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Abstract. We have reported the most general mean-field approxima-
tion for the t-J model obtained in the framework of the Composite
Operator Method within the simplest one-pole approximation. The
nearest-neighbor charge–charge and spin–spin correlators have been
computed in a projection (one-loop) approximation with the result of
reducing the self-consistent parameters just to two: the chemical poten-
tial and the kinetic energy. The properties of the system have been
studied as functions of the filling and the temperature and compared
with well established numerical results in order to assess the reliability
of the obtained approximated solution. This latter is very well suited to
study low-intermediate fillings and small dopings in case of frustration.

1 Introduction

The study of strongly correlated electronic systems (SCES) [1–3] is very relevant to
current literature as it is one of the most intriguing open challenges in theoretical con-
densed matter physics [4,5], and also because strongly correlated materials exhibit an
extremely rich variety of unconventional experimental features with very promising
technological applications [6–10]. Even though deceptively simple, model Hamiltoni-
ans such as the Hubbard model [11–13] and its strong-coupling derivative, the t-J
model [14–16], seem capable to host the emergence of extremely interesting and still
puzzling phenomenologies such as the Mott-Hubbard metal-insulator transition [17],
exotic charge, spin and/or orbital ordering [18–21], non-Fermi-liquid normal phases
characterized and dominated by short-range spin and/or charge correlations [21–23],
as well as high-temperature superconductivity [22–28]. According to this, the study
of the properties of these models is still very active [29–44] and follows the current
trends in the field: spatial inhomogeneity (defects, interfaces, heterostructures, etc.)
[8–10,45–51] and time dependence [52–60].

Solving so much correlated models is an incredibly difficult task and there is
always need for new methods and, in particular, for non-perturbative ones. In this
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short manuscript, we use an operatorial approach [1] and first apply the Compos-
ite Operator Method (COM) [22,61–64], in its simplest version, to the t-J model.
Operatorial approaches (the Hubbard approximations [11–13], the Projection Oper-
ator Method [65,66], the works of Mori [67], Rowe [68], Roth [69], and the Spectral
Density Approach [70]) study SCES searching for the new quasi-particles emerging
in the system because of the strong correlations in terms of operators describing the
new elementary excitations and their unconventional properties. We will establish the
lowest-order approximation in the COM framework, just a one-pole approximation,
and analyze the properties of what is the most general mean-field solution. We will
also compare the results with well established numerical ones to assess the reliability
of the solution and investigate the routes towards its improvement. In particular,
we will analyze the behavior of the self-consistent parameters of the solution, which
amount to the chemical potential and the correlator defining the kinetic energy in
the Hamiltonian. The nearest-neighbor charge–charge and spin–spin correlators will
be computed in a projection (one-loop) approximation and their properties analyzed
in detail as functions of filling and temperature.

2 Model and method

2.1 Model and notation

The Hamiltonian of the two-dimensional t-J model – 3-site terms excluded – reads
as

H = −4t
∑
i

ξ† (i) · ξα (i) +
1

2
J
∑
i

[νk (i) ναk (i)− ν (i) να (i)]− µ
∑
i

ν (i) (1)

where t is the nearest-neighbor hopping integral (energy unit hereafter), J is the
exchange integral and µ is the chemical potential.

The fermionic field ξ† (i) =
(
ξ†↑ (i) , ξ†↓ (i)

)
is written in spinorial notation (· stands

for the inner (scalar) product in spin space) and Heisenberg picture (i = (i, ti)), i = Ri

is a vector of the two-dimensional Bravais lattice. ξσ (i) =
(

1− c†σ̄ (i) cσ̄ (i)
)
cσ (i) is

the projected Hubbard operator taking care of the single occupation of site i with an
electron of spin σ, that is of the transitions n = 0↔ n = 1 (σ). It is worth noting that
ξ (i) allows to simplify the notation with respect to the canonical operator c (i): ξ (i)
absorbs in its definition the single-occupation-per-site projector, which is an essential
and indispensable characteristic of the t-J model, and allows to use conventional
operatorial methods without need to impose the single-occupation-per-site projection
as an external constraint.

νσ (i) = ξ†σ (i) ξσ (i) is the particle density operator for spin σ at site i and
ν (i) =

∑
σ νσ (i) = ξ† (i) · ξ (i) is the total particle density operator at site i.

νk (i) = ξ† (i) · σk · ξ (i) is the spin density operator at site i, being σk the Pauli
matrices; the ordinary components of the spin operator are in the following relation-
ship: Sk = 1

2νk. ~ has been fixed to 1. We also have σµ = (1,σ) [σµ = (−1,σ)] and,

correspondingly, νµ (i) = ξ† (i) · σµ · ξ (i) is the charge (µ = 0) and spin (µ = 1, 2, 3)
density operator at site i.

Finally, αij = 1
4δ〈ij〉 is the nearest-neighbor projector and, hereafter, for any oper-

ator ψ (i), we use the notation ψκ (i, t) =
∑

j κijψ (j, t) where κij can be any function
of the two sites i and j and, in particular, a projector. Accordingly, for instance, the
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kinetic term K of the Hamiltonian has been rewritten as

K = −t
∑
〈i,j〉

ξ† (i, t) · ξ (j, t) = −t
∑
i,j

δ〈ij〉ξ
† (i, t) · ξ (j, t)

= −4t
∑
i,j

αijξ
† (i, t) · ξ (j, t) = −4t

∑
i

ξ† (i) · ξα (i) .(2)

Also the nearest-neighbor spin–spin and charge–charge interaction terms of the
Hamiltonian have been rewritten using the same very compact notation.

Actually, we will rewrite the Hamiltonian (1) in the following form

H =
∑
i

ξ† (i) ·
[
−4tξα (i) + J

(
ξ̃0 (i) + ξ̃s (i)

)
−
(
µ+

1

2
J

)
ξ (i)

]
(3)

where ξ̃0 (i) = 1
2 (1− να (i)) ξ (i) and ξ̃s (i) = 1

2ν
α
k (i)σk · ξ (i) allow to recast the

Hamiltonian in terms of electronic transitions dressed by nearest-neighbor charge
and spin fluctuations.

2.2 Method

2.2.1 Current

The current J (i) of the field ξ (i) reads as

J (i) = i
∂

∂t
ξ (i) = [ξ (i) ,H]

= −2t (ξα (i) + 2ξ0 (i) + 2ξs (i)) + 2J
(
ξ̃0 (i) + ξ̃s (i)

)
− (µ+ J) ξ (i) (4)

where ξ0 (i) = 1
2 (1− ν (i)) ξα (i) and ξs (i) = 1

2νk (i)σk · ξα (i) are just the compan-
ions of the higher-order fields defined in the Hamiltonian. It is worth noting that
the projective nature of the model Hamiltonian, and of the fields appearing within,
leads to the emergence of new fields in the current and to a hierarchy of equations of
motion even only by the kinetic energy term, which is usually considered harmless.
The t-J model is a strongly interacting model not only for the exchange term explic-
itly present in the Hamiltonian, but at least equally for its projective nature affecting
all its components.

2.2.2 Normalization

The field ξ (i) has a peculiar commutation relation that reminds us of its projective
nature and of the obvious and remarkable difference with the original electronic field
c (i) [

{
c (i) , c† (j)

}
= δij]:

{
ξ (i) , ξ† (j)

}
= δij

(
1 +

1

2
σµνµ (i)

)
(5)

that gives the following normalization in the homogenous paramagnetic phase

Iij =
〈{
ξ (i) , ξ† (j)

}〉
= δij

(
1− 1

2
ν

)
(6)
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where ν = 〈ν (i)〉 is the actual filling of the system (number of particle per site) and
〈· · · 〉 is the quantum mechanical average in the grand-canonical ensemble.

2.2.3 Projection

Once one decides to retain only a single pole in the Green’s function, and obviously
the one describing the dynamics of the electrons in the most direct way, the COM acts
as a generalized mean-field theory with the advantage of using a clear and controlled
projection procedure:

J (i) = i
∂

∂t
ξ (i) ∼=

∑
j

εijξ (j) . (7)

Such a generalized mean-field approximation falls back to the standard mean-
field (although the most general one) if one projects the current of the operator
c (i) on c (i) itself. In the t-J model, this is just impossible by construction as the
operator c (i) has lost any significance because of the ubiquitous single-occupation-
per-site projector that leads to the emergence of ξ (i). In this respect, the t-J model
is so strongly correlated by construction that the standard mean-field approximation
cannot even be computed and the one presented here is the simplest possible within
the same framework: projection of the dynamics (i.e. the current) of one operator on
itself.

Computing the average of the commutation of both sides of equation (7) with the
chosen basic field and applying the Fourier transform, we obtain〈{

J (i) , ξ† (l)
}〉

=
∑
j

εij
〈{
ξ (j) , ξ† (l)

}〉
(8)

ε (k) = m (k) I−1 (k) (9)

where m (k) = F
〈{
J (i) , ξ† (j)

}〉
and I (k) = F [Iij] = F

〈{
ξ (i) , ξ† (j)

}〉
= 1− 1

2ν.

If a Hamiltonian H̄ can be exactly diagonalized in terms of quasi-particles repre-
sented by field operators ψ (i) such that Jψ (i) = i ∂∂tψ (i) =

[
ψ (i) , H̄

]
=
∑

j ε̄ijψ (j),

we define ψ (i) as an eigenoperator of the Hamiltonian H̄ and ε̄ij as its eigenen-
ergy. Accordingly, ε (k) = F [εij] is the approximate eigenenergy of the approximate
eigenoperator ξ (i) of the Hamiltonian H. Such a procedure is equivalent to project
the current J (i) onto the basic field ξ (i) and therefore compute the most general
mean-field theory possible:

J (i) ∼= Pξ [J (i)] (10)

where

Pψ [φ (i)] =
∑
j

F−1

{
F
〈{
φ(i), ψ†(j)

}〉
F 〈{ψ(i), ψ†(j)}〉

}
ψ(j) (11)

is the projection functional for field operators. In particular, we have the following
expressions for the thermal averages of the commutators of the fields appearing in
the current 〈{

ξ0(i), ξ†(j)
}〉

= −1

2
δijC

α +
1

4
αij (2− 3ν + χαc ) (12)
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〈{
ξs(i), ξ

†(j)
}〉

=
3

2
δijC

α +
3

4
αijχ

α
s (13)〈{

ξ̃0(i), ξ†(j)
}〉

=
1

4
δij (2− 3ν + χαc )− 1

2
αijC

α (14)〈{
ξ̃s(i), ξ

†(j)
}〉

=
3

4
δijχ

α
s +

3

2
αijC

α. (15)

Through this procedure, we obtain the following expression for m (k)

m (k) = −µI (k)− 4t [Cα + α (k) (1− ν + p)] + 2J
[
p− ν

2
+ α (k)Cα

]
(16)

where Cα =
〈
ξα (i) ξ† (i)

〉
is the main contribution to the kinetic energy K = 8tCα

and p =
1

4
(χαc + 3χαs ) is a linear combination of the charge, χαc = 〈ν (i) να (i)〉, and

spin, χαs =
1

3
〈νk (i) ναk (i)〉, nearest-neighbor correlation functions.

2.2.4 Green’s function and elementary excitations

The approximated expression of the current (7) allows to obtain a closed expression
for the relevant thermal retarded Green’s function G (i, j) = R

〈{
ξ (i) , ξ† (j)

}〉
and,

in particular, for its Fourier transform G (k, ω) = F [G (i, j)]

i
∂

∂ti
G (i, j) = iδ (ti − tj) Iij +

∑
l

εilG (l, ti; j) (17)

G (k, ω) =
I (k)

ω − ε (k) + iδ
. (18)

Such an expression for G (k, ω) immediately clarifies the relevance of the normal-
ization I (k) and of the eigenenergy ε (k) through the obvious correspondence with
the Landau theory: they are the (spectral) weight and the dispersion, respectively,
of the only relevant quasi-particle (elementary excitation) in this approximation.
Actually, these two quantities completely characterize such quasi-particle and,
correspondingly, all properties of the system.

2.2.5 Self-consistency

In order to compute the properties of the system through the Green’s function, it is
now necessary to fix the values of the correlators appearing in the eigenenergy ε (k):
Cα, χαc , and χαs .

The correlator Cα can be easily obtained self-consistently through the relation
dictated by the fluctuation-dissipation theorem between the Green’s function just
introduced and the correlators of the fields appearing in this latter

C (i, j) =
〈
ξ (i) ξ† (j)

〉
= F−1 {[1− fF (ω)]= [G (k, ω)]}
= F−1 {2π [1− fF (ω)] I (k) δ (ω − ε (k))} (19)
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that leads to

Cα =
〈
ξα (i) ξ† (i)

〉
=

2π

N

∑
k

[1− fF (ε (k))]α (k) I (k) (20)

where fF (ω) = 1

e
ω
T +1

is the Fermi function and T is the temperature in units of t

(kB has been fixed to 1).
The correlators χαc and χαs cannot be obtained directly from the Green’s function

as they are higher-order correlators. A very straightforward, but still very reasonable,
approximation, it is to compute them through the same projection technique used to
approximate the current and obtain the generalized mean-field approximation. We
can rewrite the two correlators as

χαc = 〈ν(i)να(i)〉 = ν − 2
〈
ξ†(i) · ξ̃0(i)

〉
(21)

χαs =
1

3
〈νk(i)ναk (i)〉 =

2

3

〈
ξ†(i) · ξ̃s(i)

〉
. (22)

Then, we can approximate the two fields appearing in such expressions as

ξ̃0(i) ∼= Pξ

[
ξ̃0(i)

]
=

2− 3ν + χαc
4
(
1− ν

2

) ξ(i)− Cα

2
(
1− ν

2

)ξα(i) (23)

ξ̃s(i) ∼= Pξ

[
ξ̃s(i)

]
=

3χαs
4
(
1− ν

2

)ξ(i) +
3Cα

2
(
1− ν

2

)ξα(i). (24)

Finally, substituting the previous expressions in those of χαc and χαs , we obtain - after
solving the resulting equations -

χαc = ν2 − 2 (Cα)
2

(25)

χαs = − 2

1− ν
(Cα)

2
(26)

that leads to the following straightforward expression for the parameter p

p =
ν2

4
− 1

2

4− ν
1− ν

(Cα)
2

(27)

and allows to determine the eigenenergy ε (k) as a function only of the self-consistent
parameter Cα.

Actually, we need also to determine the value of the chemical potential µ in
the eigenenergy ε (k) in order to study the system for a chosen value of ν, once the
Hamiltonian parameters, t and J , and temperature T have been fixed. This requires to
implement a second self-consistent equation and solve the two of them simultaneously.
The needed second equation can be obtained directly from the same-site ξ correlation
function

2π

N

∑
k

[1− fF (ε (k))] I (k) =
〈
ξ (i) ξ† (i)

〉
= 1− ν (28)
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whose value is obtained on the right-hand side from a direct evaluation, exploiting the
local algebra closed by the operator ξ, and on the left-hand side from the fluctuation-
dissipation theorem that links its expression to the elements of the Green’s function
and therefore to the eigenenergy ε (k) and the chemical potential µ therein.

Starting from educated guesses for the values of Cα and µ that allow to compute
an educated guess for the eigenenergy ε (k), we can find the solution of the model
through the set of two self-consistent equations{

Cα = 2π
N

∑
k [1− fF (ε (k))]α (k) I (k)

ν = 1− 2π
N

∑
k [1− fF (ε (k))] I (k) .

(29)

3 Results

In Figure 1 (left panel), we report Cα as a function of ν for J = 0.1 and T ∈ [0, 1.2]
in steps of 0.1. The black circles are Exact Diagonalization (ED) data for a 4 × 4
cluster at T = 0 from reference [71]. The overall behavior is the one expected taking
into account that the kinetic energy is just K = 8tCα: the electrons have a finite
mobility only when the average number of particles per site is finite (ν > 0) and
the system is not completely filled (ν < 1), according to the projective constraint
that allows only one particle per site independently of its spin. Counterintuitively,
on increasing the temperature, the mobility reduces. Actually, such a reduction can
be understood in terms of virtual exchange processes, possible only when there is an
antiferromagnetic spin alignment between nearest-neighbor sites, becoming less and
less favored on increasing the temperature because of the complementary reduction
of the nearest-neighbor spin–spin correlation function χαs [see Fig. 1 (right panel)]. At
higher and higher temperatures ferromagnetic alignments of nearest-neighbor spins
are more and more probable as higher-energy excited states become accessible.

The comparison with the ED results is partly satisfactory and partly enlightening
regarding the actual characteristics of the approximate solution found. On one hand,
for low-intermediate fillings (ν . 2

3 ), we have a very good agreement although the
finiteness of the numerical cluster requires to use a larger value of the temperature
to balance the finite level spacing. On the other hand, for high fillings (low dopings)
it is evident a more and more marked discrepancy between the analytical and the
numerical results. It can be understood looking again at the nearest-neighbor spin–
spin correlation function χαs [see Fig. 1 (right panel)] that shows a minimum in that
region of doping and vanishes at ν = 1. Actually, our approximate solution is strictly
paramagnetic and this contrasts with the actual solution one expects at ν = 1 that
is strictly antiferromagnetic (just antiferromagnetic Heisenberg). However, in case
frustration is present in the system (just the next-nearest-neighbor hopping term
t′ will be sufficient), this is exactly what we expect: a not-ordered (paramagnetic)
solution at all dopings. Anyway, we better take this into account in the interpretation
of all other presented quantities.

The chemical potential µ is reported in Figure 2 (left panel) as a function of ν for
J = 0.1 and T ∈ [0, 1.2] in steps of 0.1. It is worth noting the presence of an almost
perfect isosbestic point at ν ≈ 0.725. At the lower temperatures, the compressibility
of the system is definitely decreasing more and more on approaching ν = 1 and is very
low and constant in the low-doping region. This is reflected also in the behavior of the
charge fluctuations as it is possible to observe in Figure 2 (right panel) where we report
the nearest-neighbor charge–charge correlation function χαc diminished of its non-
fluctuating component ν2. It is again evident the effect of the projective constraint
that does not allow any charge fluctuations at ν = 1 and leaves the system in condition
to sustain them efficiently only in proximity of half-filling (ν = 0.5). There, at the
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Fig. 1. (Left) Cα and (right) χαs as functions of ν for J = 0.1 and T ∈ [0, 1.2] in steps
of 0.1. The black circles in the left panel are ED data for a 4 × 4 cluster at T = 0 from
reference [71].

Fig. 2. (Left) µ and (right) χαc − ν2 as functions of ν for the same parameters of Figure 1.

Fig. 3. (Left) N (0) and (right) E as functions of ν for the same parameters of Figure 1.

lower temperatures, we can register the signature of an incipient checkerboard charge
order that is again strongly frustrated by our choice to study a homogeneous solution.

Finally, in Figure 3, we report the density of states at the chemical potential
N (0) (left panel) and the internal energy per site E (right panel) as functions of
ν for J = 0.1 and T ∈ [0, 1.2] in steps of 0.1. The behavior of N (0) clarifies the
reason why νc ≈ 2

3 is somehow special for Cα: at νc, independently of temperature,
we have the presence of a van Hove singularity in the density of states. For fillings
lower than νc, the system presents a dispersion that is reasonably well described by
our paramagnetic one; above νc, strong antiferromagnetic correlations will induce a
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flattening of the dispersion, leading to the reduction of the available states, that we
do not observe in our still paramagnetic dispersion. We have a similar behavior on
increasing the temperature (also the numerical data meet our analytical values of
Cα for larger and larger values of the temperature on reducing the doping) that is
instead dictated by the reduction of spin–spin fluctuations accompanying a reduction
of the (virtual) mobility.

4 Conclusions and remarks

In conclusion, we have reported an approximate solution of the t-J model and charac-
terized its properties. The solution showed to be very reliable in the low-intermediate
region of filling. At low doping, being forced to be homogeneous and paramagnetic,
it does not feature the strong antiferromagnetic correlations of numerical solutions,
but it better resembles the actual situation present in real systems where frustration
destroys long-range order at very low values of doping. The solution can be further
improved by both enlarging the basis of fields (truncating the hierarchy of equations
of motion at a higher level and moving away from the simplest generalized mean-
field theory) and computing the spin and charge dynamics in the same framework to
obtain a richer and more accurate behavior for these fundamental ingredients of the
approximation. Such options are actually under current investigation.
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