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1. Introduction

In the present work we obtain a global gradient estimate for weak solutions of

parabolic systems in divergence form with bounded measurable coefficients when
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the associated nonhomogeneous term belongs to weighted Orlicz spaces. Let Ω be

a bounded domain with a nonsmooth boundary ∂Ω and set ΩT for the cylinder

Ω× (0, T ) with a parabolic boundary ∂pΩT = ∂Ω× [0, T ) ∪ Ω× {0}.
Consider the following Cauchy–Dirichlet problem with zero boundary datauit −Dα

(
aαβij (x, t)Dβu

j
)

= Dαf
α
i (x, t) in ΩT ,

ui = 0 on ∂pΩT
(1.1)

where i = 1, 2, . . . ,m, and the standard summation convention on the repeated

upper and lower indexes is adopted for 1 ≤ α, β ≤ n with n ≥ 2 and 1 ≤ i, j ≤ m

with m ≥ 1.

The tensor matrix of the coefficients

A(x, t) =
{
aαβij (x, t)

}
: ΩT → Rmn×mn

is assumed to be uniformly bounded and uniformly parabolic. Namely, we suppose

that there exist positive constants L and ν such that

‖A‖L∞(ΩT ,Rmn×mn) ≤ L, (1.2)

and

aαβij (x, t)ξiαξ
j
β ≥ ν|ξ|

2 (1.3)

for all matrices ξ ∈ Rmn and for almost every (x, t) ∈ ΩT . According to the stan-

dard existence and regularity theory for (1.1) (see [16, Chapter VII]) the Cauchy–

Dirichlet problem (1.1) has a unique weak solution u = (u1, . . . , um) when the

nonhomogeneous term F = {fαi (x, t)} belongs to L2(ΩT ,Rmn). This means that

u = (u1, . . . , um) ∈ C0([0, T ];L2(Ω,Rm)) ∩ L2(0, T ;H1
0 (Ω,Rm))

and it satisfies (1.1) in a weak sense

−
∫

ΩT

uiϕit dxdt+

∫
ΩT

aαβij Dβu
jDαϕ

i dxdt = −
∫

ΩT

fαi Dαϕ
i dxdt

for all ϕ = (ϕ1, . . . , ϕm) ∈ C∞0 (ΩT ,Rm) with ϕ(·, T ) = 0. Moreover, the standard

L2-estimate

max
0≤t≤T

‖u(·, t)‖2L2(Ω) +

∫
ΩT

|Du(x, t)|2 dxdt ≤ c
∫

ΩT

|F(x, t)|2 dxdt (1.4)

holds true with a constant c = c(n,m, ν, L, |ΩT |) > 0, where Du is the spatial

gradient matrix of u. In particular, the weak solution u of (1.1) belongs to

H
1
2 (0, T ;L2(Ω,Rm)) ∩ L2(0, T ;H1

0 (Ω,Rm)). (1.5)

Our goal here is to obtain a gradient estimate for the weak solution in the

framework of the weighted Orlicz spaces LΦ
w(ΩT ) where Φ is a Young function

satisfying appropriate conditions and w is a weight of Muckenhoupt type.

The present work is a natural extension of the results obtained in the earlier

papers [5,6,7,9] for the unweighted case. In particular, the article [5] deals with the
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problem (1.1) in classical (unweighted) Orlicz spaces. Later on, [4] studies (1.1) in

the settings of the weighted Lebesgue spaces Lpw and as a consequence Morrey regu-

larity of the gradient follows. In contrast to [5,4] however, the main difficulties here

come from the properties of the wider functional class containing the nonhomoge-

neous term F. Although we use a similar analytic approach as in [4,5,6], refined

analysis of the admissible Muckenhoupt classes of weights is required. For this goal,

we employ the results of Fiorenza and Krbec [11] which gave a description of the

index classes for the admissible Young functions Φ. Furthermore, in order to adopt

the maximal function approach (see [5,7]) to our case, we need to estimate the

level sets of the spatial gradient of the weak solution under the weight w and to get

suitable power decay for their weighted measures. This is done by employing the

LΦ
w-maximal inequality proved by Kerman and Torchinsky in [13].

Let us point out that one can obtain the same results via the so-called maximal

function free technique. This is a very influential approach introduced by Acerbi

and Mingione in [1], and later developed for the regularity estimates for nonlinear

parabolic problems when the invariance property under scaling and normalization

is not available, see [3,8].

Regarding the coefficients aαβij (x, t) of the parabolic operator considered, apart

from (1.2) and (1.3), we assume these are only measurable with respect to one spa-

tial variable and are averaged in the sense of small bounded mean oscillation (BMO)

in the remaining space and time variables. This partially BMO assumption is fairly

general and allows arbitrary discontinuity in one spatial direction which is often

related to equilibrium problems for linear laminates or composite materials, while

the behaviour with respect to the other directions and the time are controlled in

terms of small-BMO, such as small factors of the Heaviside step function for ex-

ample. Indeed, the situations when the coefficients aαβij (x, t) are continuous, VMO

or small-BMO with respect to all variables are particular cases of the problem

here considered. For what concerns the underlying domain Ω, we assume that the

non-smooth boundary ∂Ω is sufficiently flat in the sense of Reifenberg [19], that is,

∂Ω is well approximated by hyperplanes at each point and at each scale. This is

a sort of minimal regularity of the boundary, guaranteeing validity in Ω of some

natural properties of geometric analysis and partial differential equations such as

Sobolev extension, nontangential accessibility property, measure density condition,

the Poincaré inequality and so on. In particular, domains with C1-smooth or Lips-

chitz continuous boundaries with small Lipschitz constant belong to that category,

but the class of Reifenberg flat domains extends beyond these common examples

and contains domains with rough fractal boundaries such as the Helge von Koch

snowflake (cf. [22]).

The paper is organized as follows. Section 2 recalls the definitions and some

properties of the Muckenhoupt weights and the Orlicz spaces. In Section 3 we in-

troduce some notations, set down the basic assumptions and state the main result of

the paper, while in Section 4 we prove the optimal gradient estimate for the problem



July 8, 2014 18:15 WSPC/FILE Parabolic-systems

4 S.-S. Byun, J. Ok, D.K. Palagachev, L.G. Softova

(1.1) in the Orlicz LΦ
w-settings. Throughout, the letter c denotes a constant that

can be explicitly computed in terms of known quantities such as L, ν,m, n,Φ, w and

|ΩT |, as well as of δ and R which are related to the minimal regularity requirements

imposed on the coefficients aαβij and on the nonsmooth geometric structure of ∂Ω

(cf. Definition 3.1). The exact value of c may vary from one occurrence to another.

2. Muckenhoupt Weights and Weighted Orlicz Spaces

To start with, let us recall the definitions and some basic properties of the Mucken-

houpt weights and the Orlicz spaces, referring the readers to [2,12,14,15,18,20,21]

for more details.

We endow Rn+1 with the classical parabolic metric

%(x, t) = max{|x|,
√
|t|}

and in what follows we will use the following families of domains:

• The parabolic cylinders {Ir}r>0 in Rn+1 centered at some point (y, τ) ∈
Rn × R and of radius r > 0 :

I ≡ Ir ≡ Ir(y, τ) =
{

(x, t) ∈ Rn+1 : |x− y| < r, |t− τ | < r2
}

with a Lebesgue measure |Ir| = c(n)rn+2.

• The cylinders {Qr}r>0 in Rn+1 centered at (y1, y
′, τ) ∈ R× Rn−1 × R :

Qr(y1, y
′, τ) =

{
(x1, x

′, t) ∈ Rn+1 : |x1 − y1| < r, |x′ − y′| < r, |t− τ | < r2
}

with |Qr| = c(n)rn+2.

• The cubes {Cr}r>0 in Rn centered at (y1, y
′) ∈ R× Rn−1 :

Cr(y) = {(x1, x
′) ∈ R× Rn−1 : |x1 − y1| < r, |x′ − y′| < r}

with |Cr| = c(n)rn.

• The n-cylinders {Q′r}r>0 in Rn−1 × R centered at (y′, τ) ∈ Rn−1 × R :

Q′r(y
′, τ) = {(x′, t) ∈ Rn−1 × R : |x′ − y′| < r, |t− τ | < r2}

with |Q′r| = c(n)rn+1.

Consider a positive, locally integrable function w(x, t) : Rn+1 → R+. We say

that w is an Aq-weight of Muckenhoupt for some 1 < q < ∞ if it satisfies the

Aq-condition, i.e.,

[w]q = sup
I

(
1

|I|

∫
I
w(x, t) dxdt

)(
1

|I|

∫
I
w(x, t)

−1
q−1 dxdt

)q−1

<∞ (2.1)

where the supremum is taken over all parabolic cylinders I ⊂ Rn+1. There is an

alternative way of defining the Muckenhoupt weights. For any nonnegative, locally



July 8, 2014 18:15 WSPC/FILE Parabolic-systems

Parabolic Systems with Measurable Coefficients in Weighted Orlicz Spaces 5

integrable function f and any cylinder I, the weight w belongs Aq, 1 < q < ∞ if

and only if (
1

|I|

∫
I
f(x, t) dxdt

)q
≤ A

w(I)

∫
I
fq(x, t)w(x, t) dxdt <∞ (2.2)

for some constant A = A(q, n) > 0. Here w(I) is the measure of I with respect to

the weighted Lebesgue measure w(x, t) dxdt, that is,

w(I) =

∫
I
w(x, t) dxdt <∞.

The smallest constant A for which (2.2) holds equals [w]q. It is an immediate conse-

quence of (2.2) that whenever w ∈ Aq, then it satisfies the doubling property, that

is,

w(I2r(y, τ)) ≤ c(n, q)w(Ir(y, τ)). (2.3)

In fact, applying (2.2) with I = I2r(y, τ) and f = χIr(y,τ) (the characteristic

function of Ir(y, τ)) we get (2.3) with a constant c = [w]q2
q(n+2). The doubling

property of w shows that in the definition (2.1) we can replace the family of cylinders

{Ir}r>0 by any equivalent set of domains and we shall do it when necessary without

explicit reference.

A typical example of a Muckenhoupt weight in Rn+1 is

wτ (x, t) = ρ(x, t)τ , ρ(x, t) =

√
|x|2 +

√
|x|4 + 4t2

2
,

where ρ(x, t) is a parabolic metric equivalent to % (see [10,20]). The weight wτ
belongs to Aq if and only if −(n+ 2) < τ < (n+ 2)(q − 1).

An exhaustive description of the classes Ap can be found in the classical mono-

graphs by Stein [20] or Torchinsky [21]. The following lemma collects some basic

properties of these weights and the detailed proof can be found in [20, Section V.5.3]

or [21, Section IX.4].

Lemma 2.1. Assume w ∈ Aq for some q > 1. Then

(i) Increasing property: w ∈ Ap with p ≥ q and [w]p ≤ [w]q;

(ii) Self-improved property: w ∈ Aq−ε0 with small enough ε0 > 0 depending on

q, [w]q and n;

(iii) Reverse doubling property: There is τ1 ∈ (0, 1) such that for any open

cylinder I and any measurable subset A ⊂ I there is a positive constant c1
depending only on n and q such that

1

[w]q

(
|A|
|I|

)q
≤ w(A)

w(I)
≤ c1

(
|A|
|I|

)τ1
. (2.4)



July 8, 2014 18:15 WSPC/FILE Parabolic-systems

6 S.-S. Byun, J. Ok, D.K. Palagachev, L.G. Softova

For the purposes of this paper, a Young function will be any non-negative and

strictly increasing convex function Φ defined on [0,∞) such that

lim
ρ→0+

Φ(ρ)

ρ
= 0, lim

ρ→+∞

Φ(ρ)

ρ
= +∞. (2.5)

Definition 2.1. [15,18] A Young function Φ is supposed to satisfy:

(i) ∆2-condition: there exists a constant µ > 1 such that

Φ(2ρ) ≤ µΦ(ρ), for all ρ ≥ 0;

(ii) ∇2-condition: there exists a constant ρ0 > 1 such that

Φ(ρ) ≤ 1

2ρ0
Φ(ρ0ρ), for all ρ > 0.

Then we write Φ ∈ ∆2 ∩∇2.

The limits (2.5), along with ∆2 ∩∇2, mean in particular that

0 = Φ(0) = lim
ρ→0+

Φ(ρ), lim
ρ→+∞

Φ(ρ) = +∞

and the limits are neither too slow nor too fast (cf. [15]).

A classical example of a continuous Young function is Φ(ρ) = ρq, 1 < q < ∞
which satisfies ∆2-condition with µ > 2q and ∇2 for any ρ0 ≥ 2

1
q−1 . Let us note

that the ∆2-condition implies that there exists a constant µ(λ) > 1 such that

Φ(λρ) ≤ µ(λ)Φ(ρ) ∀ ρ > 0, λ > 1,

and it is also equivalent to the condition

lim sup
ρ→0+

Φ(2ρ)

Φ(ρ)
< +∞.

One more example of Young function satisfying the ∆2∩∇2-condition is Φ(ρ) =

ρα log(1+ρ), α > 1. As will be seen later, the condition Φ ∈ ∆2∩∇2 is unavoidable

for the type of regularity results we are going to derive here.

Consider now the function

hΦ(λ) = sup
ρ>0

Φ(λρ)

Φ(ρ)
, λ > 0

and define the lower index of Φ by

i(Φ) = lim
λ→0+

log(hΦ(λ))

log λ
= sup

0<λ<1

log(hΦ(λ))

log λ
.

We have i(Φ) > 1 as consequence of Φ ∈ ∇2 (cf. [11]). On the other hand, Φ ∈ ∆2

implies that there exist two exponents q1, q2 ∈ (1,∞), q1 ≤ q2, such that

1

c
min{λq1 , λq2}Φ(ρ) ≤ Φ(λρ) ≤ cmax{λq1 , λq2}Φ(ρ) (ρ, λ > 0) (2.6)
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with a constant c independent of ρ and λ. The supremum of those q1 for which (2.6)

holds true with λ ≥ 1 being equal to i(Φ). If, for instance, Φ(ρ) = ρq with q > 1

then i(Φ) = q.

Definition 2.2. Given a couple of functions (w,Φ) ∈ (Aq,∆2 ∩ ∇2), the weighted

Orlicz space LΦ
w(ΩT ) consists of all Lebesgue measurable functions defined in ΩT ,

for which there is a constant κ > 0 such that∫
ΩT

Φ

(
|f(x, t)|

κ

)
w(x, t) dxdt ≤ 1.

The norm of f in LΦ
w(ΩT ) is the infimum over all such κ and is called a Luxemburg

norm. Precisely

‖f‖LΦ
w(ΩT ) = inf

{
κ > 0:

∫
ΩT

Φ

(
|f(x, t)|

κ

)
w(x, t) dxdt ≤ 1

}
(2.7)

and the equality sign occurs in (2.7) if Φ ∈ ∆2 (cf. [15]).

To proceed further, we fix any (x, t) ∈ ΩT , and take λ = κ and ρ = |f(x,t)|
κ in

(2.6). This gives the following two sides estimate for Φ(|f(x, t)|)

1

c
min(κq1 , κq2)Φ

(
|f(x, t)|

κ

)
≤ Φ(|f(x, t)|) ≤ cmax(κq1 , κq2)Φ

(
|f(x, t)|

κ

)
.

Integrating with respect to the weighted measure over ΩT and taking the infimum

over all κ > 0 for which
∫

ΩT
Φ
(
|f(x,t)|
κ

)
w(x, t)dxdt ≤ 1, we get

1

c
‖f‖αLΦ

w(ΩT ) ≤
∫

ΩT

Φ(|f(x, t)|)w(x, t) dxdt ≤ c‖f‖β
LΦ
w(ΩT )

(2.8)

where α = q1, β = q2 if ‖f‖LΦ
w(ΩT ) ≥ 1 and α = q2, β = q1 if ‖f‖LΦ

w(ΩT ) < 1.

The well known result of Muckenhoupt [17] gives a characterization of the weight

functions w for which the Hardy–Littlewood maximal operator is bounded from the

weighted Lebesgue spaces Lqw into itself. Recall that for a locally integrable function

f : Rn+1 → R, the Hardy–Littlewood maximal function Mf is defined by

Mf(y, τ) = sup
Ir(y,τ)

−
∫
Ir(y,τ)

|f(x, t)| dxdt,

where the supremum is taken over all parabolic cylinders Ir(y, τ) in Rn+1. If f is

defined only in a bounded domain in Rn+1, we set Mf = Mf, where f is the

zero extension of f in Rn+1. It is well known (see [21]) that the Aq condition is

necessary and sufficient for the maximal operator to map Lqw into the weak -Lqw
space, 1 ≤ q <∞, and the following weak-type estimate holds

w
(
{(x, t) ∈ Rn+1 : Mf(x, t) > λ}

)
≤ c

λq

∫
Rn+1

|f(x, t)|qw(x, t) dxdt

for any λ > 0, where c is a positive constant depending only on p and w. Moreover,

M is a continuous operator from Lqw into itself when w ∈ Aq for some q > 1.
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These results have been extended by Kerman and Torchinsky in [13] to the case

of weighted reflexive Orlicz spaces, i.e., spaces for which Φ ∈ ∆2 ∩ ∇2. Precisely,

conditions on w are obtained under which the Hardy–Littlewood maximal operator

is bounded on LΦ
w.

Lemma 2.2. Suppose that Φ ∈ ∆2 ∩∇2 is a Young function and w ∈ Ai(Φ). Then

there exists a constant c = c(n,Φ, w) > 1 such that∫
Rn+1

Φ(|f(x, t)|)w(x, t) dxdt ≤
∫
Rn+1

Φ(Mf(x, t))w(x, t) dxdt

≤ c
∫
Rn+1

Φ(|f(x, t)|)w(x, t) dxdt

whenever f ∈ LΦ
w with a compact support in Rn+1.

As already mentioned, we are going to study the Calderón–Zygmund property

for the parabolic operator (1.1) in the settings of the weighted Orlicz spaces. Pre-

cisely, we will show that under minimal regularity assumptions on A and a lower

level of geometric requirements on ∂Ω, the following implication holds true

|F|2 ∈ LΦ
w(ΩT ) =⇒ |Du|2 ∈ LΦ

w(ΩT ) (2.9)

with (w,Φ) ∈ (Ai(Φ),∆2 ∩∇2). Let us point out that the regularity results derived

in [4,5,9] are special cases of (2.9), when Φ(ρ) = ρp/2 for some 2 < p <∞. On the

other hand, [6] studies the problem in unweighted Orlicz spaces when the coefficients

of the principal operator are only measurable in the time variable. In contrast to

these works, we are dealing here with weighted Orlicz classes and we allow the

coefficients to be measurable in one of the spatial variables.

3. Assumptions and Main Result

We will study the weak solution of the system (1.1), assuming the coefficients

aαβij (x, t) to be only measurable in one of the spatial variables, say x1, and to

have a small mean oscillation with respect to the remaining variables (x′, t) =

(x2, . . . , xn, t) at each point and at each scale r.

For any fixed x1 ∈ R, the integral average of a function a(x, t) with respect to

(x′, t)-variables on Q′r will be denoted by

aQ′r (x1) = −
∫
Q′r

a(x1, x
′, t) dx′dt =

1

|Q′r|

∫
Q′r

a(x1, x
′, t) dx′dt.

In what follows we assume a smallness of the BMO norm of A =
{
aαβij

}
with

respect to the (x′, t)-variables supposing that A is only measurable in x1. At the

same time, the boundary ∂Ω will be assumed to be flat enough in the sense of

Reifenberg. The precise meaning of these requirements is given in the following

definition.
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Definition 3.1. We say that the couple (A,Ω) is (δ,R)-vanishing of codimension

1, if for every point (y, τ) ∈ Ω× R+ and for every number r ∈
(
0, 1

3R
]

with

dist(y, ∂Ω) >
√

2r,

there exists a coordinate system depending on (y, τ) and r, whose variables we still

denote by (x, t), so that in this new coordinate system (y, τ) is the origin and

−
∫
Qr

∣∣A(x, t)−AQ′r
(x1)

∣∣2 dxdt ≤ δ2.

Later on, for every point (y, τ) ∈ Ω× R and for every number r ∈
(
0, 1

3R
]

with

dist(y, ∂Ω) = dist(y, x0) ≤
√

2r

for some x0 ∈ ∂Ω, there exists a coordinate system depending on (y, τ) and r, whose

variables we still denote by (x, t), such that in this new coordinate system (x0, τ)

is the origin,

Ω ∩ {x ∈ C3r : x1 > 3rδ} ⊂ Ω ∩ C3r ⊂ Ω ∩ {x ∈ C3r : x1 > −3rδ} (3.1)

and

−
∫
Q3r

∣∣A(x, t)−AQ′3r
(x1)

∣∣2 dxdt ≤ δ2. (3.2)

Some comments regarding the Definition 3.1 are in order. Thanks to a scaling

invariance property of the problem (1.1), one can take for simplicity R = 1 or any

other constants greater than 1. On the other hand δ is a small positive constant,

which is invariant under such a scaling argument.

If (A,Ω) is (δ,R)-vanishing of codimension 1, then for each point and for each

sufficiently small scale there is a coordinate system so that the coefficients have small

oscillation in the (x′, t)-variables while these might have arbitrary jumps along the

x1-variable. In addition, (3.1) means that the boundary of Ω is δ-Reifenberg flat

and the coefficients aαβij have small oscillations along the flat direction x′ while these

are only measurable along the “normal” direction x1.

The number
√

2r above is selected only for convenience. It comes from the reason

that we need to take enough space of the cubes so that there is a room to have the

rotation of Qr(y, τ) in any spatial direction. By the same reason 3r appears in (3.1)

and (3.2).

We are in a position to state the main result of the paper.

Theorem 3.1. Given a Young function Φ ∈ ∆2∩∇2 and a weight w(x, t) ∈ Ai(Φ),

suppose that ∫
ΩT

Φ(|F(x, t)|2)w(x, t) dxdt <∞.
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Then there exists a small constant δ > 0 depending on known quantities, such that

if (A,Ω) is (δ,R)-vanishing of codimension 1, then the unique weak solution u of

(1.1) satisfies ∫
ΩT

Φ(|Du(x, t)|2)w(x, t) dxdt <∞

and we have the estimate

‖|Du|2‖LΦ
w(ΩT ) ≤ c‖|F|2‖LΦ

w(ΩT )

with a constant c independent of u and F.

4. Gradient Estimate in Weighted Orlicz Spaces

We start with some auxiliary results.

Lemma 4.1. Assume |F|2 ∈ LΦ
w(ΩT ) with (w,Φ) ∈ (Ai(Φ),∆2 ∩∇2). Then |F|2 ∈

L1(ΩT ) and ∫
ΩT

|F(x, t)|2 dxdt ≤ c
(
‖|F|2‖β

′

LΦ
w(ΩT )

+ 1
)

(4.1)

for some positive constants c and β′ depending only on n,Φ, w and ΩT .

Proof. Because of the self-improving property of w, there exists a small ε0 > 0

depending on n,w, and Φ such that w ∈ Ai(Φ)−ε0 and i(Φ) − ε0 > 1. Let us set

i0 = i(Φ) − ε0 for the sake of simplicity. By the Hölder inequality and the Aq-

condition (2.1) we get∫
ΩT

|F(x, t)|2 dxdt =

∫
ΩT

|F(x, t)|2w(x, t)
1
i0 w(x, t)−

1
i0 dxdt

≤
(∫

ΩT

|F(x, t)|2i0w(x, t) dxdt

) 1
i0
(∫

ΩT

w(x, t)−
1

i0−1 dxdt

) i0−1
i0

≤
|IΩT |[w]

1
i0
i0

w(IΩT )
1
i0

(∫
ΩT

|F(x, t)|2i0w(x, t) dxdt

) 1
i0

≤ c(n,w,ΩT )


∫

ΩT

|F(x, t)|2i0w(x, t) dxdt︸ ︷︷ ︸
=:I


1
i0

,

where IΩT is a parabolic cylinder which contains ΩT .

To estimate I, we first claim that

|F(x, t)|2i0 ≤ c(Φ)
(
Φ(|F(x, t)|2) + 1

)
(x, t) ∈ ΩT .

Indeed, if |F(x, t)|2 ≤ 1 for each (x, t) ∈ ΩT , then there is nothing to prove. On the

other hand, if |F(x, t)|2 ≥ 1 for some (x, t) ∈ ΩT , we apply (2.6) with λ = |F(x, t)|2,
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ρ = 1 and q1 = i0 (recall that i(Φ) = sup q1 for which (2.6) holds with λ ≥ 1), to

discover that

|F(x, t)|2i0 ≤ |F(x, t)|2q1 ≤ c

Φ(1)
Φ(|F(x, t)|2) ≤ c Φ(|F(x, t)|2),

where the constant c is depending only on Φ. Therefore, we have

I ≤ c(Φ)

∫
ΩT

(
Φ(|F(x, t)|2) + 1

)
w(x, t) dxdt

≤ c(Φ, w,ΩT )

(∫
ΩT

Φ(|F(x, t)|2)w(x, t) dxdt+ 1

)
≤ c(Φ, w,ΩT )

(
‖|F|2‖β

LΦ
w(ΩT )

+ 1
)
,

where we have used (2.8) for the last inequality. Hence we conclude∫
ΩT

|F(x, t)|2 dxdt ≤ c(n,Φ, w,ΩT )I
1
i0

≤ c(n,Φ, w,ΩT )

(
‖|F|2‖

β
i0

LΦ
w(ΩT )

+ 1

)
and this completes the proof.

It should be noted that Lemma 4.1 ensures that for each F(x, t) with |F|2 ∈
LΦ
w(ΩT ) the problem (1.1) has a unique weak solution in (1.5) satisfying

‖|Du|2‖L1(ΩT ) ≤ c‖|F|2‖L1(ΩT ) ≤ c
(
‖|F|2‖β

′

LΦ
w(ΩT )

+ 1
)
.

Our approach in the sequel is based on harmonic analysis tools such as the

maximal function operator and a Vitali type covering lemma (cf. [20,21]). Precisely,

we will use the following weighted version of the Vitali covering lemma.

Lemma 4.2. Let Ω be a bounded, (δ, 1)-Reifenberg flat domain, C and D be mea-

surable sets such that C ⊂ D ⊂ ΩT and w(x, t) ∈ Aq for some q ∈ (1,∞). Assume

that there exists ε ∈ (0, 1) such that:

(i) for any (y, τ) ∈ ΩT

w(C ∩Q1(y, τ))

w(Q1(y, τ))
< ε; (4.2)

(ii) for each (y, τ) ∈ ΩT and some r ∈ (0, 1),

w(C ∩Qr(y, τ))

w(Qr(y, τ))
≥ ε implies ΩT ∩Qr(y, τ) ⊂ D. (4.3)

Then

w(C) ≤ ε[w]2q

(
10
√

2

1− δ

)q(n+2)

w(D). (4.4)
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Proof. Fix (y, τ) ∈ C and for r > 0 define the function

Θ(r) =

∫
C∩Qr(y,τ)

w(x, t) dxdt∫
Qr(y,τ)

w(x, t) dxdt
=
w(C ∩Qr(y, τ))

w(Qr(y, τ))
.

Then we note that Θ(r) ∈ C0(0,∞), Θ(1) < ε by (4.2) and Θ(0) = lim
r→0+

Θ(r) = 1

by the Lebesgue Differentiation Theorem. Hence, for each (y, τ) ∈ C there exists

r(y,τ) ∈ (0, 1) such that

Θ(r(y,τ)) = ε, Θ(r) < ε ∀r > r(y,τ). (4.5)

Since the family of sets {Qr(y,τ)
(y, τ)}(y,τ)∈C is an open covering of C, by the Vitali

lemma (cf. [20, Lemma I.3.1]) there exists a disjoint subcollection {Qri(yi, τi)}i≥1

with ri = r(yi,τi), (yi, τi) ∈ C such that Θ(ri) = ε as in (4.5) and

C ⊂
⋃
i≥1

Q5ri(yi, τi)

with a positive constant c = c(n). Since Θ(5ri) < ε, by (2.4) we have

w
(
C ∩Q5ri(yi, τi)

)
< εw(Q5ri(yi, τi))

≤ ε[w]q

(
|Q5ri(yi, τi)|
|Qri(yi, τi)|

)q
w(Qri(yi, τi))

= ε[w]q5
q(n+2)w(Qri(yi, τi)).

We combine now the estimate

sup
0<r<1

sup
(y,τ)∈ΩT

|Qr(y, τ)|
|ΩT ∩Qr(y, τ)|

≤

(
2
√

2

1− δ

)n+2

obtained in [7] (see also [5]) with the doubling condition (2.4) in order to get

w(Qri(yi, τi)) ≤ [w]q

(
2
√

2

1− δ

)q(n+2)

w(ΩT ∩Qri(yi, τi)).

This way, the weighted measure of C is estimated as follows

w(C) = w

⋃
i≥1

(
C ∩Q5ri(yi, τi)

)
≤
∑
i≥1

w
(
C ∩Q5ri(yi, τi)

)
< ε

∑
i≥1

w
(
Q5ri(yi, τi)

)
≤ ε[w]q5

q(n+2)
∑
i≥1

w
(
Qri(yi, τi)

)
≤ ε[w]2q

(
10
√

2

1− δ

)q(n+2)∑
i≥1

w
(
ΩT ∩Qri(yi, τi)

)
.
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Since {Qri(yi, τi)} are mutually disjoint sets and Θ(ri) = ε, we get by (4.3) that⋃
i≥1 ΩT ∩Qri(yi, τi) ⊂ D whence

w(C) ≤ ε[w]2q

(
10
√

2

1− δ

)q(n+2)

w

⋃
i≥1

ΩT ∩Qri(yi, τi)


≤ ε[w]2q

(
10
√

2

1− δ

)q(n+2)

w(D).

Let us recall the next unweighted result which is proved in [5, Lemma 5.3] and

[7, Lemma 5.5].

Lemma 4.3. Let u be the weak solution of (1.1) and assume (1.2) and (1.3). Then

there is a constant λ1 = λ1(ν, L,m, n) > 1 such that for any fixed ε ∈ (0, 1) there

exists δ = δ(ε, ν, L,m, n) > 0 such that if (A,Ω) is (δ, 1)-vanishing of codimension

1 and if Qr(y, τ) satisfies∣∣{(x, t) ∈ ΩT : M(|Du|2) > λ2
1

}
∩Qr(y, τ)

∣∣ ≥ ε|Qr(y, τ)|,

then we have

ΩT ∩Qr(y, τ) ⊂
{

(x, t) ∈ ΩT : M(|Du|2) > 1
}
∪
{
M(|F|2) > δ2

}
.

To go further, we need to establish a weighted version of that result. For, fix ε

and take δ and λ1 as given by Lemma 4.3. With the weak solution u of (1.1) at

hand, we define the sets

C = {(x, t) ∈ ΩT : M(|Du|2) > λ2
1},

(4.6)
D = {(x, t) ∈ ΩT : M(|Du|2) > 1} ∪ {M(|F|2) > δ2}.

Lemma 4.4. Let w(x, t) ∈ Aq for some q ∈ (1,∞). Assume that (A,Ω) is (δ, 1)-

vanishing of codimension 1 and that for all (y, τ) ∈ ΩT and some r ∈ (0, 1) one

has

Θ(r) =
w(C ∩Qr(y, τ))

w(Qr(y, τ))
≥ ε.

Then ΩT ∩Qr(y, τ) ⊂ D.

Proof. By the reverse doubling property (2.4) we have

ε ≤ w(C ∩Qr(y, τ))

w(Qr(y, τ))
≤ c1

(
|C ∩Qr(y, τ)|
|Qr(y, τ)|

)τ1
for some c1 > 0 and τ1 ∈ (0, 1). Hence

|C ∩Qr(y, τ)| ≥
(
ε

c1

) 1
τ1

|Qr(y, τ)| = ε1|Qr(y, τ)|.

The assertion holds after applying Lemma 4.3.
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We are in a position now to derive the power decay estimate for the weighted

measure of the level set C = {(x, t) ∈ ΩT : M(|Du|2) > λ2
1} with respect to the

Aq-weight w.

Lemma 4.5. In addition to the assumptions of Lemma 4.4, we suppose

Θ(1) =
w(C ∩Q1(y, τ))

w(Q1(y, τ))
< ε ∀ (y, τ) ∈ ΩT . (4.7)

Then

w
(
{(x, t) ∈ ΩT : M(|Du|2) > λ2k

1 }
)

(4.8)

≤ εk1w
(
{(x, t) ∈ ΩT : M(|Du|2) > 1}

)
+

k∑
i=1

εi1w
(
{(x, t) ∈ ΩT : M(|F|2) > δ2λ

2(k−i)
1 }

)

for k = 1, 2, . . . , where ε1 = ε[w]2q

(
10
√

2
1−δ

)q(n+2)

.

Proof. Lemma 4.4 and (4.7) ensure the validity of the hypotheses of Lemma 4.2

for the sets C and D as defined by (4.6). Thus, (4.4) implies

w
({

(x, t) ∈ ΩT : M(|Du|2) > λ2
1

})
≤ ε1w

({
(x, t) ∈ ΩT : M(|Du|2) > 1

})
+ ε1w

({
(x, t) ∈ ΩT : M(|F|2) > δ2

})
,

with ε1 = ε[w]2q

(
10
√

2
1−δ

)q(n+2)

. The last inequality is just (4.8) with k = 1. Further

on, we proceed with the proof by induction. Suppose that (4.8) holds true for the

weak solution of (1.1) and for some k > 1. Define the functions

u1 =
u

λ1
and F1 =

F

λ1
.

It is easy to see that u1 is a weak solution to the problem (1.1) with a right-hand

side F1. Hence, (4.7) and Lemma 4.4 hold with the sets C and D corresponding to

u1 as defined by (4.6). According to (4.8), the inductive assumption holds true for

u1 with the same k > 1. The definition of u1 ensures the inductive passage from k
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to k + 1 for u. Namely,

w
({

(x, t) ∈ ΩT : M(|Du|2) > λ
2(k+1)
1

})
= w

({
(x, t) ∈ ΩT : M(|Du1|2) > λ2k

1

})
≤ εk1w

({
(x, t) ∈ ΩT : M(|Du1|2) > 1

})
+

k∑
i=1

εi1w
({

(x, t) ∈ ΩT : M(|F1|2) > δ2λ
2(k−i)
1

})
= εk1w

({
(x, t) ∈ ΩT : M(|Du|2) > λ2

1

})
+

k∑
i=1

εi1w
({

(x, t) ∈ ΩT : M(|F|2) > δ2λ
2(k−i)
1 λ2

1

})
≤ εk+1

1 w
({

(x, t) ∈ ΩT : M(|Du|2) > 1
})

+

k+1∑
i=1

εi1w
({

(x, t) ∈ ΩT : M(|F|2) > δ2λ
2(k+1−i)
1

})
.

We need also the following standard result from the classical measure theory

regarding weighted Orlicz spaces, see [2,12,14].

Lemma 4.6. Let h = h(x, t) be a nonnegative and measurable function in ΩT . Let

θ > 0 and λ > 1 be constants.

Then for any (w,Φ) ∈ (Aq,∆2 ∩∇2), q ∈ (1,∞), one has

h ∈ LΦ
w(ΩT )⇐⇒

∑
k≥1

Φ(λk)w
(
{(x, t) ∈ ΩT : |h(x, t)| > θλk}

)
=: S <∞

and

1

c
S ≤

∫
ΩT

Φ(|h(x, t)|)w(x, t) dxdt ≤ c (w(ΩT ) + S) , (4.9)

where c > 0 is a constant depending only on θ, λ and Φ.

Proof. Since Φ is strictly increasing we can write∫
ΩT

Φ(|h(x, t)|)w(x, t) dxdt

=

∫
{(x,t)∈ΩT :|h(x,t)|≤λθ}

Φ(|h(x, t)|)w(x, t) dxdt

+
∑
k≥1

∫
{(x,t)∈ΩT :θλk<|h(x,t)|≤θλk+1}

Φ(|h(x, t)|)w(x, t) dxdt

≤ Φ(θλ)w(ΩT ) +
∑
k≥1

Φ(θλk+1)w({(x, t) ∈ ΩT : |h(x, t)| > θλk}).

If θλ < 1 then θλk+1 ≤ λk and Φ(θλk+1) ≤ Φ(λk). If θλ ≥ 1, the ∆2-condition

ensures Φ(θλk+1) ≤ µ(θλ)Φ(λk). Hence the second inequality in (4.9) holds. On the
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other hand, by the Fubini theorem we have∫
ΩT

Φ(|h(x, t)|)w(x, t) dxdt

=

∫
ΩT

w(x, t)

(∫ |h(x,t)|

0

dΦ(τ)

)
dxdt

=

∫ ∞
0

(∫
{(x,t)∈ΩT :|h(x,t)|>τ}

w(x, t) dxdt

)
dΦ(τ)

≥
∑
k≥1

∫ θλk

θλk−1

(∫
{(x,t)∈ΩT :|h(x,t)|>τ}

w(x, t) dxdt

)
dΦ(τ)

≥
∑
k≥1

(∫
{(x,t)∈ΩT :|h(x,t)>θλk|}

w(x, t) dxdt

)∫ θλk

θλk−1

dΦ(τ)

=
(
Φ(θλk)− Φ(θλk−1)

)
w
(
{(x, t) ∈ ΩT : |h(x, t)| > θλk}

)
≥
∑
k≥1

(
1− 1

2λ

)
Φ(θλk)w

(
{(x, t) ∈ ΩT : |h(x, t)| > θλk}

)
where we have used that Φ ∈ ∇2. If θ < 1 then Φ(θλk) ≥ 1

µ( 1
θ )

Φ(λk), while for

θ ≥ 1 there holds Φ(θλk) ≥ Φ(λk) by the properties of Φ. This implies the first

inequality in (4.9).

We are ready now to complete the proof of Theorem 3.1.

Assume, without loss of generality, that the LΦ
w-norm of |F|2 is less than 1.

In fact, by the scaling invariance property of (1.1) we can normalize the solution,

making the norm of the right-hand side arbitrary small. Precisely, taking

u =
δu√

‖|F|2‖LΦ
w(ΩT )

and F =
δF√

‖|F|2‖LΦ
w(ΩT )

instead of u and F in (1.1), we get by (4.1) that∥∥|F|2∥∥
LΦ
w(ΩT )

= δ2 and

∫
ΩT

|F(x, t)|2 dxdt ≤ cδ2. (4.10)

In fact, the second inequality follows from

∫
ΩT

|F(x, t)|2 dxdt ≤ δ2

∫
ΩT

∣∣∣∣∣∣ F(x, t)√
‖|F|2‖LΦ

w(ΩT )

∣∣∣∣∣∣
2

dxdt

≤ cδ2

∥∥∥∥∥ |F|2

‖|F|2‖LΦ
w(ΩT )

∥∥∥∥∥
β′

LΦ
w(ΩT )

+ 1

 ≤ cδ2.
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From (2.8) and Lemma 2.2 we have

‖|Du|2‖αLΦ
w(ΩT ) ≤ c

∫
ΩT

Φ(|Du(x, t)|2)w(x, t) dxdt

≤ c

∫
ΩT

Φ(M(|Du(x, t)|2))w(x, t) dxdt.

Hence, in order to obtain a gradient estimate in LΦ
w(ΩT ), it is enough to prove

∫
ΩT

Φ(M(|Du(x, t)|2))w(x, t) dxdt ≤ c. (4.11)

To achieve this, we apply Lemma 4.6 with h = M(|Du|2), λ = λ2
1, θ = 1 and

Lemma 4.5. To check the condition (4.7), we make use of the doubling property

(2.4) as well as (4.6), (1.4) and (4.10) in order to get

Θ(1) =
w(C ∩Q1(y, τ))

w(Q1(y, τ))
≤ c

(
|C ∩Q1(y, τ)|
|Q1(y, τ)|

)τ1
≤ c|C|τ1

≤ c

(∫
ΩT

M(|Du(x, t)|2) dxdt

)τ1
≤ c

(∫
ΩT

|Du(x, t)|2 dxdt
)τ1

≤ c

(∫
ΩT

|F(x, t)|2 dxdt
)τ1
≤ cδ2τ1 < ε

for small enough δ.

In the light of the power decay estimate (4.8) in Lemma 4.5, we have

S :=
∑
k≥1

Φ(λ2k
1 )w

(
{(x, t) ∈ ΩT : M(|Du|2) > λ2k

1 }
)

≤
∑
k≥1

Φ(λ2k
1 )εk1w

(
{(x, t) ∈ ΩT : M(|Du|2) > 1}

)
+
∑
k≥1

Φ(λ2k
1 )

k∑
i=1

εi1w
(
{(x, t) ∈ ΩT : M(|F|2) > δ2λ

2(k−i)
1 }

)
=: S1 + S2.

Employing once again the properties of Φ, we get that there exists a constant µ1

depending on λ1, and so ν, L, m and n, such that Φ(λ2
1) ≤ µ1Φ(1) and therefore

Φ(λ2k
1 ) ≤ µk1Φ(1) by iteration. This way,

S1 ≤ Φ(1)w(ΩT )
∑
k≥1

(µ1ε1)
k ≤ c

∑
k≥1

(µ1ε1)
k
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and (4.9) and (2.6) yield

S2 ≤
∑
i≥1

εi1
∑
k≥i

Φ(λ
2(k−i)
1 λ2i

1 )w
(
{(x, t) ∈ ΩT : M(|F|2) > δ2λ

2(k−i)
1 }

)
≤
∑
i≥1

(ε1µ1)i
∑
k≥i

Φ(λ
2(k−i)
1 )w

({
(x, t) ∈ ΩT : M

(
|F|2

δ2

)
> λ

2(k−i)
1

})

≤ c
∑
i≥1

(ε1µ1)i
∫

ΩT

Φ

(
M
(
|F|2

δ2

))
w(x, t) dxdt

≤ c
∑
i≥1

(ε1µ1)i
∫

ΩT

Φ

(
|F|2

δ2

)
w(x, t) dxdt

≤ c
∑
i≥1

(ε1µ1)i
∥∥∥∥ |F|2δ2

∥∥∥∥β
LΦ
w(ΩT )

≤ c
∑
i≥1

(ε1µ1)i

since ‖|F|2‖LΦ
w(ΩT ) = δ2. Unifying the both estimates we get

S ≤ c
∑
k≥1

(ε1µ1)k

and the last series converges when ε1 is small enough. Hence (4.11) holds true and

‖|Du|2‖LΦ
w(ΩT ) < c

with a constant depending on known quantities. Recalling the definition of u, we

get the desired a priori estimate

‖|Du|2‖LΦ
w(ΩT ) < c‖|F|2‖LΦ

w(ΩT )

and this completes the proof of Theorem 3.1.
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