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Abstract—Today, identity verificationis required in many
common activities, and it is arguably true that most people would
like to be authenticated in the easiest and most transparent way,
without having to remember a personal identification number. To
this regard, this paper presents a multibiometric system based
on the observation that the instinctive gesture of responding to
a phone call can be used to capture two different biometrics,
namely ear and arm gesture, which are complementary due to
their, respectively, physical and behavioral nature. We conducted
a comprehensive set of experiments aimed at assessing the con-
tribution of each of the two biometrics as well as the advantage
in their fusion to the system’s overall performance. Experiments
also provide objective measurement of both saliency and corre-
lation of data captured by each sensor involved (accelerometer,
gvroscope, and camera) according to various features extraction,
features matching, and data-fusion techniques. The reports pro-
vide evidences about the potential of the proposed system and
method for user authentication “in-the-wild,” whilst its eventual
usage for person identification is  also investigated. All of the
experiments have been carried out on a specifically built, publicly
available ear-arm database, including multibiometric captures of
more than 100 subjects performed during different sessions, that
represents an additional contribution of this paper.

Index Terms—Arm gesture, biometrics, ear, multibiometric
database, person authentication, smartphones.

I. INTRODUCTION

IOMETRICS-based person authentication and identifica-

tion have become common practices in many contexts,
and their diffusion is expected to steadily grow in the next
years also thanks to the diffusion of  the latest  generation
of mobile devices equipped with a plethora of accurate and
reliable sensors along with more and more powerful ~ proces-
sors. The worldwide diffusion of mobile communication has
indeed made available two billion smartphones embedding
in a single ubiquitous  device high-resolution cameras, dig-
ital compass, gyroscope, accelerometer, positioning system,
ete. Such charactenistics make these devices suited to operate

as biometric terminals, capable of capturing, processing. and
comparing multiple biometrics for both identity verification or
recognition in a wide range of application scenarios [1]. The
stll limited raw computing power available in these devices
forces biometric application designers and developers to some
kind of compromise in terms of  selecting and adapting the
right algorithm to these platforms and the related operating
systems.

However, the ubiquity of these devices, coupled with the
familiarity the users have with them, represent a key advantage
in the light of their usage for security-related procedures which
are becoming more and more frequent  in the everyday life
of many of us. Inany biometrics, indeed. its acceptability
characteristic puts an upper limit  to its diffusion and. in the
end, toits usefulness in a given context.  Thisis particularly
true for the average user, which arguably would prefer to be
checked in the most transparent possible way instead than be
forced to undergo a rigid acquisition procedure.

Starting from these premises, this paper describes a multi-
biometric system for personal authentication based on smart-
phone as hardware platform and exploiting the observation that
the instinctive gesture of responding to or placing a phone call
can be used to capture two different  biometrics, namely ear
and arm dynamics, which are complementary due to their,
respectively, physical and behavioral nature.

This paper stems fromthe preliminary proposal of
a person-authentication approach based on ear and arm-gesture
presented in [2], expanding it through a comprehensive set of
experiments designed to assess the contribution of each of the
two biometrics as well  as the advantage in their fusion and
the saliency and correlation of data captured by each sensor
involved (accelerometer, gyroscope, and camera) according to
various features extraction, features matching, and data-fusion
techniques.

The contribution of this paper is twofold. First, a novel mul-
timodal biometric is presented, by combining a physical bio-
metric (ear) with a behavioral one (arm gesture) both captured
through the same device (smartphone). Second. by exploiting
the first statistically significant ear-arm database available, has

ric, also proving that its contribution in a smartphone-based
multimodal approach to identity verification is relevant  and
beneficial in terms of both robustness (ear acquisition could
possibly fail for incorrect framing or excessive motion-blur)
and level of accuracy achieved, for a potentially wide range



e

of low o medium-security applications requiring user authen-
tication “in-the-wild” through commonly available mobile
devices.

The rest of this paper is organized as follows. Section 11
resumes main works related to this research, Section III
describes the proposed system in detail, while Section IV
presents the results of the experiments conducted on the multi-
biometric database. Finally, Section V draws conclusions,
along with directions for future research.

II. RELATED WORK

The proposed system represent an example of smartphone
empowered multibiometric system.

The first examples of such systems go back 0 a decade
ago, when the first suitable devices emerged on the mar-
ket. In 2006, Clarke and Fumell [3] were among the first
ones Lo propose the use of keystroke analysis within a com-
posite authentication algorithm to enable transparent user
authentication by mobile devices. Since all smartphones fea-
lure one or more imaging sensors, a number of propos-
als concem the use of these hardware resources for face
recognition.

In [4], smartphone technology and wireless networking are
exploited to cope with the limitations of blind people in iden-
tifying other persons, through a face recognition approach
providing audio feedback of identification results. In the effort
of optimizing mobile devices performance for computing
intensive task, such as face recognition, Cheng and Wang (5]
described a GPU-based implementation achieving improved
speed in feature extraction and matching along with a signifi-
cant reduction of energy consumption, a critical factor of any
mobile platform.

More recently, Shen et al. [6] proved that even the best
performing face recognition algorithms, like the sparse rep-
resentation classfication can be effectively implemented on
smartphones with a reasonably short computing time by means
of a platform-specific code optimization.

Face has also been combined with voice in the MoBio mul-
timodal biometric system proposed by Tresadem er al. [7]. by
fusing these two biometrics either at the score level or at the
feature level for improved identity verification.

A similar multimodal strategy has been adopted in [8], but
in this case exploiting ear and voice instead, with data-fusion
performed at feature level.

A different approach to multimodal authentication on smart-
phones is presented in [9], since the authors do not propose
to combine two biometric identifiers but rather something the
user is (iris biometrics) plus something the user owns (the
smartphone characterized by its imaging sensor pattern noise).

Gail recognition has been approached on mobile devices by
exploiting their embedded accelerometers. Nickel et al [10]
presented a method for extracting gait features to be classified
by means of k-nearest neighbor algorithm, demonstrating its
practical feasibility on smartphones, while in [11] secondary
gait motion affecting arm swing has been proposed as a weak
biometric.
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Finally, touch dynamic images have been proposed in [12]
for mobile user verification as well as for continuous
authentication [13] and implicit identification [14].

To the best of our knowledge, this is the first proposal of
a system combining ear features and arm gestures for authen-
tication purposes, with both biometrics collected through
a mobile device whilst the subject is responding to (or placing)
a phone call.

The discriminant power of gestures is known well before the
technology for capturing and processing this dynamic info on
a portable device was available [15] while the advent of inex-
pensive sensors for measuring acceleration and orientation,
around one decade ago, has greatly contributed to stimu-
late the exploitation of body dynamics in a wide range of
applications [16], [17].

However, the idea of exploiting smartphone embedded
motion sensors (mainly the accelerometers and the embedded
camera) for biometric applications is not exactly new, though
only a few papers can be found in literature on this topic
so far. With regard to arm gestures, in 2009, Liu et al. [18]
presented uWave, a gesture recognition methodology based on
quantization of accelerometer readings, dynamic time warp-
ing (DTW) and template adaptation allowing the user to define
custom gestures via a single training sample. According to
this approach a gesture can be detected and recognized by
a charactenstic time series of acceleration. DTW and multiple
sensors fusion is exploited in [19] to detect and recognize
“aggressive” driving patterns by means of drver's smart-
phone, used as a mobile monitoring platform. The proposed
method is characterized by fusing interaxial data from differ-
ent sensors into a single classifier while Euler representation
of device attitude is used to improve classification perfor-
mance. The first attempt of using the arm motion related
to the act of answering or placing a phone call as a dis-
criminant feature for authenticating the smartphone user is
proposed by Conti et al. [20], that propose this particular ges-
ture as a new biometric. The authors presented two variations
of DTW algonthm referred to as DTW distance (DTW-D)
and DTW similarity that applied to two different sensors
(accelerometer and gyroscopes) provided an authentication
accuracy on ten subjects comparable to well established bio-
metrics like face or voice. Similar results, though on only six
subjects, have been achieved in [21], while Feng er al. [22]
proposed two different methods, respectively, based on motion
statistics and trajectory reconstruction to extract and com-
pare dynamic features resulting from 9-D motion sam-
ples, thus confirming the potential of arm’s dynamics as
a biometnc.

Concerning ear, that has been exploited in host-based bio-
metric systems both in 2-D [23], [24] and 3-D [25]. [26],
its usage for “implicit” person authentication by means of
a smartphone has been proposed by Fahmi et al. [27] which
considered both shape and texture information to represent
ear image as a concatenated descriptor. Features matching is
then performed using a nearest neighbor classifier in the com-
puted feature space with Euclidean distance as a similarity
measure. The authors reported a recognition rate of 92.5% on
20 subjects involved in the experiments.
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In the light of the aforementioned works, the main focus
of this paper. that is the combination of gestural features
and ear shape captured at the same time during the usage
of smartphones (or other mobile devices), seems reasonable
in terms both of the embedded sensors capabilities and of the
complementarity of the two identifiers considered, coupling
behavioral and physical charactenstics.

II1. DESCRIPTION OF PROPOSED METHOD

The proposed identity authentication method stems from
the observation that whenever a smartphone user responds to
or places a call, the mobile device’s motion sensors could
record the motion associated to the phone-holding hand that
can be considered as the “end effector”™ of the cinematic chain
composed by clavicle, upper-arm and lower-arm plus hand,
hereafter simply referred to as “arm.” At the same time, the
smartphone’s front (secondary) camera could be in a favor-
able position to capture a sequence of ear images, one or
more of which could possibly be used for extracting discrim-
mant features (see Fig. 1). The scores resulting by the two
authentication techniques may then be combined together. This
approach, described in the following Sections III-A-III-H is
implemented through a multimodal biometric system basically
composed by three components: 1) the ear subsystem; 2) the
arm-motion subsystem; and 3) the fusion-decision subsystem
as schematically represented in Fig. 1.

A. Arm Gesture Acquisition

Regardless 0 being captured contextually or deliberately,
arm gesture acquisition is triggered by the smartphone inter-
face that starts recording motion-data from both accelerometer
and gyroscope until these readings show that the gesture is
over. This happens whenever the acceleration readout 1s mainly
due to gravity (i.e., the other components are below a specific
threshold), whereas the gyroscope is also exploited to con-
firm the completion of the gestures (by considering terminal
orientation and angular velocity) as well as to exclude that
involuntary movements are considered as a relevant gesture.
Acceleration data are captured at a rate of 50 samples/s, though
slight vanations on the average reading rate are possible
indeed. Acceleration data are captured at a rate of 50 sam-
ples/s, though slight variations on the average reading rate are
possible indeed.

Each sample contains four values (x, y, z. 1) including the
instant acceleration on three axes and the time elapsed from the
start of recording. The resulting 4-D vector is therefore used
for features extraction. It has to be remarked that to the aim of
improving the reliability of this biometric template, the acqui-
sition process is repeated five times only for the enrollment,
and the average of the five vectors is saved.

B. Ear Acquisition

Ear image capture can be performed either contextually to
a call, or deliberately for authentication purposes. Whatever
the modality adopted, the acquisition process involves the
recording of a short video sequence at a frame rate of at
least 30 frames/s (the higher, the better) that represents the
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Fig. I. Schematic of propased system. The system and the workflow depicted
above relates to the most perfforming configuration tested.

input for the ear detector based on the Viola—Jones [28] algo-
rithm and specifically trained to recognize left or right ear.
The choice of an optimal ear-size threshold to stop the detec-
tion process combined with proper capture resolution typically
allow for real-time performance of the detector on latest gener-
ation hardware, though suboptimal performances could occur
in case of insufficient illumination. The candidate ear crops are
therefore ordered according to their sharpness, to the aim of
selecting the most feature rich image. This is accomplished by
measuring the difference (pixel-wise) between each frame and
a copy of it blurred by means of a Gaussian filter (see Fig. 2).
This measure results o be the lesser, the softer or more blurred
the original image is (possibly due to focusing or motion-blur
issues), so the frame that maximizes this measure is the best
candidate for the subsequent feature extraction process.



Fig.2.

Examples of ear crops contained in the multimodal database. On ginal
frames captured by the secondary camera of a Samsung Galaxy S4 phone.

C. Extraction of Arm Dynamics

With regard to the arm motion associated to the gesture
of responding/placing a call, we evaluated different methods
for extracting discriminant info, for instance by representing
the captured signal through the interpolating spline or even
by using the coefficients of the signal’s fast Fourier trans-
form (FFT). In the first approach, the interpolating spline
has been computed from the raw data while the feature vec-
tor representing the spline contains an ordered sequence of
10, 20, or 30 spline’s key-points sampled at regular intervals
from the total acquisition time. In the second approach, once
the raw data have been converted in the frequency domain
by computing the FFT, a low-pass filter has been applied to
the frequency spectrum to isolate salient info contained in
low frequencies from noise and signal discontinuity typically
present in high frequencies. The adopted low-pass filter was
designed to cut the higher 3/4 or 7/8 of the whole frequency
spectrum. However, as we report in experiment #1 we found
that in both cases the advantage of a more compact descrip-
tor was overcome by the performance drop. Consequently,
we decided to exploit the whole set of sampled data (typi-
cally 60-80 four-tuples) that given an average duration of the
captured motion is below 2 s, lead to an average descriptor
made of 240-320 values. It is worth noting that no filtering or
data cleaning has been applied o the samples, which are raw
data indeed, since we wanted to keep the preprocessing load
to a minimum. The variable dimensions of these descriptors
are inherently addressed by the metric used in the matching
stage. This choice delivered the best results, as described later
in Section IV.

D. Extraction of Ear Features

Features extraction of ear shape is performed by means of
the local binary patterns (LBPs) algorithm [29] that is well
known in computer vision and has been widely used for bio-
metric applications involving face [30] and facial expression
recognition [31], and palmpnnt [32] and ear [33] recognition.
In this particular implementation, a fixed number of 25 con-
tiguous blocks partitioning the input image has been adopted
rather than the more commonly used fixed block size. The
reason behind this choice is related to the vanable size of the
crops, depending by the aforementioned process of ear detec-
tion and cropping. As a result, 25 histograms are computed
(one for each block) leading to a final concatenated features
descriptor comprising 6400 values.

E. Features Matching
The comparison of a probe ear descriptor to a gallery
template corresponding to the claimed identity, is performed
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by means of Euclidean distance between two n-dimensional
features p = (pr.p2. ..., pe) and g = (q1.42. ..., gn) as
given by

dip.q) = \.’{(qn —p1)? + (g2 —p2)? + -+ (g — pa)*.
(h

In this case, the distance between each couple of corre-
sponding histograms in the probe/gallery vectors is computed.
Then, the overall distance between two descriptors is obtained
as the sum of all the Euclidean-distances computed between
25 couples of corresponding histograms, normalized in the
range [0, 1]. If subject identification is required, a one-to-
many comparison between the probe and each of the gallery’s
templates is performed, resulting in a score vector of the same
size of the gallery, instead than a single score as per identity
verification.

With regard o arm-motion, since captured samples are typ-
ically of different lengths, to the aim of effectively compare
them we exploit the DTW algorithm [34], [35] that is partic-
ularly suited to find the best alignment between two signal
curves by means of a nonlinear transformation with respect
to the independent variable (time, in this case), thus implic-
itly providing a reliable measure of their similarity. In the
next lines, the basic formulation of DTW metric is recalled:
given two generic time series R = . ra, ..., Tivoons r, and
S =51.852.. ... Sjo e sims Of length n and m, respectively, to
align two sequences using DTW an n-by-m matrix is built,
where the (i, jin) element of the matrix contains the (Lypi-
cally Euclidean) distance d(ri, s;) between the two points r
and s;. Each element (i, j) in the matnix corresponds to the
alignment between the points »; and s;. A warping path W, is
a contiguous (in the sense stated below) set of matnx elements
that defines a mapping between R and S. The kth element of
W is defined as wi = (i, /)r. so, we have

max(m.n) < K<m+n—1.

(2)

W=wp,w, ..., Wiy ons Wi

A few constraints W is typically subject to, include bound-
ary conditions, continuity, and monotonicity.

The first constraint requires the warping path to start and fin-
ish in diagonally opposite corner cells of the matnx [ie., w) =
(1.1) and wg = (m.n)]. The second constraint restricts the
allowable steps in the warping path to adjacent cells, includ-
ing diagonally adjacent cells [ie., given wg = (a.b) then
wi_l = (@, b"), where a—a" <1 and b — b" < 1]. The third
constraint forces the points in W o be monotonically spaced
in time [i.e., wy = (a. b) then wy_| = (a’. b") where a—a" = 0
and b —b" = 0]. There are exponentially many warping paths
that satisfy the above conditions, however, we are interested
only in the path which minimizes the warping cost

DTW(R. S) = minl \f Z:;. wk/Kl. 3)

The K in the denominator is used to compensate for the fact
that warping paths may have different lengths. This path can be
found very efficiently using dynamic programming to evaluate
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the following recurrence which defines the cumulative distance
y(i,j) as the distance d(i. j) found in the current cell and the
minimum of the cumulative distances of the adjacent elements

y(i.j) = d(ri.sj)
+ min{y(i—1j— 1. yG—1j).yl.j— D} @)

As an example, different acquisitions of arm motion often
highlight different arm speed and motion duration. In these
cases, motion curve alignment via overlapping or curve off-
setting would be affected by their differences, whilst DTW is
able to find their similarities.

Various metrics have been considered and evaluated against
the baseline provided by 3-D Euclidean distance: the mono-
dimensional DTW-D (matching only the curves related to
the same axis under the hypothesis of a particular motion-
specific relevance of one axis), the average of the three
mono-dimensional DTW distances, and the multidimensional
DTW distance (MD-DTW) [36] briefly resumed in the fol-
lowing lines. Let R and § be two series of dimension K and
length n and m, respectively. The first step of MD-DTW algo-
rithm is to normalize each dimension of R and § separately to
a zero mean and unit vanance, eventually applying a Gaussian
smoothing to each dimension. Fll the n x m distance matrix
D according to

K
D(i.j) = Z|R(i.k) — S(j. k)| (5)

k=1

and use this distance matrix to find the best synchronization
with the standard DTW algorithm.

F. Fusion Rules

Since we found the ear-arm Pearson’s correlation
coefficient [37] computed on the mulumodal dataset collected
is 0.3207, there is a potential advantage in fusing the two bio-
metrics, although a relatively small correlation exists. Main
techniques for fusing info from multiple sensors [38] include
feature-level fusion, score-level fusion [39], and decision-level
fusion [40], [41]. In the proposed system, after both ear and
arm distances have been computed, a score-level weighted
data fusion is performed according to the following rules
specific to the verification and identification scenarios:

SCOICyer = SCOMCeyr * 0.1 + scoreym * 0.9 (6)

SCOTCjy = SCOrC, * 0.9 4 score, * 0.1. (7)

The inversion of the weights that characterizes the identi-
fication fusion rule, stems from the results of experiments
described in Section IV according to which in the venfica-
tion scenario the arm gesture biometric performs considerably
better than ear biometric, while the opposite is true for the
identification scenario. In both cases, the fusion of the two bio-
metrics leads to a measurable improvement of performances,
a result in line with the measured Pearson’s correlation
coefficient.

G. Decision Stage

Finally, the final score resulting from the adopted fusion rule
is compared to a decision threshold [comresponding to the sys-
tem’s equal error rate (EER)] to evaluate whether the subject
can be authenticated or not. Data fusion at decision level has
been experimented also. In this case, two decision schemes
have been considered: 1) authenticating the user only if both
car AND arm probes match the templates corresponding to
the claimed identity or 2) authenticating the user if ear probe
results genuine OR arm probe results genuine. A feature-level
data-fusion scheme would not be beneficial in this case, mainly
due to the high dishomogeneity between the two types of
feature vectors to be combined.

H. Computational Load and Performance Issues

The main design requirement of the system based on pro-
posed approach, is to enable user authentication exploiting
mobile devices instead of larger more performing comput-
ing platforms. This goal translates in an operational constraint
requiring that all the aforementioned stages have to be per-
formed in real-ime or near real-time. In this sense, the choice
of LBP (ear featres) and raw dynamics data (arm features)
reduce the computing load of feature-extraction stage Lo a min-
imum, while Euclidean distance (ear) and DTW (arm) for
feature-matching can be performed rapidly enough o provide
a decision typically in under 1 s (for the authentication sce-
nario on the hardware used for the experiments). Since the
technology trend for mobile devices implies higher and higher
image capture frame rate, the advantage of having both more
frames to choose from and less blurred ear images should be
balanced by more computing power or more efficient methods
to find the best ear crop.

IV. EXPERIMENTS

This section describes in detail the experiments designed
and accomplished to measure the effectiveness of the two
biometrics considered, both evaluated separately or com-
bined together within the proposed smartphone-based biomet-
ric system described before. First, the methodology behind
the acquisition process for both the modalites and the
resulting unprecedented database will be described. Second,
three experiments aimed at quantitatively assessing arm ges-
ture (experiment #1), ear (experiment #2), and ecar-arm
(experiment #3) in the authentication scenario, will be pre-
sented. Finally, performance of the integrated system in an
identification scenario will be reported and discussed in
experiment #4.

A. Building the Ear-Arm Database

As anticipated above, one of the contribution of this paper
is the building of a public multibiometric database available
at http://www.biplab.unisa.it/portal/index. php/dataset/e-ag-data
base, specifically designed to be used for identity verification
based on ear, arm gesture, or exploiting the combination
of both these biometrics. The database has been built by
collecting ear images and arm dynamics through the built-in



sensors of a Samsung Galaxy S4 smartphone, a model of
smartphone whose main features are representative of a large
range of mobile phones currently present on the market.

In order to achieve statistically meaningful results from the
experiments, a total of 100 different subjects has been involved
in the capture process. The whole acquisition has been inten-
tionally performed in the course of three different sessions
spanning over two weeks. About a third (30) of these 100 sub-
jects attended to all of the three sessions, whilst the other
ones (70) participated only to the first one. Multiple acquisi-
tion over time also offered the opportunity to stress the stability
of arm-motion (which has a strong behavioral component)
as a biometric. The following three biometric templates have
been captured for each of the 70 participants to the first ses-
sion: 1) three ear images; 2) three accelerometer + gyroscope
recordings (siting); and 3) three accelerometer + gyroscope
recordings (standing).

For each of the 30 participants to all of the three sessions,
nine biometric templates (the three listed above for each of
the three sessions) have been captured instead. Usually, the
car used to listen through a phone is always the same. For
this reason, the ear acquired was the one normally used by
cach subject when using a phone. According to this choice,
the database includes both right and left samples, the latter
being 16% of the whole dataset (see Fig. 2). The expen-
ments described hereafter have been conducted on a subset of
the aforementioned database, containing a normalized amount
of three templates for each subject, achieved by considering
only one sample for each session for the subjects captured
three times. The resulting dataset features 300 ear images,
600 (300 sitting + 300 standing) accelerometer recordings,
and 600 gyroscope recordings (300 sitting + 300 standing).
We remark again that arm gesture samples have not undergone
any noise reduction/cleaning. In the verification scenario, this
database 1s organized into two logical units: 1) the gallery-set,
comprsing one template for each subject and 2) the probe-set
containing the two remaining templates that represent access
trials subsequent to subject’s enrollment. The system has been
designed so that 509 of the simulated accesses were from
genuine users and the remaining 50% from impostors. All the
results presented in the following sections refer to the aver-
age computed on 100 iterations of each experiment achieved
through 100 permutations of probe’s identity (with a gen-
uine/impostor ratio equal to 1) over 200 venfication trals, one
for each element of the probe-set.

B. Experiment #1—Arm Gesture

In experiment #1, an objective assessment of arm gesture
as a biometric is carried out exploiting two well established
performance metrics: 1) area under the ROC curve (AUROC)
and 2) EER. More in detail, this experiment aims al measur-
ing: 1) performance of various features extraction/matching
methods applied to accelerometer data; 2) performance of
various features extraction/matching methods applied to gyro-
scope data; 3) the eventual benefit in fusing accelerometer and
gyroscope data; and 4) the robustness of arm gesture to pose
variations (with subjects sitting and standing). With regard to
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TABLE |
COMPARISON OF DIFFERENT FEATURES MATCHING METHODS
APPLIED TO RAW ACCELEROMETER DATA

Features matching methods AUROC | EER
(raw data, sitting)

Average of DTW(X): DTW(Y): DTW(Z) 0.9382 0.1315
DTW(Y) 0.8727 0.2066
Multi-Dimensional DTW 0.8552 0.2386
DTW(X) 0.8530 0.1711
DTW(Z) 0.8339 0,2298
3D Euclidean distance 0.7905 0,2776

TABLE II
COMPARISON OF DIFFERENT FEATURES EXTRACTION/M ATCHING
METHODS APPLIED TO ACCELEROMETER DATA

e ccesomtes o gy | AUROC | EER
DTW average on 30 spline key-points 09272 0.1506
DTW average on 20 spline key-points 09142 0.1688
DTW average on 10 spline key-points 0.8809 0.2091
Euclidean Dist. on 30 spline key-points 0.8576 0.2374
Euclidean Dist, on 20 spline key-points 0.8555 0.2361
Euclidean Dist, on 10 spline key-points 0.8553 0.2300
Euclidean Dist, on FFT (0.125 low pass filter) 0.7791 0.3016
Euclidean Dist, on FFT (0.25 low pass filter) 0.7700 0.3079

features extraction, three methods have been considered, as
anticipated in Section III-D: 1) raw data vector composed
(in average) by 60 four-tuples for a total of 240 eclements;
2) compressed features vector composed by 10, 20, or 30 poly-
nomial key-points of the spline interpolating the motion curve;
and 3) compressed features vector composed by FFT coeffi-
cients related to the low frequencies (low-pass filter applied to
preserve 12.5% or 25% of the full frequencies spectrum). With
regard (o features matching, the following metrics have been
considered, as anticipated in Section III-E: 1) 3-D Euclidean
distance (baseline); 2) DTW between x-axis, DTW between y-
axis, DTW between z-axis; 3) mean value of DTW distances
on xyz axes; and 4) multidimensional DTW.

1) Results From Accelerometer Data: Table 1 resumes the
quantitative results achieved according to the above metrics
applied to raw data, ordered by decreasing AUROC values.
As anticipated in Section III, the best performing metric is
the mean of the DTW distances computed separately on each
axis, that improves considerably over the DTW-D on the single
y axis (which contains more salient info due to the speci-
ficity of the “responding to a call” motion pattern). MD-DTW
performs slightly worse than the latter, but stull measurably
better than DTW(X) and DTW(Z). The poor performance
of 3-D Euclidean distance here, is casily explained consid-
ering the temporal misalignments charactenzing the motion
recordings that affect severely this metric. In Table II, fea-
tures representations based on interpolating spline key-points
and FFT coefficients are compared and reported according to
the decreasing AUROC results. Itis easy to spot the superiority
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Fig. 3. ROC curves for arm gesture (accelerometer data) related to the five
best performing combination of features extraction/matching metrics.
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Fig. 4. DET curves for arm gesture {(accelerometer data) related to the five
best performing combination of features extraction/matching metrics.

of DTW (mean) metric, while the number of spline key-points
seems to directly affect the venfication performance. In gen-
eral, FFT coefficients perform worse than spline key-points,
and even worse if the low-pass filter preserve part of the higher
frequencies.

This observation seems consistent to the hypothesis that the
most salient content in arm gesture acceleration data is found
in the low-end of the frequencies spectrum, less affected by
motion discontinuity. In the following Figs. 36 depict (for the
five best combinations of features representations and match-
ing methods), respectively, the ROC curves, the DET curves,
the FAR/FRR curves, and a close-up view of the FAR/FRR
curves intersection, showing more in detail the EER zone.

2) Results From Gyroscope Data: In Table 111, the features
extraction and matching methods together, already considered
in Tables I and II are applied and evaluated for gyroscope data,
to understand how salient this information is in the context of
arm gesture biometric.

The numenc results and the related ROC, DET. and
FAR/FRR (see Figs. 7-9) curves highlight the inferior discrim-
inating power of gyroscope compared to the accelerometer,
that ranslates in lower verification performance as confirmed
by the best EER value (0.26) versus the corresponding best

FARFRR for the System
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Fig. 5. FAR/FRR curves for amm gesture (accelerometer data) related to the
five best performing combination of features extraction'matching metrics.
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Fig. 6. Close-up of intersecting FAR/FRR curves for arm gesture (accelerom-
cter data) related to the five best perfforming combination of features
extraction/matching metrics.

TABLE 111
COMPARISON OF DIFFERENT FEATURES EXTRACTION/M ATCHING
METHODS APPLIED TO GYROSCOPE DATA

Features extraction/matching
methods AUROC | EER
(gyroscope data, sitting)

DTW average 0,8306 0,2611
DTW average on 30 spline key-points 08173 02752
DTW average on 20 spline key-points 0.8162 0.2658
DTW average on 10 spline key-points 0.7920 0.2658
DTW (Z axis) 0.7858 0.2672
Euclidean Dist. on 10 spline key-points 0.7817 03151
Multi-dimensional DTW 0.7788 0.2988
DTW (Y axis) 0.7753 0.2944
Euclidean dist. on FFT (0.125 low pass filter) 0.7721 0.3131
Euclidean dist. on 30 spline key-points 0.7695 03112
Euclidean dist. on 20 spline key-points 0.7682 0.3205
Euclidean dist, on 10 spline key-points 0.7600 0.3041]
Euclidean distance 0.7153 0.3386
DTW (X axis) 0.6814 0.3759

value in Table I (0.15). With regard to the matching meth-
ods, the DTW (average) confirms its advantage over the other
metrics, though this edge reduces if spline-based interpolation
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Fig. 7. ROC curves for arm gesture (gyroscope data) related to the five best
performing combination of features extraction/matching metrics.

Deétection-Emor Trade-off Curve (standard noma deviate scake)
1 - v v

—a— Gyro, DTW (media), sitting
Gyro, intarpolation (30), DTW (aver ), smng
—+— Gyro, interpolation (20), DTW [aver ), smng [
Gyro, interpolation {10), DTW (&ver ), simng
—E&— Gyro, DTW(Z), siting

& os} 1
W
At i
A5k i
R

2 1 1 1 1 ﬂ =~

2 15 1 05 0 05 1
FAR

Fig. 8. DET curves for arm gesture (gyroscope data) related to the five best

performing combination of features extraction/matching metrics.
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Fig. 9. FAR/FRR curves for arm gesture (gyroscope data) related to the five
best performing combination of features extraction/matching metrics.

is adopted (the higher the number of feature key-points, and
the higher the performance). It is worth noting that, for
the gyroscope, the z-axis is the more salient, whereas, for
the accelerometer, the y-axis is the more salient. FFT-based
features extraction results more performing in this case.

In this tnal, the matching method used is invanably the
DTW average, the best performing among the ones considered
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Fig. 10.  Scatterplot of correlation among accelerometer and data and gyro-

scope data for amrm gesture biometrics. In red the linear regression. The
Pearson's comelation coefficient is (.8556, so the two types of data are strongly
interdependant.

TABLE IV
COMPARISON OF RESULTS FOR DIFFERENT { SCORE- LEVEL AND
FEATURE LEVEL) ARM GESTURE DATA-FUSION STRATEGIES

Data-fusion methods
(Acctgyro data, DTW average, sitting) AUROC | EER
score-level fusion (acc 0.9 / gyro 0.1) 0.9369 0.1384
score-level fusion (acc 0.8 / gyro 0.2) 0.9302 0.1392
feature-level fusion (concatenation) 0.9277 0.1548
score-level fusion (ace 0.7 / gyro 0.3) 0.9921 0.1407
score-level fusion (ace 0.8 / gyro 0.2) 09177 0.1607
feature-level fusion (sum) 0.9130 0.1670
score-level fusion (acc 0.5 / gyro 0.5) 0.9037 0.1701
score-level fusion (ace 0.4 / gyro 0.6) 0.8920 0.1865
score-level fusion (acc 0.3 / gyro 0.7) 0.8788 0.2106
score-level fusion (acc 0.2 / gyro 0.8) 0.8639 0.2199
score-level fusion (acc 0.1 / gyro 0.9) 0.8460 0.2410

so far. The results are summarized in Table IV and graphically
depicted by Figs. 11-13.

3) Accelerometer + Gyroscope Fusion: We also wanted
to investigate the possibility of combining the contribution
of accelerometer and gyroscope by fusing the comresponding
captured data through feature-level and score-level strate-
gies. A preliminary correlation analysis for the two types
of data reports a Pearson’s correlation coefficient of 0.8556
(see Fg. 10), but we wanted to assess if a (marginal)
advantage would still be possible. The feature-level fusion
scheme adopted is based on the sum and the concatena-
tion of the two features vectors, while the score-level fusion
scheme exploits variable weights for the accelerometer and the
gyroscope components. The weights vary in the range 0.1-0.9
(e.g., Ace.®0.1 + Gyro*0.9) and their sum is always 1.
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Fig. 11. ROC curves for amm gesture (accelerometer+ gyroscope data related
to the five best performing fusion schemes reported in Table IV.
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Fig. 12, DET curves for arm gesture (accelerometer+gyroscope data related

to the five best performing fusion schemes reported in Table IV.

They show that feature-level fusion is less performing, with
features-vector concatenation leading to a slightly better result
(EER = 0.1548) compared to features-vectors sum (EER =
0.1607). Score-level fusion achieves the best result (EER =
0.1384) when accelerometer weight is 0.9. However, even in
this case it performs slighly worse than the accelerometer
alone, so gyroscope data should be disregarded.

4) Robusmess to Posing Variations: Since the arm gesture
associated to the action of placing/responding to a call can be
performed in different ways, for instance depending on the sit-
ting or standing condition of a given subject, it is interesting
to assess how these two main posing varialions may possi-
bly affect the authentication accuracy. To this aim, the best
performing features matching metrics considered in previous
evaluations (DTW average) is applied to the following three
datasets.

1) dataset#] containing all the raw accelerometer data cap-

tured in sitting condition.

2) dataset#2 containing all the raw accelerometer data cap-

tured in standing condition.

3) dataset#3 containing 50% of eclements randomly

extracted from dataset#1 (sitting) and the remaining
509 of elements randomly extracted from dataset#2
(standing).

x 06 —ea—Fugion AccGyroScore0 901
it —w— Fusion AccGyroScore080.2
- 05 +— Fusion AccGyro (vectors concatenstion), Sitang
E 04 Fusion AccGyroScore0 703 |
= FusAccGyro, DTW {aver.), Siting

0 . 0.1 02 03 04 05 06 07 08 09
TH

Fig. 13, FAR/FRR curves for arm gesture (accelerometer+gymoscope
data related to the five best performing fusion schemes reported in Table IV.

TABLE V
COMPARISON OF DIFFERENT POSING CONDITIONS
DURING ARM GESTURE CAPTURE

Posing variations
(raw accelerometer data) AUROC EER
DTW average (standing) 0.9477 | 0.1163
DTW average (sitting) 0.9395 | 0.1305
DTW average (all) 0.8957 | 0.1872
ROC Curve for the Systam

—e— Acc, DTW (aver ), standng
01 w Ace, DTW (aver ), sitting
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Fig. 14. ROC curves for arm gesture (raw accelerometer data) related to
three different posing conditions dunng capture.

As reported in Table V and visually confirmed by
Figs. 14-16, the system provides the best performance when
the samples related to standing subjects are considered (EER =
0.1163), arguably due to the greater freedom of motion lead-
ing o more salient data. This performance is not far from the
best EER values achieved by [42] exploiting a 3-D method
for gestre capture. The results related o datase#3 (the most
challenging), are still exploitable (EER = (.1872) thanks to
a high correlation between the two poses.

C. Experiment #2—Ear

The second experiment is aimed at measuring the individual
performance of the ear biometrics in the context of smartphone
operated capture. The average EER achieved on 100 itera-
tions of the experiment is (0.1774, with an AUROC of (.8856
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Fig. 15.  DET curves for amn gesture (raw accelerometer data) related to
three different posing conditions during capture.
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Fig. 16. FAR/FRR curves for arm gesture (raw accelerometer data) related
to three different posing conditions dunng capture.
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Fig. 17. ROC curve for ear captured through a smartphone. Ear features are
represented by LBP descriptors and matched through Ewclidean distance.

(see Figs. 17-19). These values, that can be considered some-
what suboptimal for typical ear recognition systems based on
LBP descriptors, can be explained considering the rather chal-
lenging conditions in which ear images has been captured,
sometimes leading to imperfect detection and cropping, or
even to softer images due to residual motion-blur even in the
best frame selected.

FAR

Fig. 18. DET curve for ear captured through a smartphone. Ear features are
represented by LBP descriptors and matched through Euclidean distance.
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Fig. 19. FAR/FRR curve for car captured through a smartphone. Ear features
are represented by LBP descniptors and matched through Euclidean distance.

D. Experiment #3—Combining Arm Gesture and Ear

The third experiment is aimed at assessing the potential
advantage in combining ear and arm gesture biometrics. We
found that the Pearson’s cormrelation index for these two bio-
metrics is 0.3207 (see Fig. 20) implying a potential advantage
in combining them. Two types of fusion schemes have been
tested, with results shown in Table IV: 1) score-level fusion
and 2) decision-level fusion.

Score  weights  vary  from  Earf0.9%Arm*0.1 1o
Ear*0.1/Arm*0.9, while decision-level fusion may implement
a logic AND strategy in which system authorizes the user
only if both ear and arm subsystems authorize i, or a logic
OR strategy. where the system authorizes the user if at least
one of the two subsystems authorize it.

Features-level fusion has not been considered as a valid
option, due to the strong nonhomogeneity of the two features-
vectors (LBP is a 6400 8bit elements long vector, while
accelerometer data are typically packed in a vector with
average length of 240).

The results listed in Table VII and both the ROC, and
FAR/FRR curves (see Figs. 21 and 22), confirm the validity of
the multimodal approach, with score-level fusion providing the
best EER of 0.1004 when the weight for arm-motion is (.9 and
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Fig. 20.  Scatterplot of correlation among ear and arm gesture biometncs
(accelerometer data). In red the linear regression. Since the Pearson's comrela-
tion coefficient is 0.3207, the two biometrics cannot be considered independent
one from the other, but there is an advantage in combining them.

TABLE VI
COMPARISON OF RESULTS FOR DIFFERENT FUSION STRATEGIES

Fusion strategies (car-arm) AUROC | EER
car-arm, score level fusion, weights (0.1/0.9) 0.9560 0.1004
ear-am, score level fusion, weights (0.2/0.8) 0.9454 0.1204
car-arm, decision-level fusion "OR" 0.9412 0.1279
car-arm, score level fusion, weights (0.3/0.7) 0.9370 0.1241
car-arm, score level fusion, weights (0.4/0.6) 0.9294 0.1378
car-amm, score level fusion, weights (0.5/0.5) 09218 0.1493
ear-am, score level fusion, weights (0.6/0.4) 09148 0.1552
ear-amm, score level fusion, weights (0.7/0.3) 0.9082 0.1603
ear-am, score level fusion, weights (0.8/0.2) 0.9008 0.1627
ear-am, score level fusion, weights (0.9/0.1) 0.8937 0.1691
ear-am, decision-level fusion "AND” 0.8897 01717

0.1 for ear. Progressively reverting the weighting (i.c., increas-
ing the weight of ear and decreasing the weight of arm-motion)
produce a corresponding progressive decrease of performance.

This can be explained with the slightly inferior performance
of the ear subsystem and also by comparing the FAR/FRR
curves of both biometrics. The decision-level fusion schemes
resulted less performing, though the OR version, with an EER
of 0.1279, still improves over the best single biometrics alone
(arm gesture). On the contrary, the AND scheme provides
performance similar to the ear alone.

E. Experiment #4—System Applied to Identification Scenario

The last expeniment we present, is aimed at assess-
ing performance in the identification scenario (one-to-many
comparison). Person identification does not represent the ideal
application context for the proposed biometric system that

TABLE VII
FINAL COMPARISON OF FIVE DIFFERENT APPROACHES

Approaches AUROC | EER
score-level fusion (ear 0.1 /arm 0.9) 0.9560 0.1004
arm gesture accelerometer DTW average 0.9382 0.1315
score-level fusion (ace. 0.9 / gyro 0.1) 0.9369 0.1384
car (LBP) (.8856 0.1774
arm gesture gyroscope DTW average 0.8306 0.2611
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Fig. 21. ROC curves for the five best performing car-arm fusion strategies.
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Fig. 22.
strtegies.

FAR/FRR curves for the five best performing ear-arm fusion

is more suited 0 low/medium-security authentication accord-
ing to the results described before. Nevertheless, we wanted
to stress the system to eventally find its lower limit, so
we compared the most effective fusion-schemes to each sin-
gle biometrics by matching any element of the probe set
to cach of the elements of the gallery set. The ROC curve
for this experiment is shown in Fig. 23 while, Table VIII
resumes the results achieved, including an additional column
reporting the rank-1 cumulative match score (CMS) to pro-
vide an intuitive figure of the system’s recognition capability.
The approaches are ordered according to decreasing value of
CMSpk1 - Overall, the recognition accuracy is lower than the
figures achieved for authentication, but still usable consider-
ing the maximum recognition rate of 80.5% achieved. Not
surprisingly, in identfication scenario the ear component is
much more discriminant than arm gesture as proved by the
performance related to the ear alone (RR = 73%) compared to
arm gesture alone (RR = 58%). Consequently, the weights in
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Fig. 23, ROC curves comparison for the five approaches resumed in
Table VIL

TABLE VI
IDENTIFICATION SCENARIO. COMPARISON OF FIVE APPROACHES

Identification Scenario | AUROC | EER | CMS,,,; |

car-arm, score-level fusion

(car 0.9 / acc. 0.1) 0.9571 0.0994 0.8050

car (LBP) 0.8877 0.1747 0.7300
arm, score-level fusion

(acc. 0.9/ gyro 0.1) 0.9371 0.1380 0.5950
arm, acc. DTW average 0.9398 0.1308 0.5800
arm, gyro DTW average 0.8322 0.2581 0.2200

the ear-arm score-level fusion are inverted (Ear 0.9/Acc. 0.1)
with regard to those applied in the authentication scenario,
where the arm gesture performed better indeed. This also
implies that ear-matching metrics more performing than LBP
would be likely to further increase overall system accuracy.
It is also worth noting that for identification, like observed
for authentication, the fusion of the two biometrics is bene-
ficial, providing a measurable and not marginal performance
improvement quantified in +0.069 for the AUROC, —0.075 for
the EER, and +7.5% for the RR. Finally, since the use of
DTW for matching arm-motion curves is robust and accurate
but computationally expensive, it could represent a limiting
factor in case of one-to-many comparisons as required by
identification applications.

To this regard. it could be worth adopting more perform-
ing variations of the original algorithms like the Piecewise
DTW [43] or the FastDTW [44] proposed for time seres
data mining.

V. CONCLUSION

In this paper, a multimodal biometric system aimed at ubig-
uitous person authentication by means of implicitly acquired
biometrics has been described. The proposed system, exploits
smartphone’s sensors Lo capture both ear shape and arm motion
when responding/placing a call, according to the hypothesis
of a measurable advantage in combining a physical biometric
identifier with a behavioral one.

The large number of experiments, conducted on
a  smartphone-captured  multibiometrics  database,  was
crucial to objectively assess the feasibility of arm gesture as
a biometric and to measure the validity of its integration with
car not only in terms of convenience during the acquisition
stage, but especially with regard to the accuracy achievable

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

through their fusion. According to the best achieved EER
values of (.1 for the combined ear-arm and of 0.13 for
the single armm gesture, the aforementioned assumption
can be considered proved. This is even more significant
considering that these results were all achieved on hardware
surpassed by latest-generation mobile devices. However, there
is still ample room for improvement in this system. Noise
in arm gesture samples could be reduced through proper
filtering (e.g., Kalman filter), hopefully resulting in improved
verification accuracy, while smart context recognition and
adaptive weighting strategies could dynamically modify the
fusion weights according to the resting/walking user’s status.
Moreover, since we did not exploit orientation info provided
by three axes magnetometer aboard most mobile devices,
we are interested in assessing their possible contribution to
arm gesture biometric in terms of both improved accuracy
and robustness. Finally, a thorough experimentation of the
whole system under totally uncontrolled conditions would
definitively be one of the future directions of this paper.
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