
DOI: http://dx.doi.org/10.1016/j.jvlc.2014.12.002
E-m
mtucci@
francese
thod
Empirical validation of an automatic usability evaluation me

Rosanna Cassino, Maurizio Tucci, Giuliana Vitiello n, Rita Francese
Department of Management and Information Technology, Università di Salerno, Italy
Keywords:
Interactive systems evaluation
Usability engineering
Summative usability evaluation
ail addresses: rcassino@unisa.it (R. Cassino), 
unisa.it (M. Tucci), gvitiello@unisa.it (G. Vit
@unisa.it (R. Francese).
a b s t r a c t

Today, the success of a software application strongly depends on the usability of its
interface, so the evaluation of interfaces has become a crucial aspect of software
engineering. It is recognized that automatic tools for graphical user interface evaluation
may greatly reduce the costs of traditional activities performed during expert evaluation
or user testing in order to estimate the success probability of an application. However,
automatic methods need to be empirically validated in order to prove their effectiveness
with respect to the attributes they are supposed to evaluate.

In this work, we empirically validate a usability evaluation method conceived to assess
consistency aspects of a GUI with no need to analyze the back-end. We demonstrate the
validity of the approach by means of a comparative experimental study, where four web
sites and a stand-alone interactive application are analyzed and the results compared to
those of a human-based usability evaluation. The analysis of the results and the statistical
correlation between the tool's rating and humans' average ratings show that the proposed
methodology can indeed be a useful complement to standard techniques of usability
evaluation.
1. Introduction

The most intuitive definition of usability is the property of
the system that defines its degree of simplicity of use in terms
of learning, storage and efficiency. The ISO 9241 standard, on
“Ergonomics of Human System Interaction”, defines usability
as “The extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use.”

From 1980 the value of a software system is measured
on the basis of its GUIs (graphical user interfaces) and the
related power of expression and communication. The
iello), 
interface has to be user-friendly because it is often the
only part of the system with which the user interacts [20].

To create a “usable” system, the designer must create a
good conceptual model of the application (correct, con-
sistent, and simple) and effectively transmit it to the user
through the interface that must “accommodate” user's
mental model, namely her expectations about system
behavior. Several evaluation methods and tools are avail-
able to measure to what extent a GUI is “usable”.

Usability inspection methods involve usability experts and
different techniques (cognitivewalkthroughwith task-specific,
heuristic evaluation, and pluralistic walkthrough) to evaluate a
user interface without involving end users. These approaches,
generally, can be used early during the development process
by evaluating system prototypes or specifications that cannot
be tested on end users [18].

Empirical methods refer to usability testing used in
user-centered interaction design to evaluate a product by

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.12.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.12.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.12.002&domain=pdf
mailto:rcassino@unisa.it
mailto:mtucci@unisa.it
mailto:gvitiello@unisa.it
mailto:francese@unisa.it


testing it on users. This can be seen as an irreplaceable
usability practice, since it gives direct input on how real
users use the system [4].

Such approaches detect usability deficiencies of the
graphic interface by running and inspecting test cases and/
or by analyzing the results of questionnaires or interviews.
In addition to being very expensive and laborious, they
often produce results that can be biased by the acquisition
method and considerably depend on the adopted defini-
tion of usability, on the type and number of tasks, on the
data and on the evaluation standards.

On the contrary, the automatic evaluation techniques
are designed to avoid those problems both in terms of cost
and in terms of running time: an automatic tool is able to
locate in minutes (if not seconds) many critical issues.
To get the same results with the above methods would
take many hours of interviews and simulations of use
cases. A comparative study carried out in the field confirms
that automated tools for analytical evaluation are very
efficient in terms of execution time, objectivity and relia-
bility of the results obtained [11]. They can help designers
to understand what usability problems may arise and how
the interface should be improved, with respect to a given
set of guidelines. However, most existing methods rely on
interface source code to discover usability problems and
offer advice on how to fix them.

In [1] we presented USherlock, a tool of GUI usability
evaluation based on a front-side approach to derive the
structure of the interface starting from what the user sees
on the display. It allows to determine the nature of the
elements of a graphical interface according to the changes
produced on the interface itself. Depending on the type of
interaction (input/output; pause; double click; click and
double click; insertion of a character) and in case a visual
feedback is found, the tool identifies some typologies of
“dynamic” elements: button, link, text area, etc., and adds
a new node to a tree which represents the hierarchical
structure of each frame of the interface. For each element
or set of elements classified the evaluation process will run
all the usability controls. At the end of the evaluation
process, each node is assigned a list of the inconsistencies
identified and a score (rating between 0 and 1), which
indicates the “quality” of the node.

In this paper, we present the results of the empirical
study we have conducted to validate the proposed auto-
matic usability evaluation technique with respect to its
effectiveness, compared to the results of a traditional test,
as it is usually performed during summative evaluation.
We wanted to verify whether USherlock could be reliably
adopted to evaluate usability of given artefacts with an
acceptable error coverage. We decided to compare its
performance with the outcomes of a heuristic evaluation
performed by evaluators with a medium level of expertise.
Therefore, the participants we recruited for our experi-
ment were 24 students from the graduate course of
Computer Science, who had successfully passed the exam
of HCI and Software Usability and were well-trained on
heuristic evaluation techniques. We analyzed four typolo-
gies of web sites and a stand-alone application. A control
group of four expert evaluators (two external independent
evaluators and two of the co-authors) was in charge of
providing data on the real usability issues characterizing
the analyzed artefacts. The effectiveness of each usability
evaluation method could then be measured as the ratio
between the number of detected problems and the num-
ber of real problems (as specified by the control group).

The results of the empirical study show that a statisti-
cally significant improvement in terms of effectiveness is
indeed achieved using USherlock with respect to heuristic
evaluation performed by evaluators having a medium level
of expertise, with obvious advantages in terms of time and
cost with respect to the canonical manual tests. To show
that the improvements are unlikely to have occurred by
chance, we have applied a one-tail t-test with a signifi-
cance p-value o0.05 on the collected results for the pair
of usability evaluation methods.

A major lesson learnt from this research is that the
actual adoption by practitioners of an automatic usability
evaluation technique can be greatly encouraged if a
rigorous empirical analysis is performed to prove its
reliability in terms of problems discovered. The automatic
detection of specific usability issues, with the derived
advantages in terms of time and cost, can then be
effectively combined with other forms of usability evalua-
tion, such as user testing and heuristic evaluation, meant
to measure other aspects of usability especially related to
users' degree of satisfaction.

The rest of the paper is organized as follows. Section 2
discusses about some related work. Section 3 summarizes
the architecture of the implemented tool USherlock and
describes some algorithmic aspects. In Section 4 we
describe the empirical evaluation process developed to
validate the tool analysis results. Section 5 contains some
conclusions and final remarks.

2. Related work

The field of usability evaluation has been widely inves-
tigated over the last years. Several methods have been
proposed both for the evaluation of web applications and
of interactive graphical applications. However, many of
such methods have failed to meet practitioners' expecta-
tions with respect to their usability evaluation goal,
resulting in a low adoption rate. The need has therefore
emerged among HCI researchers to perform appropriate
studies meant to evaluate the usefulness of a usability
evaluation method and the benefits gained by its adoption.
The importance of rigorous studies to validate usability
evaluation methods was first claimed by Gray and Salzman
in [6]. The authors reviewed several experimental studies
performed on usability evaluation methods and concluded
that most suffer from the lack of meticulousness in proving
the statistical validity of the achieved results. Similar
claims were later discussed by Hartson et al., who also
addressed the lack of standard criteria and a clear under-
standing of the factors being measured as major problems
when comparing different usability evaluation methods
[8]. A few years later Hornbæk summarized current
practice of measuring usability and critically reviewed that
practice, after reviewing usability measures employed in
180 studies published in core HCI journals and proceed-
ings [9]. The goal of their study was to understand what



challenges should be faced to improve the validity and
reliability of usability measures. In the specific field of web
engineering, Fernandez et al. presented an extensive
analysis of the usability evaluation methods employed
over the last years to evaluate web applications [5]. Their
systematic study was mainly intended to examine how the
analyzed usability evaluation methods relate to the web
development process. Recently, the same researchers have
presented the results of the empirical validation of a
usability inspection method for model-driven web devel-
opment, comparing it with heuristic evaluation performed
in early stages of web development [4]. As a result of the
qualitative analysis performed, they conclude that, given
the nature of the proposed Web Usability Evaluation
Process (WUEP), which relies on different metrics to be
collected throughout the development process, most of
the calculation tasks could be profitably automated.

Hvannberga et al. proposed a framework to compare
different evaluation methods and described a case study
where the framework is used to evaluate effectiveness,
efficiency and inter-evaluator reliability of two sets of
heuristics, Nielsen's heuristics and the cognitive principles
of Gerhardt-Powals [10]. The same experiment was used to
compare paper based methods and web tool based meth-
ods for usability problem reporting. The results suggest
that a web tool for easy access and effective management
of data captured during evaluation may yield more reliable
results, especially supporting collaboration among evalua-
tors in remote settings [9]. Similar claims are supported by
Palanque et al., who described an approach that combines
different techniques including formal analysis of models,
simulation and analysis of log data in a model-based
environment [19]. The log data at model level can be used
not only to identify usability problems but also to identify
where to operate changes to these models in order to fix
usability problems. Some researchers have proposed the
use of formal grammar specifications to support the
designer in modeling and code generation of the GUI
while satisfying usability parameters. In [2], a methodol-
ogy was presented to specify and evaluate interactive
visual environments, in particular web interfaces, based
on the SR-Action Grammars formalism. A bottom-up
approach is described to aid the designer to develop
graphical applications that automatically respect a signifi-
cant number of usability rules before the software is
released and tested by standard methods, by means of
checks performed at a high level of abstraction. However,
similar solutions require a deep knowledge of the formal-
ism to perform usability checks of the application, and are
not conceived to verify applications already developed
using a top-down approach.

A common aspect of all the previous studies is that they
focus on usability evaluation methods mainly applied at
early stages of design and development for formative
usability evaluation activities. Such methods are therefore
meant to improve the evaluated artefact before the imple-
mentation phase. The empirical study we present in the
paper is instead referred to an automatic evaluation
method intended for a summative usability evaluation.

Ivory and Hearst investigated the level of automation
offered by a large number of existing WIMP and Web
interfaces usability evaluation methods and discovered
that some methods successfully automate aspects of
usability evaluation such as capture, analysis, or critique
activities [11]. They claim that automation of usability
evaluation, as a proper complement to standard evaluation
techniques, may yield several advantages. It may reduce
time and cost required for evaluation activities, may
increase consistency of uncovered errors, may help pre-
dicting time and error costs across design, may reduce the
level of expertise required to evaluators, and may increase
the coverage of evaluated features.

Several techniques have been explicitly conceived for
automatic discovery of usability faults. Reverse engineer-
ing techniques have been implemented in order to extract
static properties of the graphical interfaces, semi-
automatic tools are then delegated to analyze the proper-
ties of the several GUI components [1,7,12-16]. To evaluate
the efficiency of the interactive aspects, most of the
systems extract test cases of the typical activities and
tester users are assigned to the evaluation.

A number of methods for usability evaluation rely on
the availability of the source code of an application and/or
its interface. The process described in [3] analyzes the
source code of a visual application, the design model of its
interface, the graphical aspects and the interaction
mechanisms implemented in each frame, panel and/or
page of the system, to produce a report of the quantitative
evaluation of heuristic factors.

One limitation of the automated tools previously exam-
ined is that they use a back-side approach, which derives
from the analysis of the “hidden” side (e.g., source code
and logs) of the system. If the source code is not available,
it is very difficult to perform an automatic evaluation by
means of the techniques above.

With reference to our present research goal, the revised
literature reveals that the efficacy of the mentioned
techniques has been primarily verified through testing
activities, observing the effects of their adoption on real
interface prototypes, whereas rigorous empirical valida-
tion procedures that could strengthen and generalize the
testing outcomes are still missing. The results of the
empirical validation we present are intended to be a first
step towards bridging that gap.
3. USherlock: an automatic usability evaluation tool

In this section, we summarize the features of the
automatic evaluation USherlock tool proposed in [1,2].
The basic idea is to use a front-side approach to derive
the structure of the interface starting from what the user
sees on the display. An automatic system recognizes and
analyzes the static and dynamic aspects of the interface.
The system is fully integrated and does not require any
manual intervention either during the identification of
graphical components or during the evaluation process.

The tool automatically evaluates several of the most
popular usability metrics for the design of usable user
interfaces [17] (Nielsen heuristics). We derived a list of 15
properties related to the usability of the visible aspects of
an interactive application.



�
 Aspect ratio. The ratio between the height of a window
and its width. The numbers in the range from 0.5 to 0.8
are acceptable.
�
 Widget nesting. A high level of nesting implies an in-
correct design and excessive use of containers. The
widgets such as buttons, labels and text-area should
not exceed the third level of nesting.
�
 Relationship between background and widgets. The
ratio between the non-widget and the total area of
the interface, expressed in percentage. High numbers
(480) interfaces are “thin”, low numbers (o30) show
interfaces too “heavy”.
�
 Widgets density. The number of widgets divided by the
total area of the screen (multiplied by 100,000 to carry
out normalization). Numbers greater than 100 indicate
that a relatively large number of widgets are present in
a too small area.
�
 Widgets deployment. A measure of how equally dis-
tributed the widget on the screen. Two values are
considered: one to measure the horizontal balance
(the ratio between the total area of the widget in the
left half of the screen and the total area of the widget in
the right half) and the vertical equilibrium, which
compares the distributions of widgets in the upper
and in the lower areas of the interface. Higher values,
between 4 and 10, show unbalanced screens. A limit
value of 10 indicates empty or nearly empty areas (for
example, a dialog box which has a single button).
�
 Margins between widgets. A measure of the margin
between a widget and another and between a widget
and the edge of the screen. Values below a certain level
(i.e., 5 pixels or 1/10 of the widget size) are considered
inappropriate. In addition, children of the same con-
tainer widget should have the same margins.
�
 Widgets alignment. All nodes, children of the same
node (“sibling” nodes), must have at least one coordi-
nate in common among those of the 4 possible corners.
�
 Widgets color. Color distribution (histogram),
applied only to the widget, with the exception of
the pictures (if possible). A good deployment must
contain 2 or 3 peaks: a greater number of peaks or a
flat histogram indicate the use of an excessive num-
ber of colors.
�
 Background color. Color distribution (histogram),
applied only to the non-widgets area. A good deploy-
ment must bear only one peak of color: a greater
number of peaks or a flat histogram indicate that the
interface has an unclear background.
�
 Easily recognizable edges in widgets. Widget free edges
are acceptable only if they have a very high contrast
with the background (in the case of the Euclidean
distance at least greater than 100).
�
 Widgets shape and size. The widgets that are contained
in the same physical or logical container (sibling nodes
in the tree hierarchy) should have similar values of size,
Fig. 1. Tasks executio
shape and aspect ratio (same order of magnitude or
ratio close to 1).
�
 Clear and recognizable buttons. Each button of the
interface must be clearly recognizable in terms of
contrast, particularly with respect to the color of its
parent node (in terms of Euclidean distance, at least
200). In addition, each node button must demonstrate a
clear change of state on mouse-over.
�
 Permitted actions and immediate feedback. Each input
action should not lead to any inconsistent state or
system failure. For every action there must be a clear
and visible change. In the case of lengthy operations,
the processing state of the system must be commu-
nicated to the user.
�
 Reversibility. At any time it should be possible to return
to the previous state of the system.
�
 Enter text (input area). Text areas should have a single
background color. The contrast between the entered
text and the background must be very high (e.g.,
Euclidean distance at least greater than 300).

The evaluation process assigns each frame of the GUI a
list of the identified inconsistencies and a score (ranging
from 1 to 10) indicating its “quality”.

To effectively perform the analysis of the previous
properties of an interface, it is necessary to
�
 capture all the frames of the interface and cleaning;

�
 identify all the relevant elements;

�
 create a hierarchy of elements in an appropriate data

structure;

�
 classify the elements according to their interactive

features;

�
 evaluate each of the properties listed above;

�
 present a report with the obtained results.

Fig. 1 summarizes the flow of execution of the various
tasks. The output of each task is the input for the next
phase, even if in each phase it is possible to return to the
previous task.

3.1. Capture of the interface and cleaning

The first task of the process is the acquisition of the
interface, such as the URL address of the web page to be
analyzed. A preliminary cleaning of the input is very
important in order to exclude from further analysis all
the irrelevant elements (e.g.: animations, advertisements,
etc.). The resulting image will contain only the points that
do not change their RGB components during a given slice
of time, in order to exclude from subsequent analyzes
animations in the interface that could confound the
evaluation system and then produce unexpected and/or
incorrect results (Fig. 2).
n flow.



Fig. 2. Capture and cleaning task.

C1 C2 C3 Cn

Fig. 3. Connections list.
3.2. Identification of elements by means of image
segmentation

The next step identifies the elements drawn on the
interface such as images, text or widgets (buttons, menus,
text areas, etc.) by an image segmentation algorithm that
emulates the human visual perception [11].

The human visual perception alternates in the follow-
ing steps:
–
 Environment input (visual stimulus);

–
 Register sensory (organs);

–
 Selective attention to interesting input;

–
 Perception and recognition.
The selective perception of humans refers to the Gestalt
principles (where the German word Gestalt means form,
pattern, representation) [19]. The main rules of organiza-
tion of the data collected are
–
 Figure and Background. The relationship between fig-
ure and background can “read” the image, through the
separation of figure from background. The dominant
elements are perceived as figure, the rest is perceived
as background.
–
 Proximity. It occurs when elements are close. In this
case they are perceived as groups.
–
 Closure. It occurs when an object is incomplete or a space
is not completely closed. Our eye tends to fill in the
blanks and forms which are not closed. We tend to see
the full image even when some information is missing.
–
 Continuation. It occurs when the eye is compelled to
move through one object and continue to another.
–
 Similarity. Similar visual elements are grouped based
on the shape, size, color or direction.
–
 Common destiny. It refers to objects that move in the
same direction and therefore tend to be perceived as a
single entity.
–
 Common region. Figure positioned within the same
closed region tend to be perceived together.
–
 Symmetry. It consists in perceiving the whole of a
figure through the individual constituent parts.
The segmentation step partitions an image into homo-
geneous regions on the basis of a certain criterion of
membership of the pixels to a region.
The criteria for membership are
–
 Distinction: no pixel can be assigned to more than one
region.
–
 Completeness: all the pixels of the image must be
assigned at least one region of the partition.
–
 Connection: all the pixels belonging to a region must be
“connected”.
–
 Uniformity: all regions should be homogeneous with
respect to a fixed criterion (e.g.: intensity, color, texture,
etc.).
Among the various existing techniques, we chose to
implement a SRM (Statistical Region Merging) algorithm
[13]. SRM is a segmentation technique based on splitting
and merging. The first splitting phase involves the sub-
division of an image into a number of sub-regions, possibly
composed initially of a single pixel. As a second step, a
connection is created for each pair of adjacent regions to
abstractly encapsulate the following information: a refer-
ence to the two connected regions, and the degree of
similarity of the two regions. Then the algorithm creates a
list of connections, ordered in an ascending order accord-
ing to the similarity degree (Fig. 3).

The subsequent merging step simply performs the
fusion of pairs of connected (adjacent) regions, if they
are considered homogeneous on the basis of a compar-
ison operator. The algorithm performs an iterative loop
on the list of connections and at each step the system
evaluates the connection in question: if the degree of
similarity between the regions involved is greater than a
predetermined threshold, the system blends together
the regions concerned (phase merge). For example, the
merger of a region A with region B will generate a new
region D. We have used the Euclidean distance of the
RGB components of the average color. For example, a
region C that first appeared connected with A through a
connection c2 will now be connected with the new D
region: this can in fact change the value of the degree of
compatibility of the connection that involves the regions



and to prevent, if the compatibility is below the fixed
threshold, their relative fusion, unless additional
updates (Fig. 4).

After the merging step, the SRM algorithm performs a
further refinement of the results, which allows to clean
up the areas of the image that are too small or of little
interest: each small region is merged with the most
similar neighboring region; to determine if a region is
small it is possible to use a default value, or a parametric
value (e.g., to relate the value to the size of the inter-
face). The output of the segmentation process is a map of
homogeneous regions, and the result is presented on the
screen.
3.3. Hierarchy of elements in an appropriate data structure

The result of the segmentation process is a set of homo-
geneous regions. These regions correspond to the elements of
the interface. The next step describes the relations between
the elements of the GUI and their hierarchical composition as
a tree data structure, inwhich one or more elements (children
nodes) are contained in an element of type container (parent
node) (Fig. 5). At first, all regions are inserted in a list and
sorted according to their coverage area (i.e. the area of the
minimum rectangle that contains all the pixels of the region).
An iterative loop is performed on each region of the list. For
each iteration of the main loop, a nested loop is performed to
C1

A B

C2

A C

C2

D C

Merging D

Fig. 4. Merge of regions.

Fig. 5. Element hierarchy.
find a parent candidate region. If the surface of the examined
region is fully contained within the surface of the compared
region, the iteration stops and the examined region is
included in the set of children nodes of the parent candidate
region; otherwise the cycle continues repeating on the next
parent candidate region. At the end, if there is more than one
root, a dummy node is added as the new root of the tree and
all nodes in the previous step become its children, so that a
single tree structure is the result of the hierarchization
process.
3.4. Classification of elements and analysis of the interactive
mechanisms

The type (static or dynamic) of each identified object
determines which aspects of the evaluation apply. To this
aim, we have designed an automatic tool that determines
the type of each element of an interface (label, button, link,
text-area, menus, etc.) by means of the changes to the
interface itself that are activated by interacting with it.
To simulate interaction, the tool generates automatic input
events, such as mouse moving and clicking, or key press-
ing and releasing.

For each element contained in the data structure, the
system attempts to simulate an interaction with it, pro-
gressively generating the following input events:
–
 mouse input in the region;

–
 pause of the mouse over the region;

–
 exit of the mouse from the region;

–
 press and release (click) of the left button of the mouse;

–
 double click of the left button of the mouse;

–
 attempt to enter at least two characters of the alphabet.

For each generated input the system records any
changes of the interface and determines the nature of
the object. Depending on the type of input and on the
Fig. 6. Evaluator engine.

Fig. 7. The implementation model.



detected visual feedback, the following typologies of
elements are determined:
–
 input/output: dynamic element (it is possible to inter-
act with it);
–
 pause: the system provides a description of the item;

–
 press and release of left button of the mouse: the

element is a button or a menu item;

–
 double click: if the visual feedback is isolated to a

neighborhood of the point with which you interacted,
the element is a character and all pixels affected by the
change form a group (string);
Fig. 8. Interfac
–

e ca
click and double click: the item is a link;

–
 insertion of a character: the element is a text field or a

text-area.
As the classification of elements is completed, a further
refinement operation improves, where possible, the struc-
ture of the tree hierarchy, by applying the following rules:
–
 identification of false hierarchies: regions linked by a
parent–child relationship and showing the same beha-
vior are blended together;
pture.



Fig. 9. Interface segmentation.

Fig. 10. The hierarchy tree.



Table 1
User questionnaire.

Usability properties Questions Value

Widgets density How would you rate the amount of elements within the page? (1: inadequate, 2: poor, 3: sufficient, 4: good,
5: excellent)?

Widgets deployment How would you rate the distribution of elements on the page (1: inadequate, 2: poor, 3: sufficient, 4: good,
5: excellent)?

Widgets color What do you think of the color of the elements on the page (1: inadequate; 2: too strong relative to the
background; 3: almost unrecognizable from the background; 4: good, 5: excellent)?

Background color How would you rate the background color of the page? (1: inadequate; 2: confused, 3: hardly recognizable
compared to the other elements of the interface, 4: good, 5: excellent)

Aspect ratio How would you rate the proportionality of the window size with respect to the visibility of its contents? (1:
inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Widget nesting How would you rate the nesting of the elements, text boxes and labels in the page? (1: inadequate, 2: poor,
3: sufficient, 4: good, 5: excellent)

Relationship between
background and widgets

How would you rate the degree of uniformity in the relationship between the number of elements on the
page and the space reserved for them? (1: inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Margins between widgets Howwould you rate the degree of distinction between the elements in a page, referred to their margins? (1:
inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Widgets alignment How would you rate the alignment of elements inserted within another element of the page? (1:
inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Easily recognizable edges in
widgets

How would you rate the degree of discernibility of the widgets with respect to the background color of the
page? (1: inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Clear and recognizable buttons How would you rate the degree of perception of buttons based on their color intensity? (1: inadequate, 2:
poor, 3: sufficient, 4: good, 5: excellent)

Clear and recognizable buttons
to mouseover

How would you rate the recognition of the buttons when they are crossed by the mouse arrow? (1:
inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Permitted actions and
immediate feedback

How would you rate the amount of non-active links found? (1: high, 2: middle-high, 3. Middle, 4: low, 5:
very low)

Reversibility In case of wrong action, how would you rate reversibility to the previous state? (1: inadequate, 2: poor, 3:
sufficient, 4: good, 5: excellent)

Enter Text When inserting text inside the appropriate sections, how would you rate the contrast between text and
background? (1: inadequate, 2: poor, 3: sufficient, 4: good, 5: excellent)

Fig. 11. Evaluation results.



–
 introduction of new hierarchies: all the sibling nodes
that show a similar behavior are grouped together,
hence introducing a new sub-hierarchy.

3.5. Elements evaluation

The Evaluation Engine is the tool component, which is
in charge of checking for inconsistencies of the interface.
The engine analyzes each node of the tree and controls a
list of particular aspect of usability. If it finds a violation in
a node, a message of inconsistency is added to it (Fig. 6).
We have created 15 different evaluators: each of them
implements one of the assessments designed in the
analysis and listed in the previous section.

3.6. Result presentation

The results of evaluation are shown to the user in a
simplified or detailed manner. The first form of presenta-
tion is an aggregated report that shows a numerical score
between 0 and 1 for each element. For the root node, the
score is computed using a recursive relationship that links
the inconsistencies of the node to the score of its children-
nodes. In particular

νðnÞ ¼ 1
4

n:con�n:inc
n:con

� �
þ3
4

P
νðciÞ

n:child

� �� �

where νðnÞ is the score of a node, n:con represents the total
number of evaluations performed on the node, n:inc
Fig. 12. The home page of a
represents the number of inconsistencies of the node,
νðciÞ is the score of child node i, and n:child represents
the total number of children.

The score v(r) of the root node is computed by the
following formula:

νðrÞ ¼
P

νðciÞ
n:child

that represents the normalized total score assigned to the
interface.

The second form of presentation is a list of the incon-
sistencies identified for each node of the hierarchy. For the
ith element, the list presents the following information:
the upper-left pixel coordinates, size (width and height),
surface, medium color, dynamic nature, the list of listened
events, inconsistencies, and evaluation degree.

3.7. How USherlock works

The system is named USherlock, after the famous
program written in ANSI C by Mahajan and Shneiderman
[13], as a tribute to one of the first historical attempts of
automation in the field of usability evaluation of graphical
user interfaces.

USherlock is implemented in Java, following the MVC
(Model-View-Control) architectural pattern (Fig. 7). The
view package includes the classes related to the rendering
of the model. It sends the controller each user requests and
allows the controller to select a particular view.

The controller package defines the flow of execution. Its
classes map user requests into actions performed on the
popular search engine.



model and select a view related to user requests. For each
input event, a specific class describes the action to be
performed on the model and selects the next view. The
model package encapsulates the application state.

Fig. 8 shows an example of analysis of a home page of a
web site. The input data required are the web page URL to
be evaluated and the path of the browser. The Interaction
Engine performs a series of 10 screenshots at intervals of
Fig. 13. The graphical results of the search engine analysis. (For interpretation
version of this article.)
one second, and then returns a list of captured images to
the main process. Fig. 9 shows the result of the segmenta-
tion performed by the Segmentation Engine.

The TreeBuilder Engine designs the hierarchy of ele-
ments (Fig. 10). The analysis of the interaction mechanism
of the examined interface is implemented as an automatic
interaction process: an automatic interaction module
simulates the input events generation, and a decision
of the references to color in this figure, the reader is referred to the web



algorithm chooses the interface element to interact with
(and what type of input to generate). The automatic
interaction module is implemented using the Robot class
of the java.awt package, whose methods allow the gen-
eration of system native input events. The decision algo-
rithm is implemented using the Interaction Engine. The
program performs a post-order visit of the tree and, for
each object, asks the Robot to interact with it through the
following events:
–
 input/output of the mouse in/out the region;

–
 click of the left button of the mouse on the median

pixel of the region;

–
 double click of the left button of the mouse on the

median pixel of the region;

–
 enter a character.
Fig. 14. The home page of
the inconsistencies using the 16 evaluators described in
Section 3. Fig. 11 shows an example of the evaluation
The Evaluation Engine performs the GUI evaluation of

results.
4. Experimental analysis

The general concern addressed by the experimental
analysis has been the evaluation of the validity of the
implemented approach with respect to the usability issues
detected by a traditional test, as it is usually performed
during summative evaluation. In this section, we describe
the study in terms of subjects, apparatus, variables and
tasks, we explain the analytical methods employed to give
evidence to our claims and discuss the achieved results.
an institutional site.



4.1. Goal of the experiment

The goal of our experiment was to evaluate the effec-
tiveness of the proposed automatic technique against a
usability inspection method, performed taking into
account the same properties related to the visible aspects
of an interactive application. We also wanted to give
evidence of its appropriateness for usability evaluators
who have a medium level of expertise.
Fig. 15. The graphical results
4.2. The artefacts evaluated

We analyzed four typologies of web sites and a stand-
alone application. The chosenweb sites cover a wide range of
typical web interfaces, including a popular search engine, an
institutional site, a site dedicated to the issues of usability
and accessibility of websites, and a business site of informa-
tion technology services. The stand-alone application is a
commercial visual database for professionals (lawyers, labor
of the institutional site.



consultants, and accountants) that allows to search various
types of documents and quick access to different types of
papers (e.g. legislation, practice, and law). Although some of
the interfaces are in Italian, the native language of evaluators,
they are substantially identical to the more general English
versions with respect to the usability indicators we consid-
ered for the study.
4.3. Independent and dependent variables

We identified the independent variable in our
experiments is

� the evaluation method, with nominal values: USh
(USherlock) and HE (heuristic evaluation).

The dependent variable is
Fig. 16. The home page
� Effectiveness, which is calculated as the ratio
between the number of usability problems detected and
the total number of existing (known) usability problems,
as discovered by a control group made up of expert
evaluators. We consider one usability problem as one
defect that can be found independently of its severity
level and its total number of occurrences.

Following the approach given in [4], we set up a control
group of four people, two independent expert evaluators
and two of the authors, who worked independently from
each other to identify usability problems with respect to
the 15 usability properties analyzed adopting USh and HE
methods, respectively. After separate evaluation sessions
the control group members were asked to compare their
analyses and agree on the set of real problems discovered,
for each product analyzed. Possible biases deriving from
of the W3C site.



the subjective nature of the evaluation were therefore
mitigated by their final brainstorming activity.

4.4. Participants recruitment

One of the goals of the present research was to verify
whether evaluators with a medium level of expertise could
reliably adopt USherlock to evaluate usability of given artefacts
with an acceptable error coverage. Therefore, the participants
we recruited for our experiment were 24 students from the
Fig. 17. The graphical results of
graduate course of Computer Science, who had successfully
passed the exam of HCI and Software Usability, were well-
trained on heuristic evaluation techniques.

4.5. The experimental design

For each web site and for the stand-alone application
we used USherlock to navigate and evaluate eight pages/
screens. The same pages/screens were preliminarily sub-
mitted to the control group to get experts' ratings.
any web page of the W3C.



The 24 students taking part in the experiment were
initially informed on the purpose of the study and were
instructed on the set of usability indicators considered
relevant for the evaluation. They were then given instruc-
tions to perform one task for each of the analyzed pages/
screens, with a total of 40 units of analysis. In order to
avoid biases in the evaluation, participants were split into
4 separate groups of 6 people, randomly composed. To
limit annoyance and loss of attention, four experimental
sessions were run, on different dates. During a session
each group focused on a different web site, cycling through
the sessions, so that all groups would interact with the five
evaluated artefacts.

At each session, group members performed the assigned
tasks independently from one another, and upon completion
of each task they were asked to fill in a questionnaire,
composed of a set of 15 questions associated to a 1–5 rating
scale. Table 1 shows the user questionnaire common to the
analysis of all interfaces.

4.6. The experimental tasks

The first site examined is related to a popular search
engine. Fig. 12 shows its home page. Participants were
assigned the following tasks:
�
 Search for the university of Salerno web site (from
https://www.google.it/webhp?hl=it&tab=ww)
Fig. 18. The home page of the si
�

te o
Search for images of the university of Salerno (from
http://www.google.it/imghp?hl=it&tab=wi)
�
 Search for the university of Salerno web site and press the
“I am feeling lucky” button to reach directly the university
homepage (from http://www.google.it/ig?brand=SVED
&bmod=SVED&aig=0&reason=1)
�
 Sign in and access the reserved area (from https://
accounts.google.com/ServiceLogin?
hl=it&continue=http://www.google.it/)
�
 Register and access the reserved area (from https://
accounts.google.com/SignUp?service=
mail&continue=https%3A%2F%2Fmail.google.com%
2Fmail%2F%3Ftab%3Dnm&ltmpl=default)
�
 Use the translator to find the German translation of the
word “spring” (from http://translate.google.it/?hl=it&
tab=wT)
�
 Sign in to create a blog (from https://accounts.google.
com/ServiceLogin?service=blogger)
�
 Search the library for the book “Usability Engineering” by
J. Nielsen (from http://books.google.it/
The graphics depicted in Fig. 13 report the average
scores assigned by participants to each task (the blue line
in the graphics), compared to the evaluation results gained
by the USherlock tool (red line).

Fig. 14 shows the home page of the second web site.
The analyzed web pages are
f a business company.

https://www.google.it/webhp?hl=it&tab=ww
https://www.google.it/webhp?hl=it&tab=ww
http://www.google.it/imghp?hl=it&tab=wi
http://www.google.it/imghp?hl=it&tab=wi
http://www.google.it/ig?brand=SVED&bmod=SVED&aig=0&reason=1
http://www.google.it/ig?brand=SVED&bmod=SVED&aig=0&reason=1
http://www.google.it/ig?brand=SVED&bmod=SVED&aig=0&reason=1
http://www.google.it/ig?brand=SVED&bmod=SVED&aig=0&reason=1
https://accounts.google.com/ServiceLogin?hl=it&continue=http://www.google.it/
https://accounts.google.com/ServiceLogin?hl=it&continue=http://www.google.it/
https://accounts.google.com/ServiceLogin?hl=it&continue=http://www.google.it/
https://accounts.google.com/ServiceLogin?hl=it&continue=http://www.google.it/
https://accounts.google.com/SignUp?service=mail&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Ftab%3Dnm&ltmpl=default
https://accounts.google.com/SignUp?service=mail&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Ftab%3Dnm&ltmpl=default
https://accounts.google.com/SignUp?service=mail&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Ftab%3Dnm&ltmpl=default
https://accounts.google.com/SignUp?service=mail&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Ftab%3Dnm&ltmpl=default
https://accounts.google.com/SignUp?service=mail&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Ftab%3Dnm&ltmpl=default
https://accounts.google.com/SignUp?service=mail&continue=https%3A%2F%2Fmail.google.com%2Fmail%2F%3Ftab%3Dnm&ltmpl=default
http://translate.google.it/?hl=it&tab=wT
http://translate.google.it/?hl=it&tab=wT
https://accounts.google.com/ServiceLogin?service=blogger
https://accounts.google.com/ServiceLogin?service=blogger
http://books.google.it/


�
 http://www.istruzione.it/

�
 http://hubmiur.pubblica.istruzione.it/web/universita/

home

�
 http://cercauniversita.cineca.it/index.php?mod-

ule¼strutture&page¼StructureSearchParams&
advanced_serch¼1
�
 http://www.afam.miur.it/

�
 http://archivio.pubblica.istruzione.it/istanzeonline

/index.shtml
Fig. 19. The graphical results
�

of
https://www.researchitaly.it/conoscere/

�
 http://archivio.pubblica.istruzione.it/webmail/posta_

amministrativi.shtml

�
 http://hubmiur.pubblica.istruzione.it/web/istruzione/

famiglie/ordinamenti

Tasks and comparative graphics are depicted in Fig. 15.
Fig. 16 shows the home page of the third web site
examined: the site of a recognized international
a company web site.



organization dedicated to the issues of usability and
accessibility of websites. The web pages analyzed are
�
 http://www.w3.org/

�
 http://www.w3.org/standards/xml/

�
 http://www.w3.org/participate/

�
 http://open-stand.org/

�
 http://docs.webplatform.org/wiki/Main_Page

�
 http://www.w3.org/community/

�
 https://www.w3.org/community/wp-login.php?

redirect_to¼ /community/groups/propose_cg

�
 http://www.w3.org/Consortium/membership
Fig. 17 shows the comparative graphics for the consid-
ered web pages. Again, the title of each graphic indicates
the task performed by participants during user tests.

The fourth site we analyzed is an Italian business site of
information technology services (Fig. 18). The web pages
analyzed are
�
 http://latorracainformatica.it/

�
 http://latorracainformatica.it/area_riservata_11.html

�
 http://latorracainformatica.it/dove_siamo_10.html

�
 http://latorracainformatica.it/informazioni_12.html

�
 http://wsb.register.it/foman/form_mailing_action.jsp

�
 http://latorracainformatica.it/site_map.html http://lator-

racainformatica.sistemi.net/
Fig. 20. A stand alo
�
 http://latorracainformatica.sistemi.net/pagina.asp?
idlv¼4&idDoc¼8
In Fig. 19 the comparative graphics are depicted. The

title of each graphic indicates the task performed by

participants.

The last artefact we evaluated was the commercial
visual database for professionals (see a screenshot in
Fig. 20). The tasks considered are
�

ne
enter the main interface;

�
 search information on tax deductions for first home

owners;

�
 access the professional DB mail;

�
 access official documentation section;

�
 access further information section;

�
 access operational section;

�
 access tool section;

�
 access E-learning section.

Fig. 21 shows the graphics of the average ratings
achieved for the examined graphical user interface.
4.7. Data results

For each task, we analyzed 24 questionnaires resulting
from the study and computed the mean values of the rates
associated with each question. It is worth to note that, not
surprisingly, a few outliers resulted from the experimental
application.



Fig. 21. The graphical results of a stand alone application.
scores datasets. Indeed, they may be due to the subjective
nature of the evaluation and to the physical limitation of
human sight (e.g., not perceiving lack of alignment between
components) and therefore could be safely discarded before
computing the mean values. As explained in the previous
section, the graphics in Figs. 13,15,17,19, and 21 compare
the average ratings collected during the experiment for the
evaluated artefacts (four web sites and one stand-alone
visual database). Such ratings were then used to compute
effectiveness for each of the considered interfaces (eight
interfaces per site) and perform a correlation analysis with
respect to the evaluation method. Table 2 reports the



Table 2
Number of problems discovered.

Number of problems discovered Effectiveness_USh (%) Effectiveness_HE (%)

CG HE USh

GoogleTask1 11 2 4 36 18
GoogleTask2 5 3 5 100 60
GoogleTask3 4 2 4 100 50
GoogleTask4 5 1 2 40 20
GoogleTask5 3 1 1 33 33
GoogleTask6 6 3 5 83 50
GoogleTask7 7 4 6 86 57
GoogleTask8 6 1 5 83 17
μEffectiveness 70 38

MIUR_Task1 9 7 7 78 78
MIUR_Task2 9 7 8 89 78
MIUR_Task3 9 9 9 100 100
MIUR_Task4 9 7 9 100 78
MIUR_Task5 5 5 5 100 100
MIUR_Task6 6 4 6 100 67
MIUR_Task7 5 4 5 100 80
MIUR_Task8 6 6 6 100 100
μEffectiveness 96 85

W3C_Task1 5 3 4 80 60
W3C _Task2 6 2 4 67 33
W3C _Task3 6 4 4 67 67
W3C _Task4 6 2 6 100 33
W3C _Task5 6 3 3 50 50
W3C _Task6 5 2 5 100 40
W3C _Task7 3 3 2 67 100
W3C _Task8 3 3 1 33 100
μEffectiveness 70 60
CompanySite_Task1 8 5 6 75 63
CompanySite _Task2 8 6 5 63 75
CompanySite _Task3 6 4 5 83 67
CompanySite _Task4 9 8 6 100 89
CompanySite _Task5 9 5 8 89 100
CompanySite _Task6 4 4 3 75 100
CompanySite _Task7 6 4 3 100 67
CompanySite _Task8 8 4 6 75 50
μEffectiveness 82 71

VisualDB_Task1 10 6 5 50 60
VisualDB_Task2 6 4 5 83 67
VisualDB_Task3 7 4 5 71 57
VisualDB_Task4 4 3 2 50 75
VisualDB_Task5 7 4 6 86 57
VisualDB_Task6 8 7 4 50 88
VisualDB_Task7 5 4 5 100 80
VisualDB_Task8 7 4 5 71 57
μEffectiveness 70 68
EFF 75 64
number of problems discovered, respectively by the control
group (expert evaluators), through USherlock and through
heuristic evaluation. Data were collected separately for each
of the performed tasks.

By comparing USherlock and heuristic evaluation averages
for each query task, it is possible to notice that the values of
effectiveness corresponding to USherlock are higher than the
values corresponding to heuristic evaluation. The summary
values corresponding to the mean values computed for each
site also indicate that the USherlock method is more effective
than the heuristic evaluation method. The purpose of our
experiment has been to verify the validity of the above claims,
showing that the improvements are unlikely to have occurred
by chance. A one-tail t-test with a significance p-value o0.05
has been applied on the collected results for the pair of
methods we wanted to compare.

4.8. Hypotheses

We have formulated a pair of hypotheses, including the
null hypothesis and an alternative, one-sided, hypothesis, as
follows:

H0-1 (null hypothesis): The mean of effectiveness mea-
sure calculated using USh is not greater than the mean
obtained using HE:
EFF UShð ÞrEFF HEð Þ



Table 3
Results of the one-tail t-test.

Variable Mean difference 95.00% confidence interval t p-Value

Lower limit Upper limit

EFF_USherlock 0.106 0.018 0.193 2.443 0.019
EFF_heuristic
H1-1 (alternative hypothesis): Ush is significantly more
effective than HE:
EFF UShð Þ4EFF HEð Þ

4.9. Statistical analysis

Before applying the t-test, we had to verify that the
right conditions existed, namely that a normal distribution
of data existed according to the Shapiro–Wilk test and
equality of variances through Levene's test. Table 3 sum-
marizes the results of the one-tail t-test, applied to the
given data sets. It displays a p-value of 0.019, which is
lower than the given threshold 0.05 and a positive t¼2.43.
It implies that the null hypothesis can be rejected in favor
of the alternative hypothesis and that a statistically sig-
nificant improvement is achieved using USh rather than
HE, in terms of effectiveness for the analyzed artefacts.

Overall, the analysis has confirmed the validity of the
USherlock evaluation method giving statistical evidence to the
claim that the method outperforms heuristic evaluation
performed by practitioners with medium experience in
usability evaluation. The percentage of problem detection
with respect to an expert-based evaluation also suggests that
the automatic evaluation method can be reliably adopted to
reduce costs and time of testing activities.

5. Conclusion and further work

The goal of the presented research has been to validate
the automatic usability evaluation method USherlock and
give evidence to the degree of effectiveness achieved by
that front-side approach during summative usability eva-
luation activities. Using USherlock we have examined a
number of interfaces of four different web sites and one
stand-alone application to calculate the average number of
problems detected with respect to the number of real
problems, as discovered by a group of expert evaluators.
The results have been compared to those derived from an
inspection evaluation method that involved students of a
Human Computer Interaction and Software Usability aca-
demic course, playing the role of practitioners with med-
ium experience in usability evaluation.

The outcomes of the empirical analysis show that an
improvement in terms of effectiveness is indeed achieved
using USherlock, with obvious advantages in terms of time
and cost with respect to the canonical manual tests.
Obviously, some remarkable subjective aspects of usability
as the sense of satisfaction or the complexity of the path of
an interaction are not measurable characteristics with
automated methods. Nevertheless, the metrics evaluated
using the proposed methodology can be a useful comple-
ment to standard techniques of evaluation.

In the future we are planning to further enhance the tool
with the ability to test accessibility aspects of graphical user
interfaces. This will require a new empirical analysis to
evaluate its effectiveness. We will also investigate the inclu-
sion of OCR systems and inference engines as solutions to
improve the tool ability to recognize textual elements.
Acknowledgment

We wish to thank the anonymous reviewers for their
comments and valuable suggestions to improve the quality
of the paper. We are also grateful to the two expert
evaluators and to the students who took part in the
experiment.

References

[1] R. Cassino, M. Tucci, Automatic Usability Evaluation of GUI: A Front-
Side Approach Using No Source Code Information (Lecture Notes in
Information Systems and Organization), , 2013, 439–447.

[2] R. Cassino, M. Tucci, Developing usable web interfaces with the aid
of automatic verification of their formal specification, J. Vis. Lang.
Comput. 22 (2) (2011) 140–149.

[3] R. Cassino, M. Tucci, Usability evaluation of interactive visual
applications: a quantitative approach, DMS’07, in: Proceedings of
the Thirteenth International Conference on Distributed Multimedia
Systems, 6–8 September 2007, San Francisco, Bay, USA, 2007.

[4] A. Fernandez, S. Abrahão, Empirical validation of a usability inspec-
tion method for model-driven web development, J. Syst. Softw. 86
(1) (2013) 161–186.

[5] A. Fernandez, E. Insfran, S. Abrahão, Usability evaluation methods for
the web: a systematic mapping study, Inf. Softw. Technol. 53 (8)
(2011) 789–817.

[6] W. Gray, M. Salzman, Damaged merchandise? A review of experi-
ments that compare usability evaluation methods, Hum.–Comput.
Interact. 13 (1998) 203–261.

[7] D.R. Hackner. A.M. Memon, Test case generator for GUITAR, in:
Proceeding of the Companion of the 30th International Conference
on Software Engineering, 2008, pp. 959–960.

[8] H. Hartson, T. Andre, R. Williges, Criteria for evaluating usability
evaluation methods, Int. J. Hum.–Comput. Interact. 15 (1) (2003)
145–181.

[9] K. Hornbæk, Current practice in measuring usability: challenges to
usability studies and research, Int. J. Hum.–Comput. Stud. 64 (2006)
79–102.

[10] E.T. Hvannberga, E.L. Lawb, M.K. Lárusdóttirc, Heuristic evaluation:
comparing ways of finding and reporting usability problems, Inter-
act. Comput. 19 (2) (2007) 225–240.

[11] M.Y. Ivory, M.A. Hearst, The state of the art in automating usability
evaluation of user interfaces, ACM Comput. Surv. 33 (4) (2001)
470–516.

[12] Lu Lu, Automated GUI test case generation, in: Proceedings of the
International Conference on Computer Science & Service System
(CSSS), 2012, pp. 582–585.

[13] R. Mahajan, B. Shneiderman, Visual and textual consistency checking
tools for graphical user interfaces, IEEE Trans. Softw. Eng. 23 (11)
(1997) 722–735.

http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref1
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref1
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref1
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref2
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref2
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref2
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref3
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref3
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref3
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref4
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref4
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref4
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref5
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref5
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref5
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref6
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref6
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref6
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref7
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref7
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref7
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref8
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref8
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref8
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref9
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref9
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref9
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref11
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref11
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref11


[14] A.M. Memon, Using reverse engineering for automated usability
evaluation of Gui-based applications, in: A. Seffah, J. Vanderdonckt,
M.C. Desmarais (Eds.), Human-Centered Software Engineering—
Human–Computer Interaction Series, 2009, pp. 335–355.

[15] A.M. Memon, B.N. Nguyen, Advances in automated model-based
system testing of software applications with a GUI front-end, Adv.
Comput. 80 (2010) 121–162.

[16] A. Memon, A. Nagarajan, Q. Xie, Automating regression testing for
evolving GUI software, J. Softw. Maint. Evol.: Res. Pract. 17 (1) (2005)
27–64.

[17] J. Nielsen, Usability Engineering, Academic Press, Boston, USA, 1993.
[18] J. Nielsen, Usability inspection methods, in: Proceeding of the CHI’94
Conference Companion on Human Factors in Computing Systems,
pp. 413–441.

[19] P. Palanque, E. Barboni, C. Martinie, D. Navarre, M. Winckler, A
model-based approach for supporting engineering usability evalua-
tion of interaction techniques, in: Proceedings of the 3rd ACM
SIGCHI Symposium on Engineering Interactive Computing Systems,
2011, pp. 21–30.

[20] J.C. Silva, J. Creissac, J. Saraiva, GUI inspection from source code
analysis, in: Proceeding of the Foundations and Techniques for Open
Source Software Certification, Vol. 33, 2010.

http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref114
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref114
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref114
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref114
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref12
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref12
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref12
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref13
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref13
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref13
http://refhub.elsevier.com/S1045-926X(14)00157-8/sbref14

	Empirical validation of an automatic usability evaluation method
	Introduction
	Related work
	USherlock: an automatic usability evaluation tool
	Capture of the interface and cleaning
	Identification of elements by means of image segmentation
	Hierarchy of elements in an appropriate data structure
	Classification of elements and analysis of the interactive mechanisms
	Elements evaluation
	Result presentation
	How USherlock works

	Experimental analysis
	Goal of the experiment
	The artefacts evaluated
	Independent and dependent variables
	Participants recruitment
	The experimental design
	The experimental tasks
	Data results
	Hypotheses
	Statistical analysis

	Conclusion and further work
	Acknowledgment
	References




