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Abstract— In this paper the model repair of timed discrete

event systems where anomalies may occur is considered. The

nominal model is assumed to be known and a set of observed

timed sequences is given. The approach works with Time Petri

net models and is based on the formulation of a Mixed-Integer

Linear Programming Problem. The repaired model is obtained

from the nominal one by adding fault transitions as well as by

extending the firing interval of transitions.

Note to Practitioners: The data collected from the observation

of a discrete event system are usually given in terms of behavioral

sequences that may be fixed or may be increased in the course of

the system operation (e.g., due to new experiments or simply to the

system running). If this occurs, the nominal model of a system may

reveal not consistent with these additional observations if they include

anomalies. This work presents an approach to repair the model of the

system in order to make it able to also generate the observed timed

faulty behavior. The repaired model can be used to perform fault

diagnosis.

Keywords: Petri Nets, Discrete Event Systems, Identifica-

tion, Model repair.

I. INTRODUCTION

Automated modeling of discrete event processes/systems

from external observation of their behavior is a challenging

problem that received a lot of attention in the last decade. This

problem has been addressed by the Discrete Event Systems

(DESs) and Workflow Management Systems communities,

under different names (DES Identification and Process min-

ing, respectively) and approaches. Although there are several

proposed approaches in each community, much remains to

be done regarding the modeling of timed discrete event pro-

cesses/systems.

The explicit consideration of time is crucial for the spec-

ification and the verification of some DESs [1] such as

communication protocols, circuits, urban traffic [2] or real-

time systems and automated manufacturing systems. Two main

techniques were developed from Petri Nets (PNs): timed PNs

[3] and time PNs [4]. In the first, a fixed firing duration is

associated with each transition while, in the second, the firing

duration of a transition t can assume any value of a given

interval I(t).
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Process mining aims to discover, monitor and improve

real processes by extracting knowledge from a collection of

sequential events and information about the system [5], [6].

A particular kind of process mining is the Model repair:

it consists in modifying the nominal model of a system

as a consequence of the occurrence of the observation of

discrepancies between the system nominal behavior and the

system observed behavior, in the manner that the modified

model completely describes the observed behavior. These dis-

crepancies, named anomalies, can be due to different reasons:

workers start handling activity differently, system components

degrade, action of external agents, etc. The occurrence of

one of these circumstances modifies the system dynamic as

well as the duration of the activities of the system and, as a

consequence, the nominal model needs to be modified.

Model repair has been introduced for the first time in [7].

In such a work, the new model (i.e., the “repaired” one) is

obtained adding new subprocesses to the nominal model in

the manner that the resulting model fits the observed behavior

and it is as similar as possible to the original one.

The problem of modifying the nominal model as a conse-

quence of changes in the system behavior has been investi-

gated in the field of DES identification too, and in particular

it has been treated in [8]. In such a work, anomalies are called

faults and the model repair is presented as the identification

of the faulty model of a logical PN system: the occurrence

of a faulty firing sequence (i.e., a sequence that cannot be

generated by the nominal model of the system) is associated

to the unobservable firings of fault transitions, that must be

opportunely added and linked to the nominal model of the

system, to obtain the faulty model. Hence, also in this case,

the structure of the nominal model is changed.

The most trivial solution to this problem, discussed in [8],

is obtained by adding one fault transition with no input place

and connected to all places that are input places for the

transitions of the nominal model. This is not significant in

real applications since it only enables additional sequences that

were forbidden with no fault, but it does not simultaneously

disable other sequences, and this is a crucial effect of a fault

occurrence.

Contribution of this paper is to extend the model repair

approach to timed DESs, obtaining a repaired model able to

generate the observed timed faulty behavior of the system.

Based on the time information, the faulty behavior of a

system leads to i) an unusual activity duration, that can be

due to a deterioration of performances or to a non-optimal

execution of operations; ii) a change of the system dynamic

that can be due to hardware failures as well as to a wrong exe-

cution of operations. In both cases the effect of the occurrence

of a fault is that, at a given time, some unexpected events



occur, while some expected others do not. This is the key

concept used in the paper to formulate a Mixed-Integer Linear

Programming Problem (MILPP), whose solution provides the

corrections needed to repair the nominal model, and precisely

the extension of the firing interval of the nominal transitions,

i.e., an extension of the bounds of the firing time of each

nominal transition, and/or the addition of fault transitions.

Indeed, these corrections identify the repaired model ac-

cording to the observed behavior, so the proposed approach

can be considered as a particular case of net identification.

A. Relevant literature

The interest for the identification of DESs usually comes

from reverse engineering for (partially) unknown systems,

fault diagnosis, or system verification. Inputs and/or outputs

sequences are observed during the operation of the system

within its environment. The methods presented in the literature

for the identification of DESs produce a mathematical model

expressed as a PN or a finite state automaton model of the

system behavior from sequences observed during the system

operation [9], [10]. When the resulting model is a PN, the net

structure (places, transitions and arcs) and its initial marking

must be identified.

There are approaches to DES identification where it is

assumed that either the whole state space of the system, or

the whole language generated by it, is known [11], [12], [13],

[14]. If this is the case, the tackled problem is more a net

synthesis problem, rather than a net identification one. When

dealing with net synthesis, the net system is typically built

offline starting from the available data.

When a set of observed strings, i.e., a subset of the system

language, and/or a set of observed net markings are available,

the related problem is a proper net identification problem [15],

[16], [17]. In such a framework the main goal is to periodically

execute an identification algorithm that provides a model able

to generate the observed strings.

In some cases the net identification is accomplished not only

on the basis of the event observation, [15], [17], [18], but also

observing the net marking (marking observation) [16], [19],

[20].

In [20] the identification of the unobservable behavior of

PN models is considered. Apart from the fact that untimed

models are considered, the main difference with respect to our

approach is that it is based on event observation and marking

observation, as well.

While a rich literature exists on the problem of the identifi-

cation of logical PNs (for example [16], [15], [21], [8], [22],

[23]), to the best of authors’ knowledge, only few works have

been published on the identification of timed net systems [18],

[24], [19], [17]. The problem discussed in this paper can be

considered as a net identification problem based only on event

observation.

In [25] authors present a method to identify a time PN

modeling the system on the basis of the observed behavior. The

problem addressed here is different from [25], since a model

repair problem is addressed and the identification regards only

the subnet modeling the timed faulty behavior of the system

while the subnet modeling the timed nominal behavior is

assumed to be known.

II. NOTIONS AND ASSUMPTIONS

A. Background on Petri nets

For a complete review on PNs the reader can refer to [26].

A Place/Transition net (P/T net) is a 4-tuple N = (P, T,
Pre,Post), where P is a set of m places (represented by

circles), T is a set of n transitions (represented by boxes),

Pre : P × T → N (Post : P × T → N) is the pre (post)

incidence matrix. Pre(p, t) = w (Post(p, t) = w) means

that there is an arc with weight w from p to t (from t to p);

C = Post−Pre is the incidence matrix.

A marking is a function m : P → N that assigns to each

place of a net a nonnegative integer number of tokens, drawn

as black dots. It is useful to represent the marking of a net

with a vector m ∈ Nm. A net system S = 〈N,m0〉 is a net

N with an initial marking m0. A transition t is enabled at m

iff m ≥ Pre(·, t) and this is denoted by m[t〉. An enabled

transition t may fire yielding the marking m
′ = m+C(·, t)

and this is denoted by m[t〉m′.

A firing sequence from m is a sequence of transitions

σ = t1 . . . tk such that m
[
t1〉m1

[
t2〉m2 . . .

[
tk〉mk, and

this is denoted by m[σ〉mk. An enabled sequence σ is denoted

by m
[
σ〉, while tj ∈ σ denotes that transition tj belongs

to the sequence σ. A marking m
′ is said to be reachable

from m0 iff there exists a sequence σ such that m0[σ〉m
′.

R(N,m0) denotes the set of reachable markings of the net

system 〈N,m0〉.
Given a sequence σ it is denoted by |σ| its length.

The function σ : T → N, where σ(t) represents the number

of occurrences of t in σ, is called firing count vector of the

firing sequence σ. As it has been done for the marking of a net,

the firing count vector is often denoted as a vector σ ∈ Nn.

Note that, if a sequence is made up of a single transition, i.e.,

σ = tj , then the corresponding firing count vector is the j-th

canonical basis vector denoted as ej .

If m0[σ〉m, then it is possible to write in vector form

m = m0 +
(
Post−Pre

)
· σ = m0 +C · σ , (1)

which is called the state equation of the net system.

Definition 1 (Time Petri net system, [27] ): Let I be the

set of closed intervals with a lower bound in the set of positive

rational numbers Q+ and an upper bound in Q+
⋃
∞. A Time

Petri net (TPN) system is the triple S = 〈N,m0, I〉, where N
is a standard P/T net, m0 is the initial marking, and I : T → I
is the statical firing time interval function which assigns a

firing interval [lj, uj ] to each transition tj ∈ T .

A transition tj can be fired at time τ if the time elapsed

from the enabling belongs to the interval I(tj); moreover,

an enabled transition must fire if the upper bound of I(tj)
is reached, thus enforcing urgency. A clock measuring the

time elapsed from the enabling is implicitly associated to any

transition.

It is assumed that there is a start-up transition that fires only

once at time zero producing tokens considered by the initial

marking and setting to zero the value of clocks.
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♦

Given a set S, |S| denotes the cardinality of S.

B. Assumptions

Assumption 1 (Properties of the observed system): The

observed system is modeled by a TPN system with the

following assumptions

1) Free labeled nets, i.e., there is an isomorphism between

the label set E and the transition set T . Observing the

evolution of a net, it is common to assume that to each

transition t is assigned a label, and the firing of t is an

event that generates the label as observable output. This

assumption restricts to free labeled nets the net subclass

that the proposed approach can identify, but it allows

to speak of event observation as well as of firing of

transitions without any difference. Moreover, it implies

that the firing of each transition can be directly observed.

2) Single-server firing semantic (more details in [27]), i.e.,

no concurrent firings of the same transition are possible.

3) Enabling memory policy of timed transitions, i.e., when

a new marking is reached and a timed transition is not

enabled, the elapsed time is reset. ♦

For a better presentation of the approach proposed in this

paper the definition of timed firing sequence S is needed.

With this aim, it is useful to collect in the same set all those

transitions firing at the same time τq .

Definition 2 (Timed firing sequence): A sequence

S = (T1, τ1) . . . (Tq, τq) . . . (TL, τL) ,

where Tq is the set of transitions fired at time τq and τ1 <
τ2 · · · < τL denote firing time instants, is called timed firing

sequence. The position q that the couple (Tq, τq) occupies in

the sequence is called time step, so (T1, τ1) is associated with

step 1, (T2, τ2) is associated with step 2 and so on; the number

of couples (Tq, τq) in S is called length L = |S| of the timed

firing sequence.

The notation m[S〉m′ is used to denote that m′ is reached

from m by firing S. ♦

Definition 3 (Timed Language): Given a TPN system

S = 〈N,m0, I〉, its timed language, named L(S), is defined

as the set of timed firing sequences generated by S from the

initial marking m0. ♦

The marking the system reaches after the firing of all the

transitions in Tq is called mq.

This paper focuses on the context of automated manufac-

turing systems, where a control architecture interacts with a

plant according to a scan time faster than the time evolution of

the system. In this context, the multiple firing of a transition

at the same time instant has no sense. This motivates the next

assumption.

Assumption 2: A transition can fire only once in the same

time instant.

However, the results presented in this paper are still valid

removing this assumption, introducing some technicalities.

The set Tq is made up of nq = |Tq| transitions whose

firing is observed at the same instant τq . The firings of these

transitions are enabled either by a marking mk reached at a
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Fig. 1. (a)-(c) Evolution of the net system; (d) enabling and firing time of
each transition of the net: for timed firings of transitions, dots represent the
enabling instant, the arrow points individuate the firing instant and the length
of the arrows coincides with the firing duration value; diamonds individuate
enabling and firing instants for immediate firings of transitions; (e) firing
sequence for T3.

time τk < τq or by the firing of another transition fired at τq
with null firing duration.

Definition 4 (Firing Duration): Given a timed transition tj ,

fired at the q-th step, enabled at the k-th step, so that mk[tj〉,
let mk be the first marking that enables tj since its previous

firing, the function δ(tj , k, q) : T × N× N→ Q+ returns the

time elapsed from the enabling of tj at τk until its firing at

τq , i.e., δ(tj , k, q) = τq − τk . ♦

From now on, δ(tj , k, q) is referred to as the firing duration

of transition tj ∈ Tq from the marking mk. When δ(tj , k, q) =
0 the firing of tj at τq is called immediate, otherwise, when

δ(tj , k, q) > 0, the firing of tj is called timed.

Let m0 be the initial marking of the system, the set of

candidate markings for the enabling of a transition tj ∈ Tq

can be formally defined as M(tj , q) =
{
mk | ∃S

′

T ,S
′′

T ,

S = S
′

TS
′′

T , m0[S
′

T 〉mk[S
′′

T 〉mq, with tj ∈ S
′′

T , k <
q : τk + lj ≤ τq ≤ τk + uj

}
, having cardinality |M(tj , q)|.

The set Tq can be partitioned into the couple of sets

(T t
q , T

im
q ): T t

q = {tj ∈ Tq| ∃k,mk ∈ M(tj , q)} is the set

of transitions fired at τq with timed firing, with cardinality

nt
q = |T t

q |, T
im
q = Tq \ T t

q , with cardinality nim
q , is the set of

transitions fired at τq with immediate firing.

Immediate firings always follow the timed ones, even if they

are observed at the same time τq . Indeed an immediate firing

occurs at the same time it has been enabled, while a timed

firing occurs in a subsequent time respect the one at which

it has been enabled. Consequently, a timed firing enabled by

an immediate firing occurred at time τq , surely fires in a time

greater than τq .

The firing of transitions in the set T t
q is concurrent, however,

each firing can have been enabled at a different marking. As

an example, consider the system of Fig. 1(a) and assume that
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the sequence S=({t1}, τ1) (
{
t2
}
, τ2) (

{
t3, t4, t5, t6

}
, τ3) is

observed. At step 3, on the basis of the nominal model of the

system, the set T3 can be decomposed in the couple of sets

(T t
3 = {t3, t5}, T

im
3 = {t4, t6}).

As shown in Fig. 1(d), the firings of t5 and t3 have been

enabled at m1 (Fig. 1(b)) and m2 (Fig. 1(c)), respectively, but,

since the firing duration of t5 from m1 is equal to 2 while

δ(t3, 2, 3) = 1, their firings are observed at the same time τ3.

Denote mq1 the marking reached by firing transitions

belonging to T t
q , i.e., with reference to the example of Fig. 1,

after the firing of transitions {t3, t5} ∈ T t
3 marking m31 is

reached.

On the other hand, the firing of transitions in T im
q may be

sequential. Given the set of transitions T im
q , these transitions

can fire in any order, which, anyway, can include concurrent

transition firings. Denote mqs , with s ≥ 2, the marking

reached after the immediate firings of transitions.

Given the firing sequence associated to the set T im
q , it can

be considered made up of the union of nim
q disjoint subsets

of concurrent transition firings. Hence, firing of transitions in

T im
q can be considered occurred in nim

q substeps; each substep

is denoted by qs, with s ∈ [2, nim
q + 1]. Finally, it holds that

T im
q =

⋃nim
q +1

s=2 T im
qs

.

As indicated in Fig. 1(e), the marking reached after the

firing of transitions in the last of these subsets corresponds

to mq; moreover, the firing sequence associated to T3 =
{t3, t4, t5, t6} is shown. In detail, T t

3 = {t3, t5}, and T im
2 =

{t4, t6}; moreover, T im
32 =

{
t4
}

, T im
33 =

{
t6
}

. In figure,

triangles indicate the firing of timed transitions that leads to

the reaching of the first marking m31 , while diamonds indicate

the immediate firings of transitions in T im
3 .

III. PROBLEM FORMULATION

Goal of this work is to repair the system model identifying

the subnet modeling the observed faulty behavior. Such a

subnet is added to the system nominal model in order to obtain

a system repaired model, that is assumed as the current model

of the system. With this aim, two techniques are used:

a) the extension of the transition firing intervals;

b) the addition of fault transitions.

As far as the observed behavior of the system where anoma-

lies occur, at a given time, unexpected firings of transitions as

well as missing firings of transitions, incoherent with respect

to the current model, are observed. The firing of a transition

tj at time τq is called unexpected if 1) it fires after a time

less than its lower bound from its enabling, 2) it fires after a

time greater than its upper bound or 3) there does not exist a

reachable marking in the current model under which its firing

at τq could have been enabled. A missing firing of tj at τq
occurs when tj does not fires at τq even though it has been

enabled for a time equal to uj .

The technique a) can be applied when an unexpected firing

of type 1) or 2) occurs. In this case, the firing of a transition tj ,

enabled at a marking mks
reached at a time τk ≤ τq , occurs

at a time τq such that τq− τk /∈ I(tj). Unexpected firings that

can be modeled as firing interval extensions are also called

temporal anomalies. A large set of failures can be modeled as
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Fig. 2. (a) Nominal TPN; (b) faulty TPN.

temporal anomalies (a slowing down of a conveyor belt speed

due to the wear, a shorter duration of a work phase due to an

incorrect handling of the operator, a casual change in a time

duration, etc.).

However, in practice there are some other failures, for

example, breakdowns or changes in work phase sequence,

that cannot be modeled just extending the transition firing

interval. To model this kind of anomalies, the net structure

must be changed, for example adding fault transitions, and

so the technique b) can be used. Fault transitions are unob-

servable, since their firing cannot be observed, and can be

used to generate the faulty behavior. Their firings modify the

marking of the system in the way that the enabling of some

transitions is anticipated, leading to their unexpected firings

of type 1), or some disabled transitions becomes enabled,

leading to their unexpected firing of type 3), or some enabled

transitions become disabled, leading to their missing firings.

Then, introduction of fault transitions is much more powerful

than extending the firing interval of transitions.

The proposed approach is able to detect anomalies and to re-

pair the nominal model faster than existing logical approaches,

as shown in the following simple motivational example.

Consider the TPN in Fig. 2(a): the timed firing sequence

S=({t1}, 1) ({t1}, 3) ({t2}, 5) ({t2}, 7) is a faulty sequence

since at τ4 = 7 the missing firing of transition t3 (that has

been enabled by the firing of transition t2 at time τ3 = 5) and

the unexpected firing of t2 occur.

Notice that the firing of transition t2 at time τ4 = 7 is an

unexpected firing because a time less than l2 = 3 is elapsed

from its previous firing.

The proposed approach, on the basis of the detected anoma-

lies, returns the system in Fig. 2(b) as a possible faulty model

where a fault transition has been added and the firing interval

of t2 has been enlarged; existing approaches only consider

the logical behavior of the system, so they cannot detect

the fault occurrences at the step 4. Indeed the logical firing

sequence σ = t1t1t2t2, obtained from S discarding the time

information, belongs to the behavior of the nominal model.

Only if a third firing of t2 is observed, it will be possible to

conclude that a fault is occurred.

For a better presentation of the repaired model identification

algorithm in the next section, it is convenient to formally

characterize the faulty behavior of system at time τq .

A system presents a faulty behavior at time τq if some

unexpected as well as some missing firings occur at τq .

At each time τq concurrent firings of different transitions

can occur. Some of these firings are justified by the current

model of the system while the remaining part is caused by the

occurrence of faults. Thus, given the couple (Tq, τq), the set

4
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Fig. 3. (a) System of Example 1: two cars going towards right and returning,
passing through a crossroad; (b) TPN modeling the nominal behavior.

TABLE I

TIME NEEDED TO THE CARS OF EXAMPLE 1 TO RUN ALONG EACH PATH.

Path t.u.

a –h1A (b –h2A) 1
a –h1B (b –h2B ) 1.3
h1B – f (h2B – e) 1

e – d 1.5
f – c 0.5
d – a 3.5
c – b 0.5

Tq can be partitioned in the set T un
q - the set of transitions

for which an unexpected firing occurred at time τq , and in the

T n
q - the set of transitions for which the firing at time τq is

coherent with the current model.

The set Tmiss
q collects all those transitions for which a

missing firing occurred at time τq .

Consequently, the faulty behavior of the system at time τq
is characterized by the triple (T un

q , Tmiss
q , τq).

Notice that T un
q

⋂
Tmiss
q = ∅.

In general, a missing firing of a transition and an unexpected

firing of another transition may be simultaneous. When only

a missing firing is observed, the term time-out is also used to

denote that nothing else is observed but a transition, enabled

for a time equal to the upper bound of its firing interval, does

not fire. In this situation, the only reasonable repair action is

the adding of a fault transition. Indeed, to enlarge the firing

interval of a transition its effective occurrence instant must

be known, but this is unknown at the time the time-out is

detected.

Hereinafter, given a timed firing sequence S =
(T1, τ1) . . . (Tq, τq) . . . (TL, τL), it is assumed that the set Tq

can be empty too, i.e., Tq = ∅, to represent the case where

it has not been observed the firing of any transitions at time

τq , even thought some of them have been enabled at a time

equal to their firing interval upper bound, so a time-out is

occurred. Obviously, if Tq = ∅ and mq−1[(Tq, τq) > mq ,

then mq = mq−1. This is a technical extension of Definition

2, useful in the identification algorithm.

Example 1: The considered example is an adapted version

of the system used in [18]: it is a system made up of two cars

C1 and C2 (Fig. 3(a)), that starting from an arbitrary position

in the home space (delimited by points h1A and h1B for C1

TABLE II

MEANING OF TRANSITIONS OF EXAMPLE 1.

Transition Event

t1 (t2) C1 (C2) has arrived at a (b).
t3 (t4) C1 (C2) has entered in the crossroad.
t5 (t6) C1 (C2) has arrived at f (e).
t7 (t8) C1 (C2) has arrived at c (d).
t9 Both cars have returned in their home position.
t10 Both cars are ready to start again.
t11 Cycle starts again.

and h2A and h2B for C2, in the figure) move independently

to reach points a and b respectively. When C1 (C2) arrives at

a (b), the car starts to move along right direction until c (d)

is reached. The time units, t.u., a car takes to run along each

path are reported in Table I. The cars must pass through the

crossroad. To avoid collisions only one car at time can pass

through it, consequently C1 or C2 must halt until the way is

free. Once arrived at point c (d), C1 (C2) stops and remains

in this state until both cars are in their right positions. It takes

from 4.5 to 4.8 t.u. to return cars in home position, through

the external path (after any travel, C1 and C2 trade places with

each other), then a new cycle is immediately started.

The TPN modeling the nominal behavior of such a system is

shown in Fig. 3(b); in Table II the meaning of each transition

is reported.

Assume that first the sequence S = ({t11}, 0) ({t2, t4}, 1)
({t1}, 1.2) (∅, 2) and then, after the restart of the system from

its initial condition, the sequence S
′ = ({t11}, 0) ({t1, t3}, 1)

({t2, t4}, 1.3) have been observed.

Sequence S is a faulty sequence since the missing firing of

t6 is observed at time τ4, thus (T un
q = ∅, Tmiss

q = {t6}, τq =
τ4). In detail, the missing firing of t6 is a time-out since no

other faults have occurred at the same time.

Sequence S
′ is a faulty sequence since an unexpected

firing of t4 is observed at time τ3. Consequently, (T un
q =

{t4}, Tmiss
q = ∅, τq = τ3). The occurrence of S can have

been caused by a slowdown of C2 which consequently needs

more than 1 t.u. to run the crossroad. The occurrence of S
′

can be due to the transit of C2 along the crossroad before C1

has arrived at point e. ♦

IV. REPAIRED MODEL IDENTIFICATION ALGORITHM

The proposed algorithm to identify the repaired model of a

system is shown in Fig. 4.

Let S0 = 〈N,m0, I〉 be the nominal model of the observed

system: when the algorithm starts, the nominal model is

assumed as the current model, named S.

Any time a new couple (Tq, τq) is acquired, the current

timed firing sequence S is extended, queueing (Tq, τq) to

the previous observations Sprev (initially Sprev = ε, i.e.,

it is the empty sequence). Successively it is tested if S
can generate S: if not, the current model of the system is

replaced with the repaired model of the system, named S̃, to be

identified otherwise observation continues. The identification

of the repaired model is based only on the nominal model

and on the observations, because the identification approach

is not incremental, so, the current model of the system is used
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t1, [1,2] t2, [3-1,5] t3, [1,2+0.5] 

Fig. 5. A possible repaired model of the system of Fig. 2(a), able to generate
the sequence S =({t1}, 1) ({t1}, 3) ({t2}, 5) ({t2}, 7) ({t3}, 7.5)

only to detect anomalies while it is useless with regard of the

identification procedure.

Then, on the basis of the reparation, the level of criticality

of the occurred anomaly is evaluated (by a human operator,

by automated software routines, etc.). Such an evaluation is

outside the scope of this paper, for example to enlarge the

firing interval of a transition beyond a certain threshold may

be considered an high level of criticality. In the case of high

criticality the system is stopped: if it can be reset, i.e., its initial

condition can be physically restored, S is added to LFobs, the

faulty language of the system, and a new observation starts,

otherwise the algorithm ends.

Language LFobs is composed only by faulty observed se-

quences, i.e., sequences of the kind S = Sprev(Tq, τq) for

which at time τq an anomalous behavior of the system is

detected, thus T un
q 6= ∅ or Tmiss

q 6= ∅.

The repaired model of the system, S̃, is identified on the

basis of the nominal model S0, the current observation S

and of the faulty language LFobs by solving a MILPP obtained

transforming the logical conditions, presented in the following

sections, into algebraic linear constraints.

Example 2: Consider again the system of Fig. 2. As

previously stated, the observation of the faulty sequence

S =({t1}, 1) ({t1}, 3) ({t2}, 5) ({t2}, 7) leads to the iden-

tification of the repaired model shown in Fig. 2(b), obtained

by adding the fault transition tf1 to the nominal model and

extending the firing interval of transition t2.

Coherently with the repair model identification algorithm,

after the repaired model of Fig. 2(b) is identified, it is assumed

as the current model of the system and it is used to test the

occurrence of new anomalies.

Assume now that the new couple ({t3}, τ5) is acquired and

so the observed sequence becomes S = Sprev({t3}, τ5) =
({t1}, 1) ({t1}, 3) ({t2}, 5) ({t2}, 7) ({t3}, τ5). Notice that

the model of Fig. 2(b) is able to generate the sequence

S = Sprev({t3}, τ5) if τ5 ∈ [8, 9]. Hence not the simply

observation of the firing of t3 but also the time instant when it

occurs is crucial to classify such an occurrence as an anomaly

and consequently to start the identification of a new repaired

model.

Here, it is assumed that τ5 = 7.5 and so the algorithm

considers the firing of t3 at time τ5 = 7.5 as an unexpected

event because the current model in Fig. 2(b) is not able to

generate it. Consequently, a new repaired model S̃ must be

identified.

A possible repaired model is the one shown in Fig. 5,

where the fault transition added in the model of Fig. 2(b) has

disappeared while the firing interval of t3 has been enlarged,

in detail its upper bound has been increased by τ5 − 7 = 0.5.

♦

A. Acquiring of a new couple (Tq, τq)

At each step q a new couple (Tq, τq) is obtained by means

of the following algorithm.

Algorithm 1: Acquiring of a new couple (Tq, τq).

Let timerj be a timer variable associated to transition tj ∈
T , such that at step q, timerj = −1 if tj is disabled and

timerj = τq − τk if tj is enabled, where τk is the enabling

instant of tj .

Step 1: If a new couple (Tq, τq) has been observed then jump

to Step 3.

Step 2: If there exists a transition tj ∈ T such that timerj ≥
uj then Tq := ∅ and τq := τk + uj .

Step 3: Return (Tq, τq).
Step 4: End.

In words, at each step q, on the basis of the current model

of the system, it is known which are the enabled transitions

and which is their enabling instant. While it is waiting for the

observation of a new couple (Tq, τq), the algorithm checks that

no time-outs occur, i.e., it controls that there does not exist a

transition tj for which a time equal to uj is elapsed from its

enabling without that transition has fired.

If this occurs and no couples have been observed, a special

couple having Tq = ∅ and τq := τk + uj is created, as a

consequence.

B. Testing of the occurrence of an anomaly

The testing of the occurrence of an anomaly at time τq is

carried out by testing if an unexpected firing or a missing

firing has occurred.

The firing of a transition tj is an unexpected firing if:

a) there does not exist a marking mks
, reached at time τk ≤

τq such that the marking enables the firing of tj , thus mks

does not satisfy the following equation:

mks
= m0 + (Post−Pre) ·Sks

≥ Pre(·, tj), (2)
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where Sks
is the timed firing sequence obtained terminat-

ing S at the substep ks and Sks
: T → N is its firing

count vector, with Sks
(tj) the number of occurrence of

tj in Sks
;

b) there exists a marking mks
, reached at time τk ≤ τq such

that eq. (2) holds but time τq is such that τq − τk < lj or

τq − τk > uj .

A missing firing of tj /∈ Tq at τq occurs when tj is enabled

at a marking mks
reached at a time τk ≤ τq but tj does not

fire at time τq = τk +uj . Consequently, a transition tj belong

to Tmiss
q if equation (2) holds and moreover τq = τk + uj .

On the basis of these considerations the occurrence of

an anomaly can be tested by means of the two following

algorithms.

Algorithm 2: Testing of an unexpected firing occurrence.

For each transition tj ∈ Tq

Step 1: Let τprevj be the time of the last firing of tj before

τq: if such a time does not exist, i.e., tj fires for the

first time at τq , then τprevj := 0.

Step 2: Collect in the set named Men(tj , q), each mark-

ing mk′

s
reached at a time τk′ such that τk′ ≥

τprevj and τ ′k : τq − τ ′k ≤ lj , for which con-

dition (2) holds and ∄ τk′′
s

: τk′

s
< τk′′

s
<

τq s.t. mk′′
s

does not enable tj . The markings in

the set Men(tj , q) are candidate markings for the

enabling of tj ∈ Tq.

Step 3: If Men(tj , q) = ∅ then jump to Step 9.

Step 4: Choose mks
as the oldest marking of

Men(tj , q), thus mks
∈ Men(tj , q) and

ks = min∀k′

s s.t. mk′
s
∈Men(tj ,q) k

′
s.

Step 5: If τq − τk < lj then jump to Step 9.

Step 6: If τq − τk > uj then jump to Step 9.

Step 7: T n
q ← T n

q

⋃
tj .

Step 8: Jump to Step 10.

Step 9: T un
q ← T un

q

⋃
tj .

Step 10: End.

Algorithm 3: Testing of a missing firing occurrence.

For each transition tj /∈ Tq

Step 1: Let τprevj be the time of the last firing of tj before

τq: if such a time does not exist, i.e., tj fires for the

first time at τq , then τprevj := 0.

Step 2: If tj belongs to a choice, i.e., tj ∈ p• with |p•| > 1,

and there exists ti ∈ p• such that the marking mks

has enabled it at time τk and ti ∈ Tq , then, if uj ≥
δ(ti, k, q), jump to Step 8.

Step 3: Collect in the set named Men(tj , q), each marking

mk′

s
reached at a time τk′ such that τk′ ≥ τprevj

and τk′ : τq − τk′ ≤ lj , for which condi-

tion (2) holds and ∄ τk′′
s

: τk′

s
< τk′′

s
<

τq s.t. mk′′
s

does not enable tj . The markings in

the set Men(tj , q) are candidate markings for the

enabling of tj /∈ Tq.

Step 4: If Men(tj , q) = ∅ then jump to Step 8.
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Fig. 6. Evolution of the net system of Example 3.

Step 5: Choose mks
as the oldest marking of

Men(tj , q), thus mks
∈ Men(tj , q) and

ks = min∀k′

s s.t. mk′
s
∈Men(tj ,q) k

′
s.

Step 6: If τk + uj > τq then jump to Step 8.

Step 7: Tmiss
q ← Tmiss

q

⋃
tj .

Step 8: End.

Remark 1: At Step 4 (Step 5) of Algorithm 2 (Algorithm

3), in case the cardinality of the setMen(tj , q) is greater than

1, i.e., there is more than one candidate enabling marking for

the firing of transition tj , the oldest one is always chosen as

the one that has enabled the firing of tj . The reason is that

TPN semantic forces an enabled transition tj to fire not before

a time equal to its lower bound is spent from its enabling and

within a time equal to its upper bound is elapsed from its

enabling. If a younger marking is selected as the enabling one,

a shorter elapsed time from the enabling is wrongly considered

for identification purposes.

The following example better clarifies how the occurrence

of an anomalous behavior is tested.

Example 3: Consider the system of Fig. 3(b) and the ob-

served timed firing sequence S = Sprev(Tq, τq) such that

Sprev = ({t11}, 0) ({t1, t3}, 1) and (Tq, τq) = (T3, τ3) =
({t2, t4}, 1.3). To test if an unexpected firing has occurred at

time τ3 = 1.3, it is necessary to verify if t2 and t4 belong

to T un
3 so Algorithm 2 is executed: since both transitions

fire for the first time at τ3, τprev2 = 0 and τprev4 = 0;

the set Men(t2, 3) is composed by the markings m1, shown

in Fig. 6(a), and m2, Fig. 6(b), since both markings satisfy

condition (2), have been reached, respectively, at the time

τ1 and τ2 greater than τprev2 and that τ3 − l2 = 0.3, since

l2 = 1. Since step 1 precedes step 2, m1 is selected as the

enabling marking of the firing of t2 at time τ3, consequently

τk = τ1 = 0. Since τq − τk = 1.3 − 0 = 1.3 = l2, t2 ∈ T n
3 ,

thus no unexpected firing of t2 has occurred at time τ3.

The algorithm is executed again for testing the firing of t4:

sinceMen(t4, 3) = ∅ (as it can be verified looking to Fig. 6),

an unexpected firing of t4 has occurred at time τ3.

To verify if some missing firings has occurred, the Algo-

rithm 3 is executed for each transition that does not belong
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to T3. From Fig. 6 it is simple to verify that at time τ3, t5
is the only other enabled transition besides t2 and t4, and it

has been enabled at τ2. Since τq − τk = 1.3 − 1 = 0.3 < l5
and for all the other transitions Men(tj , 3) = ∅, no missing

firings occurred. ♦

Algorithm 2 and 3 are used to detect an unexpected firing

and/or a missing firing. However, in practice, any tool capable

to verify the correctness of a TPN behavior can be used to

detect the occurrence of a fault.

C. Identification of the repaired model

The repaired model of the system, named S̃, is obtained on

the basis of S0, S and LFobs, solving the following algebraical

linear system:

G(S0,S,LFobs) =

⋃

∀S∈LF
obs

⋃
S

GA(T
un
q , Tmiss

q , q) (3)

Linear constraints GA(T
un
q , Tmiss

q , q) are obtained starting

from logical conditions that will be presented in Section V

and applying the transformation rules presented in [17] (an

example of logical condition transformation and linearization

is presented in Section V-C and Section V-D, respectively).

From now on, with an abuse of notation GA(T
un
q , Tmiss

q , q)
(and GI(T

un
q , q) and GF (T

un
q , Tmiss

q , q) as well, introduced

in the following) is used to indicate both the logical conditions

as well as the linear system into which they can be trans-

formed.

Since, in general, the solution of G(S0,S,LFobs) is not

unique, to select one among these solutions a performance

index is given and, solving an appropriate MILPP, a TPN

system that minimizes the considered performance index is

determined.

Moreover, modifying the objective function it is possible to

prefer the extension of the firing interval or the adding of fault

transitions as possible explanation of the faulty behavior.

In particular if f
(
Pref ,Postf ,∆l,∆u

)
is the considered

performance index, where ∆l,∆u ∈ Q+n are, respectively,

the vectors of the extension of the lower and upper bounds

firing times of the nominal transitions then an identification

problem can be formally stated as follows

min
s.t. G(S0,S,LFobs)

f
(
Pref ,Postf ,∆l,∆u

)
(4)

Different choices can be made for the cost function, in

particular if the cost function is chosen as

f
(
Pref ,Postf ,∆l,∆u

)
=

∑m
i=1

∑nf

j=1 aij
(
Pref (pi, tfj ) +Postf (pi, tfj )

)
+

+
∑n

i=1 bi(
∆li
li

+ ∆ui
ui

) ,

(5)

opportunely balancing the value of each aij and bi, it is

possible to find a trade-off between the minimization of the

sum of the arc weights of the fault transitions and of the

relative extension of the firing interval for each nominal

transition.

The key points are some a priori knowledge of the system

and/or some considerations on its layout.

An arc going from a fault transition to a place of the

nominal model means that the marking of this place can be

modified/repaired. In particular, a high weight associated with

such an arc in the performance index is equivalent to assume

a low probability of having it in the faulty system. Thanks to

the local state representation of PN models, it is reasonable

to assume that the meaning of a place and, consequently,

the probability that its marking can be modified by a fault

transition, are known, as also shown in the case study.

The same occurs with the firing interval extension. It is

reasonable assuming to be known if the duration of a certain

activity can be affected or not by an extension, and, conse-

quently, the probability to have a firing interval extension since

each activity is associated to a transition.

Moreover, in several real applications it is known a priori

that a fault that may affect a given subnet, has no effect on

some parts of the net. In such a case, it is sufficient to impose

that some entries in the Pref and Postf matrices are null,

thus reducing the number of unknowns.

On the same level, in several real applications it is known a

priori that the duration of some activities may be not affected

by a fault. In such a case, it is sufficient to impose that some

entries in the ∆l and ∆u vectors are null, so the number of

unknowns as well as of constraint is reduced.

For example, while it reasonable to assume that the time a

conveyor belt takes to carry an item from its input point until

its output point can changes from the expected one because of

the wear of the motor and/or of the transmission belt, assuming

this for the time a controller takes to make a decision, is not.

Moreover, when a time-out occurs, the proposed algorithm

consider transitions with a null ∆u entry.

In the case study, it is shown how, in practice, significant

reduction of computation time up can be achieved reducing

the unknowns, as discussed above.

Finally, when the optimization problem is solved, an as-

sumption about the value of the number of fault transitions of

the repaired model of the system must be done. Such a number

is denoted by nf . An approach is to assign a starting value to

nf (e.g. nf = nf ) and try to solve the system of equations: if

it gives no solutions, nf is incremented. On the other hand, if

a solution is found, nf can be progressively reduced to obtain

a more compact model, until no solution is found.

V. LOGICAL CONDITION FORMULATION

Unexpected firings as well as missing firings of transitions

at time τq can be model both with a firing interval extension

and with the adding of fault transitions to the nominal model

of the system.

As a consequence, given the faulty behavior of the system

at time τq , (T un
q , Tmiss

q , q), the system that exhibits such a

behavior satisfies the following logical condition:

GA(T
un
q , Tmiss

q , q) :

GI(T
un
q , q)

∨
GF (Tun

q , Tmiss
q , q) (6)

Condition GI(T
un
q , q) holds when the observed anomaly

can be modeled as a firing time extension, whereas condition
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Fig. 7. Evolution of the system of Fig. 3: marking reached after the firing
of Sprev = ({t11}, 0)({t2, t4}, 1)({t1}, 1.2).

GF (T
un
q , Tmiss

q , q) holds when the anomaly can be modeled

by adding some fault transitions.

In the next sections it will be shown how these conditions

are obtained.

A. Logical conditions formulation for the extension of the

transition firing interval

Let S be the current model of the system that generates the

language L(S) and S0 = 〈N,m0, I〉 be the nominal model

of the system, with N = (P, T,Pre,Post).
For each timed firing sequence S = Sprev(Tq, τq) such

that:

• S /∈ L(S);
• Sprev ∈ L(S);
• Sprev is a subsequence of S, of length q − 1;

the problem is to determine the extended firing interval Iex,

such that Iex(tj) = [lj − ∆lj , uj + ∆uj], where ∆lj and

∆uj are positive rational numbers, lj and uj are, respectively,

the lower and upper bound of the nominal firing interval

of transition tj , in the way that the resulting system S̃ =
〈N,m0, I

ex〉 generates the language L(S̃) that includes S.

Notice that L(S̃) ⊇ L(S0) since the net structure is the

same and transition firing intervals have been extended.

Proposition 1 (Unexpected firing of tj at τq): Let tj be a

transition belonging to the set T un
q , enabled at time τk by the

marking mks
. The unexpected firing of tj at τq is modeled

by an extension of the firing interval of tj if there exists a

value ∆lj ∈ Q+ or a value ∆uj ∈ Q+ for which the logical

condition named Gun(tj , q, k) holds, with

Gun(tj , q, k) :

∆lj ≥ τk − τq + lj
∨

∆uj ≥ τq − τk − uj . (7)

Proof: Since an enabled timed transition must fire in

a time belonging to I(tj) from its enabling, condition (7)

imposes that an extension ∆lj has occurred to explain the

firing of tj in a time less than lj or it imposes that an extension

∆uj has occurred to explain the missing firing of tj at the time

τq > τk + uj .

Proposition 1 is extended to the whole set T un
q by means

of the logical condition named GI(T
un
q , q), with

GI(T
un
q , q) :

∧

∀tj∈Tun
q

Gun(tj , q, k) (8)

Example 4: Consider the system of Fig. 3(b) and the ob-

served sequence S = Sprev (∅, 2) = ({t11}, 0) ({t2, t4}, 1)
({t1}, 1.2) ({t6}, 1.8). The marking reached after the firing of

Sprev is shown in Fig. 7. At this marking all the transitions

are disabled except t6.

At time τ4 = 1.8 an unexpected firing of t6 is observed;

consequently T un
4 = {t6} and Tmiss

4 = {∅}.

It is simple to verify that the firing interval Iex such that

Iex(tj) =

{

[l6 − 0.2, u6] if j = 6

I(tj) ∀j 6= 6

justify the faulty behavior of the system. ♦

B. Logical conditions formulation for the adding of fault

transitions

Let S be the current model of the system, that generates the

language L(S) and S0 = 〈N,m0, I〉 be the nominal model

of the system, with N = (P, T,Pre,Post). For each timed

firing sequence S = Sprev(Tq, τq) such that:

• S /∈ L;

• Sprev ∈ L;

• Sprev is a subsequence of S, of length q − 1;

given the set of fault transition T f , with cardinality nf , the

goal is to identify the faulty incidence matrices Pref and

Postf , with dimension m × nf such that, S belongs to

the language generated by S̃ = 〈Ñ ,m0, Ĩ〉, where Ñ =
(P, T

⋃
T f ,

[
Pre Pref

]
,
[
Post Postf

]
) and

Ĩ(t) =

{

I(t) if t ∈ T

[0,∞[∩Q+ if t ∈ T f

The firing interval of the nominal transitions does not change

in S̃, while the firing interval of the fault transitions is set

equal to [0,∞[. This setting arises from the consideration that

fault transitions are associated to events caused by the wear

as well as by unpredictable failures.

Notice that L(S̃) ⊇ L(S0) since S̃ is obtained without any

modification of arcs, transitions or places of the nominal model

and the firing interval of the fault transitions, being set equal to

[0,∞[, does not forbid any sequence of the nominal language.

Just to not forbid any sequence of the nominal language,

firing of fault transitions must not modify the enabling of those

transitions whose behavior is coherent with the nominal model.

This motivates the following assumption.

Assumption 3: Firings of fault transitions lead to a marking

that enables the unexpected firings of transitions in T un
q

and disables the firing of transitions belonging to Tmiss
q but

they never forbid sequences that are enabled in the nominal

behavior. ♦

Assumption 4: The subnet induced by the fault transition is

acyclic. ♦

Assumption 4 is justified by the fact that the proposed

approach is based on the incidence matrix and on the state

equation of the net. As a consequence of Assumption 4, all

fault transitions are loop-free so the incidence matrix contains

all the information on the net structure. Moreover, it guarantees

necessary and sufficient conditions for reachability in the

unobservable subnet.

In the following the logical conditions to satisfy for identi-

fying the system S̃ are presented.

Proposition 2 (Unexpected firing of tj at τq ): The unex-

pected firing of tj ∈ T un
q at time τq has been enabled by the

firings of at least one fault transition tfh ∈ T f if the following

logical condition holds:
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Gunexpected(tj , q) :

mq−1 +
∑nf

h=1 αhjq(Postf (·, tfh )−Pref (·, tfh )) ≥
Pre(·, tj) +

∑

∀ti∈Ten
q−1

Pre(·, ti),
(9)

where αhjq is a boolean variable such that αhjq = 1 if tfh has

fired enabling the firing of tj at time τq , otherwise αhjq = 0,

and T en
q−1 is the set made up of transitions that, enabled at

τq−1, continue to be also enabled at τq ♦

Proof: Condition (9) imposes that marking mk, reached

starting from mq−1 after the firing of at least one fault

transition tfh , is such that mk ≥ Pre(·, tj). Moreover, it

imposes that mk enables transitions in T en
q−1 too.

Proposition 3 (Missing firing of ti): The firing of transi-

tion ti ∈ Tmiss
q , enabled at a marking reached at time τz , is

disabled at time τq by the firing of at least one fault transition

tfh ∈ T f if the following logical condition holds:

Gmissing(ti, q) :

mq−1 +

nf∑

h=1

αhiq(Postf (·, tfh )−Pref (·, tfh )) < Pre(·, ti)

︸ ︷︷ ︸

(10.1)∧

mq−1 +
∑nf

h=1 αhiq(Postf (·, tfh ) −Pref (·, tfh )) ≥∑

∀ti∈Ten
q−1

Pre(·, ti)

︸ ︷︷ ︸

(10.2)

(10)

where αhiq is a boolean variable such that αhiq = 1 if tfh has

fired disabling the firing of ti at time τq , otherwise αhiq = 0.

Proof: Condition (10.1) imposes that the marking

reached starting from mq−1 after the firing of at least one fault

transition disables the firing of ti; condition (10.2) imposes

that the firing of tfh does not affect the enabling of transitions

in T en
q−1.

Lemma 1: The unobservable firing of a fault transition

tfh ∈ T f , occurred at the time τk ≤ τq has been enabled at

marking mrs , reached at time τr : τr ≤ τq , if the following

logical condition holds:

Gfen(tfh , r, s) :

mrs ≥ Pref (·, tfh ) (11)

Proof: Condition (11) imposes that marking mrs enables

the firing of tfh .

Proposition 4 (Faulty Behavior): The system S̃ = 〈Ñ ,
m0, Ĩ〉 justifies the faulty behavior of the system at time τq ,

if the following logical condition holds:

GF (T
un
q , Tmiss

q , q) :
∧

∀tj∈Tun
q

Gunexpected(tj , q)

︸ ︷︷ ︸

(12.1)

∧

∀ti∈Tmiss
q

Gmissing(ti, q)

︸ ︷︷ ︸

(12.2)
∧

∀tfh
∈Tf

IF
(
αhjq = 1

∨
αhiq = 1

)
THEN

i)
∨

∀(r,s)∈Γ Gfen(tfh , r, s)∧

ii)
∑

∀(r,s)∈Γ z̄hqrs = 1
︸ ︷︷ ︸

(12.3)

(12)∧

∀tfh
∈Tf , ∀x∈[1,m]

∄px : Pref (px, tfh ) > 0
∧

Postf (px, tfh ) > 0
︸ ︷︷ ︸

(12.4)

 
t1,[1,1.3] 

t2,[1,1.3] 

t5,[1,1] 

t6,[1,1] 

t10,[0,0] 

t9,[4.5,4.8] 

t11,[0,0] 
t7,[0.5,0.5] 

t8,[1.5,1.5] 

t3,[0,0] 

t4,[0,0] 

tf1,[0,∞[ 

(a)
 

t1,[1,1.3] 

t2,[1,1.3] 

t5,[1,1] 

t6,[1,1] 

t10,[0,0] 

t9,[4.5,4.8] 

t11,[0,0] 
t7,[0.5,0.5] 

t8,[1.5,1.5] 

t3,[0,0] 

t4,[0,0] 

tf1,[0,∞[ 

(b)

Fig. 8. Faulty system S̃ admitting sequence: (a) S = Sprev(∅, 2) =
({t11}, 0)({t2, t4}, 1)({t1}, 1.2)(∅, 2); (b) S = Sprev({t2, t4}, 1.3) =
({t11}, 0)({t1, t3}, 1)({t2, t4}, 1.3).

where Γ is the set of couple of indexes (r, s) that characterize

any substep rs preceding the step q of the sequence S, thus

any substep rs reached at the time τr ≤ τq , and z̄hqrs is

a boolean variable equal to 1 when the marking mrs enables

the firing of tfh , i.e., it is equal to 1 when the logical condition

Gfen(tfh , r, s) holds. ♦

Proof: Logical conditions (12.1) and (12.2) respectively

extend to the set T un
q and Tmiss

q conditions of Proposition 2

and Proposition 3.

Logical condition (12.3) regards fired fault transitions; it

imposes that: i) the firing of each transition tfh is enabled at a

marking mrs reached at a time τr ≤ τq; ii) if more than one

marking is candidate for the enabling of the firing of tfh at τk,

i.e., there exists more than one marking for which condition

(11) is satisfied, then just one marking mrs is selected as the

enabling marking of the firing.

Finally logical condition (12.4) imposes that each fault

transition is loop-free in accord to Assumption 4.

Example 5: Consider again the system of Example 1

and the observed sequence S = Sprev(∅, 2) = ({t11}, 0)
({t2, t4}, 1) ({t1}, 1.2) (∅, 2)

It is simple to verify that the system of Fig. 8(a) satisfies

condition (12). Indeed tf1 , firing at time τk ∈ [1, 2], disables

the firing of t6 while it does not affect the enabling of any

other transition, satisfying condition (12.2); it is enabled at

marking m2 reached at time τ2 = 1 and hence conditions i)

and ii) of (12.3) hold. Finally also condition (12.4) is satisfied

since there are no self loops involving tf1 . Consequently (12)

holds. ♦

Example 6: Consider the same system of Example 5 and

the observed sequence S′ = S
′
prev ({t2, t4}, 1.3) = ({t11}, 0)

({t1, t3}, 1) ({t2, t4}, 1.3). As shown in the Example 3, at τ3
an unexpected firing of t4 is observed, consequently T un

3 =
{t4} and Tmiss

3 = ∅.
The system of Fig. 8(b) admits the observed faulty behavior.

Indeed tf1 , firing at time τk ∈ [0, τ3], enables the unexpected

firing of t4 and it neither disables the firing of t5 nor enables

any other transition, satisfying condition (12.1); it is enabled

at marking m0 and hence conditions i) and ii) of (12.3) hold.

Finally, also condition (12.4) is satisfied since there are no self

loops involving tf1 . Consequently (12) holds since no missing

firings are occurred. ♦

10



The same problem has no solution when firing interval

extension technique is adopted.

C. Transformation of logical conditions into linear constraints

Applying the rules presented in [17], logical conditions

introduced in Section V can be rewritten as sets of linear

constraints. As an example, in the following it is shown the

transformation of logical condition (12.3) into the set (13).

∀tfh ∈ T f :






zhqrs + z̄hqrs = 1;
zhqrs, z̄hqrs ∈ {0, 1};

}

(13.0)

αhjq + αhiq +Kzenq ≥ 1;
αhjq + αhiq +Kz̄enq ≥ 0;
αhjq + αhiq −Kz̄enq ≤ 0;
zenq + z̄enq = 1;
zenq , z̄enq ∈ {0, 1};
K ∈ N;K > 1;







(13.1)

Pref (·, tfh )−K1zenq −K1zhqrs ≤ mrs ;
K1 ∈ Nm;K1 > mrs ;

}
∀(r, s) ∈ Γ,
(13.2)

∑

∀(r,s)∈Γ z̄hqrs +K3zenq ≥ 1;
∑

∀(r,s)∈Γ z̄hqrs −K3zenq ≤ 1;

K3 ∈ N;K3 > 1;






(13.3)

(13)

Constraints (13.0) introduce the dummy boolean variables

zhqrs needed to the transformation of the logical conditions

into linear constraints; constraints (13.1) impose that the

boolean variable zenq
is equal to zero when the IF tested

condition holds; constraints (13.2) and (13.3) correspond,

respectively, to conditions i) and ii).

D. Constraints linearization

As shown in [8], the nonlinearity of condition (9.1), due

to the product of αhjq and Postf (·, tfh ) − Pref (·, tfh),
is removed rewriting (9.1) as the following set of linear

constraints







mq−1 +
∑nf

h=1 chjq ≥
Pre(·, tj) +

∑

∀ti∈Ten
q−1

Pre(·, ti);

chjq − v(Postf (·, tfh ) −Pref (·, tfh ))−
+K5zhjqv ≥ 0m;

chjq − v(Postf (·, tfh ) −Pref (·, tfh ))−
+K5zhjqv ≤ 0m;

zhjq0 + zhjq1 = 1;
zhjq0 , zhjq1 ∈ {0, 1};






∀v ∈ {0, 1},
∀h = [1, nf ]

(14)

with K5 = K51
m such that K5 is a very large constant

that ensures the relation K5 > chjq − v(Postf (·, tfh) −
Pref (·, tfh)) holds.

For each fault transition tfh , a vector chjq is introduced that

substituted the unlinear product of αhjq and Postf (·, tfh) −
Pref (·, tfh); chjq is equal to 0

m, when zhjq
0
= 0 or it is

equal to Postf (·, tfh)−Pref (·, tfh), when zhjq
1
= 0. In the

first (second) case, the first constraint of (14) correspond to

logical condition (9.1) when αhjq = 0 (αhjq = 1).

The same procedure can be also applied to linearize logical

condition (10).

VI. CASE STUDY

The approach presented in this paper are based only on

Assumptions 1 and 2 discussed in Section II-B, no assump-

tions are required about the net topology. Then, it can be suc-

cessfully applied especially to Flexible Manufacturing Systems

and Workflow Management Systems, where the single server

semantic and the enabling memory policy are not so relevant

as they are in Computer and Communication systems.

In this section, the proposed approach is used to identify

the repaired model of the automatic material handling system

prototype installed at the Automatic Control and Robotics

Laboratory of the University of Salerno, shown in Fig. 9(a), but

it is very general and can be applied directly in many contexts,

as for example automated warehouses [28] and multi-robot

systems [29].

The proptotyle is a modular system, made up of conveyor

belts and elevators that move stock units in horizontal as well

as in vertical way. The handling system is subdivided in three

zones named, respectively, Zone A, Zone B and Zone C and

each zone is subdivided in four level, (Level 1- Level 4 in

Fig. 9(b)).

The system is controlled by means of a PLC Siemens S300

able to acquire sensors values and command actuators by

means of three remote I/O modules, each one associated to

a different zone, which communicate with the PLC by means

of a field bus.

The handling system can be used to execute several handling

tasks, one of this is hereinafter described: an item is introduced

into the handling system from the input point (belt A1 in

Fig. 9(b)); it is moved on the elevator AL and sequentially

is moved up to Level 2 and 3. At the i-th level the item

stays for a time Ti ∈ [Timin
, Timax

] to allow that unspecified

operations can be executed on it. After this time it is moved

to the following level. Finally it is moved to Level 4 and after

a time T4 ∈ [T4min
, T4max

] it is moved to Zone C, toward the

belts B4-B11. When it arrives at the end of B11, the elevator

CL goes up to Level 4 and moves the item down to Level 1.

Then the item passes on belt C1 and finally it goes out from

the system.

The TPN model in Fig. 9(c), without considering transition

tf1 and the red dotted arcs, has been assumed as the nominal

model of the task; it is made up of 37 transitions and 42 places

and represents the task as it has been programmed in the sys-

tem; the duration of its timed activities has been obtained from

measures. For the sake of clarity, transition firing intervals

are not reported in the figure but are indicated in Table III

together with the event associated to each transition. For the

same reason, only significative places have been labeled: their

meaning is reported in Table IV.

Firing interval [0,∞[ has been assigned to i) transitions

associated to a manual operation that can be executed at any

time by a human worker (as in the case of transition t1 and

t22, which fires when an item is put in and taken out from

the system); ii) controlled transitions, since, even if they are

enabled under the current marking, they fires only if the PLC

does not disable their firing.

The marking shown in Fig. 9(c) has been assumed as the

initial condition of the system: it is such that all the levels, as

well as the input and output points, are empty and both the

elevators are free and placed at Level 1.

According to the algorithm presented in Section IV, the

faulty behavior LFobs ={S
′,S′′} with

S
′ = S

′
prev({t7}, 60.01)= ({t1}, 5.01) ({t2, t3}, 15.01)
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(a)

 
Zona A Zona B Zona C
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Quota 2
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Quota 3

Quota 4
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A1 

A4 

C3 

C1 

C4 

CL 
B7 B1 

B2 

B3 

B4 B5 

B8 

B9 

B10 B11 B6 

  

Input Output 

Level 4 

Level 3 

Level 2 

Level 4 

Level 3 

Level 2 

Zone A Zone B Zone C 

(b)

 

t1 
t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

t10 

t11 

t12 

t13 

t14 

t15 

t16 

t17 

t18 

t19 

t20 t21 t22 

p1 

p2 

p4 

p3 

p5 

p6 

p7 

p8 

p9 

p10 
p11 

p14 

p15 

p16 

p17 

p12 

p13 t37 

t36 

t24 

t25 

t26 

t27 

t28 

t29 

t30 

t31 

t33 

t35 

t34 
t32 

t23 

tf1 

(c)

Fig. 9. (a) The prototype of automated handling system installed at the
University of Salerno; (b) its layout; (c) TPN nominal model of the case
study.

TABLE III

MEANING OF TRANSITIONS OF THE CASE STUDY.

Transition Firing Interval (s) Event

t1 [0,∞[ A new item at the in-
put point.

t2 [6,10] Item on A1.
t3 (t8, t13) [0,∞[ ([0,∞[, [0,∞[) Start transfer from A1

(B2, B3) to AL.
t4 (t9, t14) [7.75,13.75]

([14.67,16.67],
[9.66,16.66])

Item from A1 (B2, B3)
on AL.

t5 (t10 , t15) [17.01 ,19.01] ([17.01
,19.01], [17.01
,19.01])

Busy AL arrived at
Level 2 (3, 4).

t6 (t11 , t16) [8.49, 15.49] ([15,17],
[8,10])

Item on B2 (B3, B4).

t7 (t12 , t17) [118,186] ([91,181],
[150,162])

Operation completed
at Level 2 (3, 4).

t23 [29.24,31.24] Item on B11.
t18 [0,∞[ Start transfer from B11

to CL.
t19 [5.75,13.75] Item from B11 on CL.
t20 [39.50,48.50] Busy CL arrived at

Level 1.
t21 [14.75 ,22.75 ] Item on C1.
t22 [0 ,∞[ Process completed.
t37 [0,∞[ Empty CL starts to go

up to Level 4.
t36 [49.00,51.00 ] Empty CL arrived at

Level 4.
t24 (t28, t33) [0,∞[ ([0,∞[, [0,∞[) Empty AL starts to go

down to Level 3 (2, 1).
t25 (t29, t34) [8.74,16.74]

([14.76,16.76],
[14.75,16.75])

Empty AL arrived
down at Level 3 (2,
1).

t27 (t31, t35) [0,∞[ ([0,∞[, [0,∞[) Empty AL starts to go
up to Level 4 (3, 2).

t26 (t30, t32) [8.74,16.74]
([12.00,19.00],
[14.75,16.75])

Empty AL arrived up
at Level 3 (2, 1).

TABLE IV

MEANING OF THE PRINCIPAL PLACES OF THE CASE STUDY.

Place Meaning

p1 (p5) Input (Output) point is empty.
p2 (p3, p4) Level 2 (3, 4) is empty.

p6 (p7, p8, p9) Busy AL at Level 1 (2, 3, 4).
p10 (p11) Busy CL at Level 4 (1).
p12 (p13) Empty CL at Level 1 (4).

p14 (p15, p16, p17) Empty AL at Level 1 (2, 3, 4).

({t4}, 28.01) ({t5}, 46.01) ({t6}, 55.00) ({t7}, 60.01);
S

′′ = S
′′
prev({t16}, 93.01)= ({t1}, 12.00) ({t2, t3}, 18.00)

({t4}, 26.00) ({t5}, 44.01) ({t6}, 59.00) ({t16}, 93.01);
has been observed. Moreover, the current faulty sequence

S = Sprev({t11}, 299.03)= ({t1}, 6.01) ({t2, t3}, 16.01)
({t4}, 29.00) ({t5}, 47.01) ({t6}, 56.01) ({t7, t8}, 242.01)
({t9}, 258.00) ({t10}, 276.01) (∅, 293.01) ({t11}, 299.03),
has been observed too.

Notice that Sprev is itself a faulty sequence, since a time-

out occurred at step 9. However, the criticality of such a fault

has been considered low, and consequently observation has

not been stopped after the identification of the faulty model.

The identification problem G(S0,S,LFobs), with respect to

the nominal model S0, the current observation S and the faulty

observed language LFobs, when the objective function is the
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one in (5) with aij = 1 ∀i = [1, . . . ,m], ∀j = [1, . . . , nf ]
and bi = 1 ∀i = [1, . . . , n], and nf = 3, has been solved by

Cplex© running on a PC equipped with Intel© Core™ i7 CPU

at 2.67 GHz, 8.00 GB of Ram and a 64 bit operative system;

the computation time takes 39.78 seconds.

The observed faulty behavior has been modeled by the

extension of the firing interval of transitions t7 and t11 and

the adding of one fault transition, tf1 , drawn in red in Fig. 9,

linked to the rest of the net by means of the red dotted arcs.

The occurrence of S
′ has been caused by a drastic short

duration of the operations at Level 2, that can be due to

a wrong handling of the activity by a human worker; as a

consequence the lower bound of transition t7 has been reduced

of the amount ∆l7 = 112.99s. The occurrence of S′′ has been

caused by the omission of the carriage of the item to Level

3: soon after that the item is arrived at the end of B2, it is

moved at Level 4; the firing of fault transition tf1 models such

a fault. Finally S is due to a longer duration of the transfer

of the item from the elevator AL to the belt B3, that can be

due to an accidental block of the item caused by an incorrect

positioning of the item itself on the belt. Such a fault has been

modeled by the increment of the upper bound of transition t11
of the amount ∆u11 = 6.02s.

Remark 2: The execution of the repair model identification

algorithm after the observation of the faulty timed firing

sequence Sprev would return an intermediate repaired model,

where the missing firing of transition t11 is modeled by the

adding of a second fault transition tf2 with preset •tf2 = {p8}
and with postset tf2

• = {∅} to the nominal model, without

enlarging the firing interval of t11; for the sake of brevity, this

intermediate repaired model is not shown. When the sequence

S is observed, the firing of t11 at step 10 (τ10 = 299.03)

produces an unexpected firing since the intermediate model

can not explain such a firing. Consequently a new repaired

model is obtained where the upper bound u11 is incremented

of the amount ∆u11 = 299.03 − 293.01 = 6.02s and the

transition tf2 disappears.

A second identification problem has been carried on with

some null entries in Pref and Postf .

From an a priori knowledge of the system about the

reliability of lifter AL, it is reasonable to assume that fault oc-

currences do not interest the lifter movements. Consequently,

it is assumed that none fault transition can be connected to

places of the set Plifter = {14, 37, 38, 39, 40, 41, 42}, made of

places belonging to the subnet modeling the lifter movements.

Moreover it is also reasonable to assume that the occurrence

of a fault can affect only two adjacent levels.

On the basis of this assumption, other four subsets of P
have been built:

• Plevel1 = {1, 2, 6, 18, 19, 20, 21, 22, 23, 24} (places be-

longing to the part of net modeling Level 1 of the MHS);

• Plevel2 = {7, 24, 25, 26, 27, 28, 29, 30} (places belonging

to the part of net modeling Level 2 of the MHS);

• Plevel3 = {3, 8, 9, 29, 30, 31, 32, 33, 34} (places belong-

ing to the part of net modeling Level 3 of the MHS);

• Plevel4 = {4, 5, 10, 11, 12, 13, 34, 35, 36} (places belong-

ing to the part of net modeling Level 4 of the MHS).

Then, it is possible to impose that

• fault transition tf1 can be connected only to places

belonging to Plevel3 and Plevel4 ;

• fault transition tf2 can be connected only to places

belonging to Plevel2 and Plevel3 ;

• fault transition tf3 can be connected only to places

belonging to Plevel1 and Plevel2 .

As a consequence, 154 entries in Pref and Postf have

been set null, and using the same objective function, the same

model has been identified in 22.20 seconds.

Finally, a third identification problem has been carried on

using the a priori knowledge of the system to enforce some

entries in ∆l and ∆u vectors to be null.

In particular, since their firing interval is assumed to be

[0,∞[, enlarging of firing intervals of transitions associated

to a manual operation or of controlled transitions is not

possible; both lifters (AL and CL) are assumed to be reliable,

consequently, it is assumed that duration of the activities

modeled by transitions t5, t10, t15, t20, t36, t24, t28, t33, t25,

t29, t34, t27, t31, t35, t26, t30, t32 cannot be affected by any

fault. Moreover, it is assumed that only the operations at level

2 can be executed in a wrong way and that only the transfer

from the lift to the belt at level 3 can has anomalous duration.

This set of limitations have been included to second one,

by means of 68 null entries in the vectors ∆l(tj) and ∆u(tj).
In this case, resolution of the MILPP takes 8.27 seconds and

again the same model is identified.

To prefer time enlarging with respect to the adding of a

fault transition, the objective function coefficient are set to

aij = 10 ∀i = [1, . . . ,m], ∀j = [1, . . . , nf ] and bi = 1 ∀i =
[1, . . . , n]. This last identification problem returns again the

same model, and the resolution time of the second MILPP

reduces to 13.24 seconds.

Thus, resolution time of the MILPP can also be influenced

by the choice of the objective function. However, discussions

about this argument are out of the scope of this work, since

the influence of the objective function on the resolution time

closely depends on the kind of used solver.

VII. COMPUTATIONAL COMPLEXITY

The approach presented in this paper is based on the solution

of a MILPP, whose complexity is known to be NP-hard. The

focus of this section is the size of the MILPP (4).

Problem (4) can be characterized in terms of the number of

constraints and unknowns that composed it, i.e., the number

of constraints and unknowns of G(S0,S,LFobs).
The number of constraints and unknowns of the MILPP –

system G(S0,S,LFobs) – depends on the following parameters:

• m = number of places of the net.

• nf = cardinality of the set T f .

• |T un
q | = cardinality of the set T un

q .

• |Tmiss
q | = cardinality of the set Tmiss

q .

• |Γ| = cardinality of the set Γ (i.e., the set of couple of

indexes (r, s) that characterize any substep rs reached at

the time τr ≤ τq).

The number of constraints of G(S0,S,LFobs) is given by the

sum of the number of constraints of each GA(T
un
q , Tmiss

q , q),
which, in turn, is obtained by summing the number of
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constraints of GI(T
un
q , τq) and GF (T

un
q , Tmiss

q , q), plus 1

constraint due to the OR operator.

Given the timed firing sequence S, the number of con-

straints of GI(T
un
q , τq) is

yGI
(S) = 3 · |T un

q | ≤ 3 · n.

Given the timed firing sequence S, the number of con-

straints of GF (T
un
q , Tmiss

q , q) is

yGF
(S) = [m+ (2 ·m+ 1) · 2 · nf ] · |T

un
q |

︸ ︷︷ ︸

(constr. of 12.1)

+

+ {2 · [m+ (2 ·m+ 1) · 2 · nf ] + 1} · |Tmiss
q |

︸ ︷︷ ︸

(constr. of 12.2)

+

+ [7 + (m+ 1) · |Γ|] · nf
︸ ︷︷ ︸

(constr. of 12.3)

+ 3 ·m · nf
︸ ︷︷ ︸

(constr. of 12.4)

≤

≤ 2 · n · [m+ (2 ·m+ 1) · 2 · nf ] + n+

+[7 + (m+ 1) · (q − 1) · n] · nf+

+3 ·m · nf

Hence the number of constraints of G(S0,S,LFobs) is

yG =
∑

∀S∈LF
obs

⋃
S

(
1 + yGI

(S) + yGF
(S)

)

The number of unknown of G(S0,S,LFobs) is composed of

two components: a) the set of Na unknowns and b) the set of

ubv
G(S0,S,LF

obs
)

boolean variables.

Consequently the total number of unknowns of

G(S0,S,LFobs) is

uG(S0,S,LF
obs

) = Na + ubv
G(S0,S,LF

obs
) (15)

The set of unknowns consists of 2·m·nf integer unknowns,

representing the Pref and Postf faulty incidence matrices of

the net and 2·n rational unknowns, representing ∆lj and ∆uj ,

thus the extension of the bounds of the firing interval I(tj) of

each transitions of the net.

Moreover, other 6 ·m ·nf integer unknowns are introduced

by the linearization of the equation (9.1) and (10), for each

observed faulty and missing firing; thus, given the timed firing

sequence S, let Nl(S) be the number of unknowns due to the

linearizzation of (9.1) and (10), then

Nl(S) = 6 ·m · nf · (|T
un
q |+ |T

miss
q |) ≤ 6 ·m · nf · n

As a consequence

Na = 2 ·m · nf + 2 · n+
∑

∀S∈LF
obs

⋃
S

Nl(S) (16)

VIII. CONCLUSION

A Mixed-Integer Linear Programming approach for the au-

tomated identification of anomalies in timed discrete systems

modeled by Time PNs has been proposed. Using the identifi-

cation procedure, the nominal model of the system, assumed

to be known, can be repaired by adding new transitions to the

nominal model and/or extending the firing interval of nominal

TABLE V

NUMBER OF CONSTRAINTS OF GI (T
un
q , τq) AND GF (Tun

q , Tmiss
q , q)

FOR THE CASE STUDY, WITH m = 42 AND nf = 3.

S Tun
q Tmiss

q Γ yGI
(S) yGF

(S)
S′ 1 0 6 3 1725
S′′ 1 0 6 3 1725
S 1 0 10 3 2241

transitions. An experimental case study has been presented to

show the effectiveness of the approach.

The main drawback of the proposed approach is the com-

putational complexity since the size of the Mixed-Integer

Linear Program describing the problem increases with the

number of places, with the number of fault transitions and with

the length of the observed sequences. Future researches will

focus on reducing the complexity when considering particular

net structures or using appropriate heuristics, for example

looking for suboptimal solutions with respect to the chosen

performance index. However, on the basis of some a priori

knowledge of the system, it has been shown how to reduce

the number of unknowns and constraints in order to accelerate

significantly the computation time.

On the other hand, the use of the timing information allows

to accelerate the repairing process with respect to the untimed

approach, thanks to the concept of anomalous firing durations.

They occur every time a transition fires before a time less than

its firing interval lower bound or after than a time greater than

its upper bound is elapsed.

The repairing process reduces to a single stage, using a

unique set of observations, proving to be more convenient than

a two stage approach that works on a complete (or partial)

knowledge of the system language to identify the net structure

and afterwards to infer the time duration of the transitions from

the timed sequences.

Finally, the proposed approach works on effective observa-

tions produced by these systems considering that two events

can occur at the same time. In untimed/logical PN models

it is assumed the occurrence of two events cannot happen

simultaneously [30] even if they model concurrent activities

with no causal relationship.
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