
Rumor spreading models with random denials

Virginia Giorno1, Serena Spina2

1Dipartimento di Informatica, Università di Salerno, Fisciano (SA), Italy
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Abstract

The concept of denial is introduced on rumor spreading processes. The denials occur with a certain rate and they
reset to start the initial situation. A population ofN individuals is subdivided into ignorants, spreaders and stiflers;
at the initial time there is only one spreader and the rest of the population is ignorant. The denials are introduced in
the classic DK model and in its generalization, in which a spreader can transmit the rumor at most tok ignorants.
The steady state densities are analyzed for these models. Finally, a numerical analysis is performed to study the
rule of the involved parameters and to compare the proposed models.
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1. Introduction

Recently, great attention has been payed to models for the spread of rumor. Indeed, the rumor spreading plays
an important role in various contexts of the real life, for instance, it can shape the public opinion in a country,
greatly impacts financial markets and causes panic in a society. To analyze the spreading and cessation of the
rumor, models are often formulated as social contagion processes (cf., for example, [1], [6], [7]). The first classical
rumor spreading model, the DK-m, was proposed by Daley and Kendal in 1960s (cf. [3], [4]). Subsequently, Maki
and Thomson developed an other classical model (MT-m) (cf. [9]). In both models people are divided into three
groups, the ones who know and transmit the rumor (spreaders), the ones who do not know the rumor (ignorants)
and the ones who know the rumor but do not transmit it (stiflers), the rumor spreads through pair-wise contacts
between spreaders and the other people. In the DK- m, spreader-ignorant contact will convert the ignorant to
spreader; spreader-spreader contact will convert both spreaders to stiflers and spreader-stifler contact will stifle the
spreader. In the MT-m when a spreader contacts another spreader, only the initiating one becomes a stifler. A large
amount of works have studied the dynamics and limit behaviors of these systems and their variants (cf. [8], [10],
[11], [12]).
Recently, increasing attention has been payed on spreadingprocesses because they can be connected to modern
technology, business marketing and sociology (cf. [5]). Examples of such processes are virus propagation in
social and computer networks, the diffusion of innovations, the occurrence of information cascades in social and
economic systems, information diffusion in a society through the word of mouth mechanism ([13] and references
therein, [14], [15], [16]).

In this scenario we insert the concept of denial. The denialsoccur at random instants of time, they reset the
system to the initial condition (i.e. only one person is ableto spread the rumor and all others are ignorant) and
then the process starts following the previous rules. Generally, during the spreading of a rumor one can consider
the effect of an external entity that denies the rumor so the processis reseted to the initial state, i.e. there is only
one spreader, the initial one, that renews the spreading process. For example, if we consider the rumor as a worm,
the denial represents the effect of an anti-virus that restores the initial condition in which the hacker reinforces the
virus (or he designs a new virus). In business marketing, therumor is the advertisement of a product, the denial
can be an information that discredits the product (in this case the society improves the product or defends oneself
from the accuses), or the launch of a new concurrent product.In both the cases after the denial the rumor restarts
with a new advertisement. In a political campaign, we can explain the rumor as the promoting of a candidate, the
denial can be the consequence of a scandal, the re-starting is the refusal of the scandal.

We introduce the denials in two models: the classic DK-m, andin a variant (model B) in which each spreader
can transmit the rumor at mostk times before becoming a stifler. Obviously, ifk tends to infinity the model B can
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be connected to the DK-m. The work is organized into 3 sections. In Section 2 we analyze the DK-m with denials
and we study the stationary density; for this model we show that at most the half of the population can be informed
about the rumor. In Section 3 we consider the model B subject to denials and we discuss the stationary density. In
this case the percentage of ignorants depends onk, in addition the rate at which the denials occur. Moreover, when
k grows the model behaves like the DK-model with denials and a good match is found already fork = 6.

2. Model A: DK-model with denials

We consider a population consisting ofN individuals which, with respect to the rumor, are subdivided into three
classes: ignorants, spreaders and stiflers. As in [2] and [9], we assume that the rumor spreads by directed contact
of the spreaders with others in the population andλ > 0 represents the rate of contacts between two individuals.
The contacts between the spreaders and the rest of the population are governed by the following set of rules:

• when a spreader contacts an ignorant, the ignorant becomes aspreader;
• when a spreader contacts another spreader both become stiflers;
• when a spreader contacts a stifler, the spreader becomes stifler.

Moreover, we assume that a denial can occur at a rateξ > 0. A denial transforms all spreaders and stiflers into
ignorants except one spreader that remains the same. We assume that the contacts occur independently from the
denials. We denote byX(t),Y(t) andZ(t) the density of population that are ignorants, spreaders and stiflers at time
t, respectively. It results:

X(t) + Y(t) + Z(t) = 1 (2.1)

and at the initial time there is only one spreader and the restof population is ignorant, i.e.

X(0) = 1− 1
N
, Y(0) =

1
N
, Z(0) = 0. (2.2)

Therefore, ifti for i = 1, 2, . . . denote the times of renewal in which the denials occur then itresultsX(ti) =
1 − 1/N, Y((ti) = 1/N andZ((ti) = 0. A denial re-establishes the initial condition (2.2). For∆t > 0, the rumor
spreading mechanism is described by the following equations:

X(t + ∆t) = X(t) − λ∆t X(t) Y(t) + ξ∆t
[

1− X(t) −
1
N

]

Y(t + ∆t) = Y(t) + λ∆t Y(t)
[

X(t) − Y(t) +
1
N
− Z(t)

]

− ξ ∆t
[

Y(t) − 1
N

]

(2.3)

Z(t + ∆t) = Z(t) + λ∆t Y(t)
[

Y(t) − 1
N
+ Z(t)

]

− ξ∆t Z(t),

obtained by decomposing the last step. Assuming thatN is sufficiently large, we can approximateY(t)
[

Y(t)− 1
N

]

≃
Y2(t); so that, for∆t → 0, Equations (2.3) become:

dX(t)
dt
= −λX(t) Y(t) + ξ

[

1− 1
N

]

− ξ X(t)

dY(t)
dt
= Y(t)

{

λ [X(t) − Y(t) − Z(t)] +
λ

N
− ξ

}

+
ξ

N
(2.4)

dZ(t)
dt
= λY(t) [Y(t) + Z(t)] − ξ Z(t).

In Figures 1 the densities of the three subpopulations are plotted forN = 100,λ = 1 and various choices ofξ. The
full, dashed and dot-dashed curves represent the percentage of the ignorants, spreaders and stiflers respectively.
As we formally show in the next subsection, we observe from Figure 1 that the system (2.4) admits a steady state
behavior, reached in less time for increasing values ofξ, and the steady stateX is always greater than 0.5 for ξ > 0,
whereasX = 0.2 for ξ = 0 according to the classical DK-model.
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Figure 1: For the DK-model with denials,X (full curve), Y (dashed curve) andZ (dot-dashed) forN = 100, λ = 1 and
ξ = 0, 0.01, 0.1, 0.5 from left to the right.

2.1. The steady state analysis

Setting
X = lim

t→∞
X(t), Y = lim

t→∞
Y(t), Z = lim

t→∞
Z(t),

from (2.4), recalling (2.1), one obtains

X Y− ρ
(

1− 1
N
− X

)

= 0, Y
(

−ρ + 2 X − 1
)

+
ρ

N
= 0 (2.5)

with ρ = ξ/λ > 0. By solving (2.5) we determine the stationary density of the ignorants and spreaders, the
stationary density of the stiflers can be obtained recalling(2.1).

Theorem 1. For the DK-model with denials, the steady-state density of the ignorants is

X =
Nρ + 3N − 1−

√

N2(1− ρ)2 + 1+ 6Nρ + 2N

4N
. (2.6)

Moreover, one has

lim
N→∞

X =



























ρ + 1
2

if ρ < 1

1 if ρ ≥ 1.

(2.7)

Proof. By comparing the equations of (2.5) one can have two different expressions ofY from which it follows:

2NX2 − (Nρ + 3N − 1)X + (N − 1)(ρ + 1) = 0. (2.8)
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Let X1,2 be the roots of (2.8) withX1 > X2; they are real and one has

X1,2 =
Nρ + 3N − 1±

√

N2(1− ρ)2 + 1+ 6Nρ + 2N

4N
. (2.9)

Note thatX2 > 0 beingNρ + 3N − 1 −
√

N2(1− ρ)2 + 1+ 6Nρ + 2N > Nρ + 3N − 1 −
√

(Nρ + 3N − 1)2 = 0
Moreover, since

√

(Nρ + 3N − 1)2 − 8N(N − 1)(ρ + 1) > −[1 + N(1− ρ)] it follows X2 < 1.
Similarly, X1 > 1 is satisfied because

√

(Nρ + 3N − 1)2 − 8N(N − 1)(ρ + 1) > 1+ N(1− ρ). Therefore, onlyX2 is
a consistent solution for the considered problem, so we conclude that the density of the ignorants in the population
tends toX2 in the steady-state regime. Finally, Eq. (2.7) follows taking the limit of (2.6) forN → ∞.

Proposition 1. The density of the ignorants X(ρ) is positive, increasing and its maximum is

lim
ρ→∞

X(ρ) =
N − 1

N
−−−−→
N→∞

1.

Proof. From (2.6) one hasdX(ρ)
dρ > 0, soX(ρ) is an increasing function. Furthermore,X(ρ) = 0 only whenρ = −1,

that is impossible becauseρ = ξ/λ > 0. SinceX(ρ) is monotone, we conclude that its supremum corresponds to
ρ = ∞.

In Table 1 the asymptotic percentage of ignorants is showed for N = 50, 100, 1000 and for varyingρ. In the last
row the values ofX are listed forN→ ∞ (via (2.7)). Note thatX tends to 1 whenρ increases and the speed of this
growth increases withN.

ρ 0.00 0.01 0.02 0.04 0.06 0.08 0.10 0.30 0.50 0.70 0.90 1.00
N = 50 0.20 0.49 0.49 0.50 0.51 0.52 0.53 0.63 0.72 0.80 0.87 0.89
N = 100 0.20 0.49 0.50 0.51 0.52 0.53 0.54 0.64 0.73 0.82 0.90 0.92
N = 1000 0.20 0.50 0.51 0.52 0.53 0.54 0.55 0.65 0.74 0.84 0.94 0.97
N→ ∞ 0.20 0.50 0.51 0.52 0.53 0.54 0.55 0.65 0.75 0.85 0.95 1

Table 1:For the model A, the asymptotic percentage of ignorants for different choices ofN and for varyingρ.

From (2.6) it follows that

Remark 1. For ν > 1/2, the density X(ρ) = ν if and only if

ρ =
N(2ν2 − 3ν + 1)+ ν − 1

N(ν − 1)+ 1
−−−−→
N→∞

2ν − 1.

From Remark 1, ifν = 0.8 thenρ = 0.6 and the 20% of the population knows the rumor. In Table 2 we list the
values ofρ corresponding to the desired percentage of the ignorantsX > 0.5 for N = 1000.

X 0.51 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.99
ρ 0.02 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.98

Table 2:Values ofρ corresponding to the percentage of the ignorantsX > 0.5 for the DK-m with denials withN = 1000.

3. Model B: An alternative model

As before, we consider a population consisting ofN individuals, we assume that the rumor spreads by directed
contact of the spreaders with others in the population and each individual mets another one with rateλ > 0. In this
model we suppose that the population is divided intok + 2 groups fork = 1, 2, . . .: ignorants, spreaders that have
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spreaded the rumori times fori = 1, 2, . . . , k and stiflers. We call thei-th spreader the spreader that has told the
rumor i times. The 0-th spreader is the one who has not yet told the rumor. Hence, the 0-th spreader is the initial
spreader that starts the diffusion process or the ignorant who has just become a spreader.In this model we suppose
that a spreader can spread the rumor onlyk times when he mets an ignorant; so, when the (k− 1)-th spreader mets
an ignorant he spreads the rumor and then he becomes a stiflers. The contacts are governed by the following set of
rules:

• for i = 0, 1, . . . , k− 2, when thei-th spreader contacts an ignorant, the ignorant becomes a 0-th spreader and
the i-th spreader becomes an (i + 1)-th spreader;
• for i = k− 1, when the (k− 1)-th spreader contacts an ignorant, the ignorant becomes a0-th spreader and the

(k− 1)-th spreader becomes a stiflers;
• when a spreader of any class contacts another spreader of anygroup, both become stiflers;
• when a spreader of any class contacts a stifler, the spreader becomes stifler.

Moreover, as before, we assume that denials occur withξ > 0. We denote byX(t),Yi(t) (i = 0, 1, . . . , k−1) andZ(t)
the densities of population that are ignorants,i-th spreadersi = 0, 1, . . . , k − 1 and stiflers at timet, respectively
and withY(t) =

∑k−1
i=0 Yi(t) the density of spreaders at timet. The conditions (2.1) and (2.2) hold. Assuming that

N is sufficiently large so we can approximateYi(t)
[

Yi(t) − 1
N

]

≃ Y2
i (t) for i = 0, 1, . . . , k − 1, the rumor spreading

mechanism is described by the following equations:

dX(t)
dt
= −λX(t)Y(t) + ξ

[

1− 1
N

]

− ξX(t)

dY0(t)
dt

= λX(t)Y(t) − λY0(t) − ξ
[

Y0(t) − 1
N

]

(3.1)

dYi(t)
dt
= λX(t)Yi−1(t) − λYi(t) − ξYi(t), (i = 1, 2, . . . , k− 1)

dZ(t)
dt
= λY(t)

[

1− X(t)
]

+ λX(t)Yk−1(t) − ξZ(t).

In Figures 2 and 3 the densities of the three subpopulations are shown forN = 1000,λ = 1, and various choices
of ξ. In particular, in Figure 2 we have setk = 2, whereask = 4 in Figure 3. The full, dashed and dot-dashed
curves represent the percentages of the ignorants, spreaders and stiflers, respectively. Moreover, for any choices of
k the percentage of ignorants increases withξ; on the other hand, for fixedξ we note an increasing of the rumor
spreading whenk grows.

3.1. The steady state analysis

Setting

X = lim
t→∞

X(t), Yi = lim
t→∞

Y(t) (i = 0, 1, . . . , k− 1), Y =
k

∑

i=0

Yi , Z = lim
t→∞

Z(t),

andρ = ξ/λ, from (3.1), assumingN sufficiently large so that 1− 1/N � 1 and recalling (2.1), one obtains

−XY+ ρ
(

1− X
)

= 0, XY− Y0 − ρY0 = 0, XYi−1 − Yi − ρYi = 0, (i = 0, 1, . . . , k− 1). (3.2)

Proposition 2. For the Model B, ifρ > 0 the steady-state density of the ignorants satisfies the following equation:

(X − 1) (X− A) = 0, (3.3)

if k = 1; whereas, for k≥ 2 one has

Xk+1 + (A− 1)
k−2
∑

j=0

A jXk− j − Ak−1(A+ 1)X + Ak = 0, (3.4)

with A= ρ + 1.
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Figure 2:For the model B,X (full curve),Y (dashed curve) andZ (dot-dashed curve) fork = 2, λ = 1 andξ = 0, 0.01, 0.1, 0.5
from left to right.

Proof. By adding the first two equations of (3.2) we getY0 = ρ(1−X)/A. On the other hand, by solving iteratively
the last equation of (3.2) and by using the previous expression ofY0 one hasYi = Xiρ(1−X)/Ai+1 (i = 1, 2, . . . , k−1).
So

Y =
ρ

A
(1− X)

k−1
∑

i=0

(X
A

)i

= ρ
1− X
A− X

[

1−
(X
A

)k]

. (3.5)

By substituting (3.5) in the first equation of (3.2) it results

−X(1− X)
k−1
∑

i=0

Xk−1−iAi + Ak

(

1− X − 1
N

)

= 0. (3.6)

After some computation, (3.6) becomes (3.3) fork = 1 and (3.4) otherwise.

The solutions of (3.3) are simple to obtain, they are 1 andA. Since we are interested into solution less than 1, if
1 ≃ 1−1/N, we conclude thatX = 1 is the acceptable solution. Then ifk = 1 andN is sufficiently large, the rumor
does not spread asymptotically so the system remains in the initial condition.
Now, we focus on (3.4). Note that Eq. (3.4) can be written asf̃k(x) = (x− 1) fk(x) = 0, where

fk(x) = xk + Axk−1 + A2xk−2 + . . . + Ak−1x− Ak. (3.7)

Hence, a solution of (3.4) isX = 1, the remaining solutions coincide with the zeros offk(x). These zeros aren’t
computable explicitly, but we can determine the range in which the solution of our interest is. Indeed

Proposition 3. The equation fk(x) = 0 has a unique real solution in the interval(0, A).
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Figure 3:As in Figure 2 withk = 4.

Proof. Noting that fork ≥ 2, fk(0) = −Ak < 0 and fk(A) = (k − 1)Ak > 0, we obtain thatfk(x) = 0 has at least
one real root in (0,A). Moreover, there is a unique real solution in (0,A) becausefk(x) is a continuous increasing
function beingf ′k(x) > 0.

Let xk be the unique real solution offk(x) = 0 in the interval (0, A). We writexk = dkA, with 0 < dk < 1.

Proposition 4. {dk}k≥2 is a decreasing succession. Moreover, d2 = (
√

5− 1)/2 and d∞ = limk→∞ dk = 0.5.

Proof. By recalling thatA > 1, for x < A one has:

fk(x) − fk+1(x) >
k−1
∑

i=0

xk−1Ai −
k

∑

i=1

xk+1−i Ai − xk+1 = (1− A)x
xk − Ak

x− A
− xk+1 >

xk+1

x− A
(1− x) >

xk+1

x− A
(1− A) > 0.

Hence{xk}k≥2 is a decreasing succession and consequently{dk}k≥2 is decreasing too. Note thatf2(x) = 0 if and only
if x2 + Ax− A2 = 0, sod2 = (

√
5− 1)/2. Moreover, because limk→∞ fk(dkA) = 0 if and only if

∑∞
j=1 d j

∞ − 1 = 0,
we haved∞ = 0.5.

Proposition 5. For k ≥ 2, if ρ < 1/d2 − 1 the polynomial fk(x) has always a unique real zero less than1.

Proof. Let k ≥ 2, in order thatfk(x) = 0 has always a unique real root less than 1, we need thatA = 1+ ρ < 1
dk

,

i.e. 0< ρ < 1
dk
− 1.The thesis follows recalling Proposition 4.

When fk(x) has a zero less than 1, the solution offk(x) = 0 represents the percentage of ignorantsX. Otherwise,
when all the solutions offk(x) = 0 are greater than 1, the rumor does not spread.
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In Table 3, forρ = 0.5 and some choices ofk, we show the values ofdk, of 1/dk − 1 and the final proportion
of ignorantsX in the population. In the second row the values ofdk are listed, such values are decreasing and
they converge to 0.5, as showed in Proposition 4. The third row shows the values 1/dk − 1, note that, since
ρ = 0.5 < 1/dk − 1, it follows thatX < 1 as listed in the fourth row. Moreover,X decreases ask increases.

In Table 4 we list the proportion of ignorants for the the model B for various choices ofρ andk. Note that
the values ofX decrease ask increases because the rumor has more chance to spread. Moreover, asρ increases
X, grows to 1 and, forρ ≥ 1 the rumor does not spread at all. Fixedρ > 0 the values fork = 100 coincide with
the corresponding values of Model A listed in Table 1. In particular, one has that fork ≥ 6 the percentage of the
ignorants reaches about the same value obtained fork→ ∞ confirming the theory of “six degrees of separation”.
According to this theory, everyone and everything is six, orfewer, steps away from any other person in the world,
so that a chain of “a friend of a friend” statements can be madeto connect any two people in a maximum of six
steps. Therefore, to spread as much as possible the rumor it is advisable to choicek ≥ 6 andρ ≤ 0.1. In these cases
at most 50% of the population knows the rumor.

k 2 3 4 5 6 7 8 9 10 . . . 100
dk 0.6180 0.5436 0.5187 0.5086 0.5041 0.5020 0.5009 0.5004 0.5002 . . . 0.5

1/dk − 1 0.6180 0.8392 0.9275 0.9659 0.9835 0.9919 0.9960 0.9980 0.9990 . . . 1
X 0.9270 0.8155 0.7781 0.7629 0.7562 0.7530 0.7514 0.7507 0.7503 . . . 0.75

Table 3: Forρ = 0.5 and some choices ofk, the values ofdk, 1/dk − 1 andX are listed.

ρ k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 . . . k = 10 . . . k = 100
0.00 0.618034 0.543689 0.518790 0.508660 0.504138 0.502017 . . . 0.500245 . . . 0.5
0.01 0.624214 0.549126 0.523978 0.513747 0.509180 0.507037 . . . 0.505248 . . . 0.505
0.02 0.630395 0.554563 0.529166 0.518834 0.514221 0.512057 . . . 0.510250 . . . 0.51
0.04 0.642755 0.565437 0.539542 0.529007 0.524304 0.522098 . . . 0.520255 . . . 0.52
0.06 0.655116 0.576310 0.549917 0.539180 0.534387 0.532138 . . . 0.530260 . . . 0.53
0.08 0.667477 0.587184 0.560293 0.549353 0.544469 0.542178 . . . 0.540265 . . . 0.54
0.10 0.679837 0.598058 0.570669 0.559526 0.554552 0.552219 . . . 0.550270 . . . 0.55
0.30 0.803444 0.706796 0.674427 0.661259 0.655380 0.652622 . . . 0.650319 . . . 0.65
0.50 0.927051 0.815534 0.778185 0.762991 0.756207 0.753026 . . . 0.750368 . . . 0.75
0.70 1 0.924271 0.881943 0.864723 0.857035 0.853429 . . . 0.850417 . . . 0.85
0.90 1 1 0.985701 0.966455 0.957863 0.953832 . . . 0.950466 . . . 0.95
1.00 1 1 1 1 1 1 . . . 1 . . . 1

Table 4: For some choices ofρ andk, the values ofX are listed.

4. Conclusions

In this paper we introduce the effect of denials on two rumor spreading processes, based on epidemiological
models. The denials re-set to start the initial situation inwhich there is only one spreader and the rest of the
population is ignorant. We consider the well-known DK modelwith denials, and an alternative model (model
B), in which denails occur and each spreader can transmitt the rumor at mostk times. For both models we study
the steady state densities and we focus on the asymptotic percentage of ignorants to identify the density of the
population that knows the rumor. A scrutinized numerical analysis is performed to study the effect of denials on
varying parameters and to compare the proposed models. We note that in both cases the asymptotic percentage of
ignorants increases when the rate of the denialsξ grows respect to the rate of the contactsλ; in particular, if the size
of the population is large andξ ≥ λ, the rumor does not spread at all. For the model B the density of individuals
that knows the rumor increase withk, since the rumor has more chance to spread. Moreover, the model B behaves
like the DK-m with denials whenk increases, in particular a good match is found already fork = 6, confirming
“six degrees of separation” theory. Finally, in both modelswe obtain that at most the half of the population can be
informed about the rumor.
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