterized by event interarrival times slower with respect to

computer and communication systems. However, as written in

Section V, the proposed approach can be used also to process

a batch of observations. Moreover, this aspect is less relevant

for its application to fault diagnosis/model repair where a

fault-free/nominal system is available and only the faulty/new

subsystem must be identified, so the MILPP is significantly

less complex.

VII. CONCLUDING REMARKS

A mixed-integer linear programming approach for the iden-

tification of free labeled time PN models has been proposed.

The presence of a timing structure requires not only that

the firing of a transition is enabled but also that its firing

interval is congruent with the time instant when the firing is

observed. This has been taken into account by means of a set

of logical propositions transformed into linear mixed-integer

inequalities.

Future research efforts will focus on the extension of the

results to labeled net systems and on their application to fault

diagnosis and model repair of time Petri net systems.
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E. Zimányi, Ed. Springer International Publishing, July 2014, vol. 172,
pp. 33–76.

[13] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142,
September 2004.

[14] F. Basile, P. Chiacchio, and J. Coppola, “A hybrid model of complex
automated warehouse systems - part II: Analysis and experimental
results,” IEEE Transactions on Automation Science and Engineering,
vol. 9, no. 4, pp. 654–668, October 2012.

[15] F. Basile, P. Chiacchio, and D. Teta, “A hybrid model for real time
simulation of urban traffic,” Control Engineering Practice, vol. 20, no. 2,
pp. 123–137, February 2012.

[16] Z. W. Li and M. C. Zhou, Deadlock Resolution in Automated Manufac-
turing Systems: A Novel Petri Net Approach. Springer–Verlag London,
2009.

[17] C. Ramchandani, “Analysis of asynchronous concurrent systems by
timed Petri nets,” Massachusetts Institute of Technology, Cambridge,
MA, USA, Tech. Rep., 1974.

[18] P. M. Merlin, “A study of the recoverability of computing systems.”
Ph.D. dissertation, University of California, Irvine, 1974.

[19] W. Khansa, J.-P. Denat, and S. C. Dutilleul, “P-time petri nets for
manufacturing systems,” Proceedings of the International Workshop on
Discrete Event Systems (Wodes’96), 1996.

[20] H. Hanisch, “Analysis of place/transition nets with timed-arcs and its
application to batch process control,” in International Conference on
Application and Theory of Petri Nets (ICATPN’93), ser. Lecture Notes
in Computer Science, M. A. Marsan, Ed. Springer Berlin Heidelberg,
1993, vol. 691, pp. 282–299.

[21] M. Boyer and O. Roux, “Comparison of the expressiveness of arc,
place and transition time petri nets,” in Petri Nets and Other Models of
Concurrency, ICATPN 2007, ser. Lecture Notes in Computer Science,
J. Kleijn and A. Yakovlev, Eds. Springer Berlin Heidelberg, 2007, vol.
4546, pp. 63–82.

[22] S. Ould El Mehdi, R. Bekrar, N. Messai, E. Leclercq, D. Lefebvre,
and B. Riera, “Design and identification of stochastic and deterministic
stochastic Petri nets,” IEEE Trans. on Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 42, no. 4, pp. 931–946, 2012.

[23] M. Meda-Campana and S. Medina-Vazquez, “Synthesis of timed Petri
net models for on-line identification of discrete event systems,” 9th
IEEE International Conference on Control and Automation (ICCA’11),
Santiago, Chile, pp. 1201–1206, 2011.

[24] J. Peterson, Petri Net Theory and the Modeling of Systems, P. Hall, Ed.,
1981.
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Praha, Tchèque, République, 2005, p. CDROM paper n. 02643.

[35] M. Ajmone Marsan, A. Bobbio, and S. Donatelli, “Petri nets in
performance analysis: An introduction,” in Lectures on Petri Nets I:
Basic Models, ser. Lecture Notes in Computer Science, W. Reisig and
G. Rozenberg, Eds. Springer Berlin Heidelberg, 1998, vol. 1491, pp.
211–256.

[36] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, pp. 407–427, 1999.


