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1 Introduction

The problem of locating sensors on the network to determine traffic flow volumes has been object in the

past few years of growing interest. Problems in this class differentiate according to the type of sensors

that need to be located (counting sensors, path-ID sensors, vehicle-ID sensors or a combination of them)

and flows of interest (origin/destination flow volumes, arc flow volumes, route flow volumes, or a com-

bination of them). Following the classification defined in the recent survey by Gentili and Mirchandani

[15], two main classes of problems can be identified in this context: (i) locating sensors to fully observe

flow volumes on the network (Sensor Location Flow-Observability Problems), and (ii) locating sensors to

estimate flow volumes on the network (Sensor Location Flow-Estimation Problems). This division derives

from the observation that the location of sensors on a network (either on the nodes or on the links) can

be translated into a system of linear equations where the set of variables corresponds to the unknown

flows and the set of equations comes from the deployed sensors. When the resulting system has a unique

solution, we say the system is fully observable and therefore, under the assumption of error free data, all

the flows involved in the system are known (that is they are observable). The resulting location problem

consists in determining the optimum deployment of sensors on the network that results in an observable

system (Sensor Location Flow-Observability Problems) and therefore it allows to determine all the flow

volumes of interest. Observability problems arise, for example, when either path-ID sensors or vehicle-ID

sensors need to be located on the links of the network to determine route flow volumes or link flow volumes

(Gentili and Mirchandani [14],[15],[16], Hu et al. [17], He [25], Castillo et al. [2],[3],[4],[5],[6], [7], Minguez

et al. [22], Ng [23]). On the other hand, when the system is not observable (that is, it is underspecified),
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it admits an infinite number of solutions. The related location problem consists in determining how to

optimally deploy sensors on the network so that the derived flow estimates are the best possible. Gener-

ally, underspecified systems arise when one is interested in determining origin-destination flow volumes

by locating counting sensors on the links of the network or when there is a budget constraint that limits

the number of sensors that can be located. This problem has been hugely studied in the literature (see

for example, Chootinan et al. [8], Eisenman et al.[10], Elhert et al. [11], Fei and Mahmassani [12], Yang

et al. [18] Kim et al. [19], Lam and Lo [20], Li and Ouyang [21], Yang and Zhou [26], Zhou and List [27],

Fei et al. [13], Simonelli et al. [24]).

In this paper we focus on both the observability and the estimation problems arising when vehicle-

ID sensors are to be located on the links of the network to determine and/or estimate route flow volumes.

Both the problems were defined in Castillo et al. [9] and Mı́nguez et al. [22] respectively, where the

corresponding mathematical formulations were presented and some computational experiments were car-

ried out to evaluate the quality of the resulting observed/estimated route flows. The experiments were

performed by solving the proposed mathematical formulations by means of a solver. Since the problems

are NP-hard only small networks were tested.

We further study the two problems and provide contributions both from a theoretical and an algorithmic

point of view. In particular, we improve the existing mathematical formulations by adding some new

constraints that better define the feasible set of solutions, we also provide efficient solution approaches,

still missing in the literature, namely two different greedy approaches and a Tabu Search algorithm. The

efficiency of the proposed approaches is tested on a set of benchmark tests by comparing the provided

solutions with the optimal ones, when available, returned by the solver CPLEX.

The sequel of the paper is organized as follows. Next section describes the addressed problems. Sec-

tion 3 contains the mathematical formulations of the problems and the existing results in the literature.

Section 4 describes our solution approaches. Computational results are discussed in Section 5. Conclu-

sions and further research are object of Section 6.

2 The Vehicle-ID Location Problem: Observability and Estima-

tion

In this section we formally describe the addressed problems. We follow the general description given in [15]

to introduce the Sensor Location Flow-Observability Problem and the Sensor Location Flow-Estimation
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OD pair OD trips Routes Route Flow
w1 = (1, 5) 27 R1 : a1 a2 a3 a4 15

R2 : a1 a7 a4 12

w2 = (1, 4) 10 R3 : a1 a6 a8 a3 10

w3 = (3, 2) 7 R4 : a3 a4 a5 a1 7

w4 = (4, 3) 22 R5 : a4 a5 a1 a2 22

Links a1 a2 a3 a4 a5 a6 a7 a8
Link Flow 66 37 32 56 29 10 12 10

Table 1: OD Trips, Route Flows, Link Flows related to the network in Figure 1

Problem when vehicle-ID sensors are to be located on the links of a network.

Figure 1: An example network with 5 nodes and 8 links.

Consider the network in Figure 1 with 5 nodes and 8 links, and assume there are 4 different OD pairs

on the network each connected by one or more routes, namely: the OD pair w1 = (1, 5) is connected by

route R1 = {a1, a2, a3, a4} and by route R2 = {a1, a7, a4}, the OD pair w2 = (1, 4) is connected by route

R3 = {a1, a6, a8, a3}, OD pair w3 = (3, 2) is connected by route R4 = {a3, a4, a5, a1} and the OD pair

w4 = (4, 3) is connected by route R5 = {a4, a5, a1, a2}. Table 1 lists all the OD pairs, the corresponding

OD trips, all the 5 routes, the corresponding route flow volumes, and all the link flow volumes. For

example, the OD trips corresponding to OD pair w1 are equal to 27 units, 15 of them use route R1 and

the remaining vehicles use route R2; flow on link a2 is equal to 37 units and it is equal to the sum of
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the flow of the routes that use that link, that is routes R1 with flow 15 and route R5 with flow equal to

22. The information shown in the table are given here for clarity of the exposition; we assume to know

only the set of routes, while all the other information, namely, OD trips, link flows, and route flows are

not known. Our aim is to locate Vehicle-ID sensors on the links of the network to derive the route flow

volumes (listed in Table 1) that are not known. The location of a vehicle-ID sensor on a link of a network

allows to univocally recognize a vehicle traveling on the network. When vehicle-ID sensors are located

on the links we obtain flow volumes of the corresponding links. However, not only flows of the links can

be obtained, but also, more detailed information can be derived when the same vehicle is detected on

different links at different times. For example, let us suppose to locate three vehicle-ID sensors on our

network example, say on links a1, a3 and a4 (we say that links a1, a3 and a4 are scanned). Since link a1

is used by all the routes in the network, then the following equation can be derived:

(link a1) fR1 + fR2 + fR3 + fR4 + fR5 = 66 (1)

where 66 is the intercepted flow on link a1, and fRi denotes the unknown route flow volume of route Ri.

Similarly, for links a3 and a4, we can derive the two following equations:

(link a3) fR1 + fR3 + fR4 = 32

(link a4) fR1 + fR2 + fR4 + fR5 = 56
(2)

Moreover, if we consider jointly links a1 and a4, the following two additional equations related to the

number of vehicles that are recognized on both links a1 and a4, can also be obtained:

(links (a1, a4)) fR1 + fR2 = 27

(links (a4, a1)) fR4 + fR5 = 29
(3)

Indeed, when a vehicle is detected, the detection time is also known. Hence, if the same vehicle is detected

first on link a1 and subsequently on link a4, then we can state that such a vehicle is using any route that

contains both the links in such an order, in this case the two routes R1 and R2. While if a vehicle is first

intercepted on link a4 and subsequently on link a1 then we can say it is using either route R4 or route R5.

We refer to this type of equation as the joint recognition equation associated with a subset of vehicle-ID

sensors. Considering all the possible equations associated with the location set U = {a1, a3, a4}, the
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following system of linear equations will result:

(link a1) fR1
+ fR2

+ fR3
+ fR4

+ fR5
= 66

(link a3) fR1 + fR3 + fR4 = 32

(link a4) fR1 + fR2 + fR4 + fR5 = 56

(links (a1, a4) fR1 + fR2 = 27

(links (a4, a1)) fR4 + fR5 = 29

(links (a1, a3)) fR1 + fR3 = 25

(links (a3, a1)) fR4 = 7

(links (a3, a4)) fR1 + fR4 = 22

(links (a1, a3, a4)) fR1 = 15

(links (a3, a4, a1)) fR4 = 7.

(4)

These equations are those associated with some of the possible ordered subsets of these three sensors. In

particular, the first three equations are associated each with a single sensor, the subsequent five equations

are the joint recognition equations associated with the possible subsets of two sensors out of the three

that are located, and, the remaining two equations are the joint recognition equations associated with

the three sensors together. Note that, not all the possible ordered subsets are considered, indeed there

does not exist any route in the network that contains the ordered pair (a4, a3). The same observation

can be made for the ordered sets containing all the three sensors: (a1, a4, a3), (a3, a1, a4), (a4, a1, a3) and

(a4, a3, a1).

System (4) has 5 unknown variables and 5 linear independent equations, hence the system admits a

unique solution and all route flow volumes fRi , i = 1, . . . , 5 can be univocally determined. We say, in this

case, that the location set U = {a1, a3, a4} has associated a fully observable system of linear equations. In

this context, one could wonder whether there exists another subset of three or less sensors such that the

associated system of equations is fully observable and hence allows to determine all route flow volumes.

The following location problem arises:

Vehicle-ID Sensor Location Flow-Observability Problem:

What is the minimum number of vehicle-ID sensors to be located on the links of the network and where

to locate them, such that the associated system of linear equations is fully observable, that is it allows to

uniquely determine all route flow volumes?

A different question arises when a limited number of sensors, say k, can be located on the network

and all the systems associated with all the possible subsets of k sensors do not admit a unique solution.
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Indeed, in this case, how can one decide when a location set is better than another? A possible way is

(see [15]) to define a location-evaluation criterion g that associates with each location set U a value g(U)

representing a measure of the quality of the flow estimates obtained by the system of equations associated

with U . Given such a criterion, we can conclude that a location set U is better than another location set

U ′ if the value g(U) associated with U is better than the value g(U ′) associated with U ′. Following the

approach suggested in [22], for the case where vehicle-ID sensors need to be located, we could associate

with the location set U an evaluation criterion g(U) that equals the total number of routes that can be

univocally observed through the system associated with U . In this way, we could conclude that between

two location sets U and U ′, U is better than U ′ if g(U) > g(U ′). In our network example, let us consider

the two locations sets U1 = {a1, a4} and U2 = {a3, a5}. The following system is associated with the

location set U1:

(link a1) fR1 + fR2 + fR3 + fR4 + fR5 = 66

(link a4) fR1 + fR2 + fR4 + fR5 = 56

(links (a1, a4)) fR1 + fR2 = 27

(links (a4, a1)) fR4 + fR5 = 29

(5)

and the following system is associated with the location set U2:

(link a3) fR1
+ fR3

+ fR4
= 32

(link a5) fR4 + fR5 = 29

(links (a3, a5)) fR4 = 7

(6)

By solving system (5) route R3 can be univocally determined and g(U1) = 1, while by solving system

(6) we have g(U2) = 2 since routes R4 and R5 can be univocally determined. Hence, we could conclude

that, according to the defined evaluation criterion g, U2 is better than U1. Hence, given an evaluation

function g, the following location problem can be defined:

Vehicle-ID Sensor Location Flow-Estimation Problem:

If a given number k of vehicle-ID sensors are to be located on the network, where to locate them so that

the associated evaluation criterion g is optimized?

Both the described problems are NP-hard as it will be evident in the next section where the mathe-

matical formulation is presented and the relationship with the set-covering problem is outlined.
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3 Mathematical formulations

In this section we provide the mathematical formulation of the two problems described in the previous

section. To this aim we introduce the concept of scanning map (firstly defined in [9]) associated with a

location set U . Let us return to our example network. Consider again the location set U1 = {a1, a4} and

let us associate with each route Ri the set of links CRi of scanned links of the route (referred to in the

sequel as scanning set associated with the route). That is: CR1 = (a1, a4), CR2 = (a1, a4), CR3 = (a1),

CR4 = (a4, a1) and CR5 = (a4, a1). Let us refer to this collection of sets as the scanning map associated

with the location {a1, a4}. Analyzing this scanning map we can conclude: (i) if a vehicle is intercepted

only on link a1, then it is using route R3; (ii) if a vehicle is intercepted first on link a1 and later on

link a4 then it is using either route R1 or R2; finally, (iii) if a vehicle is intercepted first on link a4 and

later on link a1 then it is using either route R4 or R5. That is, this scanning map allows to recognize

univocally only vehicles of routes R3, while for the remaining routes the same conclusion cannot be de-

rived. Let us consider to locate one additional vehicle-ID sensor on link a3, the new scanning map is:

CR1 = (a1, a3, a4), CR2 = (a1, a4), CR3 = (a1, a3), CR4 = (a3, a4, a1) and CR5 = (a4, a1). The location of

a vehicle-ID sensor on link a3 permits to distinguish among those vehicles that use route R1 and those

vehicles using route R2, and, similarly, we can distinguish those vehicles that use route R4 and those

vehicles that use route R3. From this example, it is clear that, by using the scanning map associated

with a location set, it is possible to understand which route, among all, is uniquely identified. Based on

the scanning map definition we can give an alternative definition of the two problems described in the

previous section, the mathematical formulation presented in [9] and [22] is based on these definitions.

Formally, let G = (V,A) be a network and R be a set of routes defined on the network. Given a lo-

cation of vehicle-ID sensors on a subset U ⊆ A of links, we can define a scanning map SM(U) = {CRi :

CRi = U ∩Ri, i = 1, 2, . . . , |R|}, where each scanning set CRi is associated with route Ri and contains the

scanned ordered list of links of the route. If all the scanning sets in the scanning map are not empty and

are different, i.e. CRi ̸= CRj , for each i ̸= j = 1, 2, . . . , |R|, then the scanning map allows to determine

all the route flow volumes and we can define the alternative version of the observability problem given in

the previous section:

Vehicle-ID Sensor Location Flow-Observability Problem:

What is the minimum number of vehicle-ID sensors to be located on the links of a network and where to

locate them such that the associated scanning map allows observability of all route flow volumes?

while, if we define the evaluation criterion g(U) as the number of routes that can be univocally de-

termined through the scanning map associated with U , we can state the following alternative version of
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the estimation problem:

Vehicle-ID Sensor Location Flow-Estimation Problem:

If a given number k of vehicle-ID sensors are to be located on the network, where to locate them so that

the associated scanning map is such that the total number of univocally determined routes is maximized?

For a matter of clarity of exposition, in the sequel we will refer to the Vehicle-ID Sensor Location

Flow-Observability Problem as problem P1, and, to the Vehicle-ID Sensor Location Flow-Estimation

Problem a problem P2.

Let us introduce two sets of binary variables: variable xa associated with each link a ∈ A that it is equal

to 1 if a vehicle-ID sensor is located on link a and it is equal to 0 otherwise; variable yab associated with

each pair of links a ̸= b ∈ A that is equal to 1 if a vehicle-ID sensor is located both on link a and link b

and it is equal to 0 otherwise. The following set of parameters are also defined:

- ρaRi
: is equal to 1 if route Ri contains link a and is equal to 0 otherwise;

- ρaRiRj
: is equal to 1 if link a is contained either in Ri or in Rj (not in both) and is equal to 0

otherwise;

- σab
RiRj

: is equal to 1 if links a and b are both in route Ri and Rj but they appear in a different

order.

The mathematical formulation of problem P1, is the following [P1]:

min
∑
a∈A

xa (7)

s.t.
∑
a∈A

ρaRi
xa ≥ 1 ∀ Ri ∈ R (8)∑

a∈A

ρaRiRj
xa +

∑
a̸=b∈A

σab
RiRj

yab ≥ 1 ∀ (Ri, Rj)|Ri < Rj (9)

2yab − xa − xb ≤ 0 ∀ a ̸= b ∈ A (10)

xa ∈ {0, 1} ∀ a ∈ A (11)

yab ∈ {0, 1} ∀ a ̸= b ∈ A (12)

The objective function (7) is the sum of the total number of the vehicle-ID sensors located on the network

and is minimized. We refer to constraints (8) as covering constraints as they ensure there is at least one

vehicle-ID sensor located on each route of the network. Constraints (9) are diversification constraints.

These constraints ensure the scanning map associated with the location of vehicle-ID sensors allows full

observability of the route flow volumes. Indeed, the sum on the left of the constraint ensures that for

each couple of routes Ri and Rj the corresponding associated subsets CRi and CRj are different either
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because they contain at least one different link or, in case they contain the same set of links, they appear

in different order. Constraints (10) are logical constraints linking the binary variables xa and yab. If

yab is equal to 1 then the constraint forces both xa and xb to be equal to 1, otherwise, if yab = 0 the

minimization of the objective function drives the value of xa and xb to be equal to 0. The remaining

constraints (11) and (12) require the variables to be binary.

The above mathematical formulation is different from the one provided in [9] where the set of diver-

sification constraints did not take into account the order the scanned links appear in each set CRi . Our

diversification constraints (9)-(10) consider this order and hence the feasible set of solutions of the problem

is now correctly described. In Section 5 the results of the two mathematical formulations are compared

on different sets of instances. The results show that our modified version of the diversification constraints

improves the final solution on those instances where the routes in the network are defined as subsets of

circular paths like, for example, the two routes R1 and R4 in the network of Figure 1 that are subsets of

the circular path P = {a1, a2, a3, a4, a5}.

Let us consider the additional set of binary variables zRi associated with each route Ri, such that zRi is

equal to 1 if route Ri is uniquely identified (that is observed) and it is equal to 0 otherwise. Let us also

define a weight wRi associated with route Ri to define its relative importance (see for example [22] for

possible definitions of these weights). The mathematical formulation of problem P2 is then the following

[P2]:

max
∑
Ri∈R

wRizRi (13)

s.t.
∑
a∈A

ρaRi
xa ≥ zRi ∀ Ri ∈ R (14)∑

a∈A

ρaRiRj
xa +

∑
a̸=b∈A

σab
RiRj

yab ≥ zRi ∀ (Ri, Rj)|Ri < Rj (15)

2yab − xa − xb ≤ 0 ∀ a ̸= b ∈ A (16)∑
a∈A

xa ≤ k (17)

xa ∈ {0, 1} ∀ a ∈ A (18)

yab ∈ {0, 1} ∀ a ̸= b ∈ A (19)

zRi ∈ {0, 1} ∀ Ri ∈ R (20)

The objective function (22) maximizes the total weight of the routes that can be univocally determined.

Constraints (14) and (15) differ from those in the previous model [P1] since they ensure the coverage and

the diversification of route Ri only if the corresponding variable zRi is equal to 1. Constraints (16) are
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the same as in the previous model. Constraint (17) ensures at most k vehicle-ID sensors are located on

the links of the network. Variables are ensured to be binary by constraints (18) - (20). Note that, by

fixing wRi = 1, ∀Ri ∈ R, the problem looks for the maximization of the total number of routes that can

be univocally determined.

As for the previous formulation [P1], the above formulation of the problem differs from the one pro-

vided in [22] basically for the characterization of the diversification constraints (15)-(16) that, unlike the

constraints defined in [22], take indirectly into account the order the scanned links appear in the scanning

sets.

In the sequel of the paper, we consider also two weighted variants of the above described problems

that arise when an installation cost ca is associated with each link. In particular, a variant of problem

[P1] requires to determine the minimum cost vehicle-ID sensor location that ensures the observability of

all the routes in the network. The corresponding model formulation is the following [P1b]

min
∑
a∈A

caxa (21)

s.t. (8)-(12)

If there is an available maximum budget Cmax for the location of the sensors, then one could be interested

in locating vehicle-ID sensors on the links of the network to maximize the total weight of the routes that

can be univocally determined without exceeding the budget limit. In this case, the following model

describes this variant [P2b]:

max
∑
Ri∈R

wRizRi (22)

s.t.
∑
a∈A

caxa ≤ Cmax (23)

(14)− (16), (18)− (20) (24)

4 Solution approaches

In this section we present our solution approaches, namely two greedy approaches (Greedy1 and Greedy2)

and a Tabu Search algorithm, to solve problems P1, P1b, P2 and P2b. We describe the approaches for

problem P1 and subsequently we will explain how the approaches have been modified to solve problems

P1b, P2 and P2b.
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(covering R1) xa1 +xa2 +xa3 +xa4 ≥ 1
(covering R2) xa1 +xa4 +xa7 ≥ 1
(covering R3) xa1 +xa3 +xa6 +xa8 ≥ 1
(covering R4) xa1 +xa3 +xa4 +xa5 ≥ 1
(covering R5) xa1 +xa2 +xa4 +xa5 ≥ 1

(diversification R1R2) xa2 +xa3 +xa7 ≥ 1
(diversification R1R3) xa2 +xa4 +xa6 +xa8 ≥ 1
(diversification R1R4) xa2 +xa5 +ya1a3 +ya1a4 ≥ 1
(diversification R1R5) xa3 +xa5 +ya1a4 +ya2a4 ≥ 1
(diversification R2R3) xa3 +xa4 +xa6 +xa7 +xa8 ≥ 1
(diversification R2R4) xa3 +xa5 +xa7 +ya1a4 ≥ 1
(diversification R2R5) xa2 +xa5 +xa7 +ya1a4 ≥ 1
(diversification R3R4) xa4 +xa5 +xa6 +xa8 +ya1a3 ≥ 1
(diversification R3R5) xa2 +xa3 +xa4 +xa5 +xa6 +xa8 ≥ 1
(diversification R4R5) xa2 +xa3 ≥ 1

Table 2: Set of Covering constraints and Diversification constraints associated with the example in Figure
1.

4.1 Greedy1 Approach

Before describing the greedy criterion used by our Greedy1 algorithm, let us introduce first some defini-

tions and notations. Given a subset of links U ⊆ A, we associate with each link a ∈ A two different scores

according to the number of additional constraints that can be satisfied if a is selected. In particular we

define the two following criteria:

• the Covering Criterion: Cov(U, a) is the additional set of routes that can be covered if link a is

selected (that is, the set of additional covering constraints that can be satisfied if link a is selected).

The resulting score associated with link a is the size of this set, that is |Cov(U, a)|.

• the Diversification Criterion: Div(U, a) is the set of additional diversification constraints that

can be satisfied since either the term ρaRiRj
xa, or the term σab

RiRj
yab, becomes equal to 1 in the

summation of the constraints where xa or yab are involved, if a is selected. The resulting score

associated with link a is the size of this set, that is |Div(U, a)|.

Let us return to our example in Figure 1 for which the entire set of covering and diversification constraints

of the mathematical formulation [P1] is given in Table 2. Let us assume link a4 is selected, that is

U = {a4}, the corresponding value of the above criteria for each of the remaining links are listed in Table

3. The covering constraints that are already satisfied by the selection of link a4 are those related to

routes: R1,R2,R4 and R5, while the satisfied diversification constraints are those corresponding to the

pairs: {R1, R3}, {R2, R3}, {R3, R4} and {R3, R5}. Consider for example link a2. Link a2 has a covering

score equal to |Cov({a4}, a2)| = 0 since there is no additional covering constraint that is satisfied if

a2 is selected, while the diversification score is equal to 5; indeed, the constraints related the pairs

{R1, R2}, {R1, R4}, {R2, R5} and {R4, R5} are satisfied since variable xa2 = 1 and the constraint related

to the pair {R1, R5} is satisfied since variable ya2a4 = 1.
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|Cov({a4}, ai)| |Div({a4}, ai)|
a1 1 4
a2 0 5
a3 1 4
a5 0 4
a6 1 0
a7 0 3
a8 1 0

Table 3: Scores of each link of the network of Figure 1 for U = {a4}.

According to the two criteria we define an initial ordering of the links by ordering them in decreasing order

with respect to the Covering criterion for U = ∅; ties are broken according to a decreasing order of the

Diversification criterion for U = ∅. We refer to this ranking as Initial Ranking. The Initial Ranking for

our network example is: {a1, a4, a3, a5, a2, a6, a7, a8} (see the upper most Table in Figure 2 where the val-

ues of the Covering criterion and of the Diversification criterion are showed for our example when U = ∅).

Our first greedy approach to solve problem P1, iteratively selects a link that maximizes the covering

criterion; in case of ties the link that maximizes the diversification criterion is chosen; in case of ties

the link having the best position in the Initial Ranking is selected. The algorithm stops when a feasible

solution is obtained. A re-optimization step is also applied to the returned solution U . This step tries

to eliminate redundant links. The details of this algorithm are given in Table 4. In the worst case, the

running time required by this algorithm is O(|A||R|2); indeed in the worst case, the algorithm could, for

each link, check the entire set of constraints.

Figure 2 shows the steps of Greedy1 when it is applied to solve problem P1 on our example network of

Figure 1.
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Greedy1 - P1

1. Initialization
Let U ← ∅ be the set of selected links.
Let A be the set of links in the network.

2. Greedy step

2.1 While U is not a feasible solution
find the link a ∈ A\U with |Cov(U, a)| maximum;
in case of ties select the one with |Div(U, a)| maximum;
in case of ties select the one with the best position in the Initial Ranking

3. Return U

4. Re-Optimization Step

U = {ai1 , ai2 , . . . , aih};
j ← h;
While j > 0

U ← U\{aij};
if U is not feasible then U ← U ∪ {aij}
j ← j − 1

5. Return U

Table 4: Greedy1 Algorithm to solve Problem P1.
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|Cov(∅, ai)| |Div(∅, ai)|
a1 5 0
a2 2 6
a3 3 6
a4 4 4
a5 2 6
a6 1 4
a7 1 4
a8 1 4

|Cov({a1}, ai)| |Div({a1}, ai)|
a2 0 6
a3 0 8
a4 0 8
a5 0 6
a6 0 4
a7 0 4
a8 0 4

|Cov({a1, a4}, ai)| |Div({a1, a4}, ai)|
a2 0 2
a3 0 2
a5 0 0
a6 0 0
a7 0 1
a8 0 0

- Scores of each link of the network of Figure 1 for U = ∅.
- The resulting initial ranking is: {a1, a4, a3, a5, a2, a6, a7, a8}.
- The first selected link is a1: U = {a1}.

- The second selected link is a4: U = {a1, a4}.

- The third selected link is a3: U = {a1, a4, a3}.
- The current set U is feasible.

- The re-optimization step does not eliminate any element from U .

- The final returned solution is optimal.

Figure 2: Steps of Greedy1 algorithm when it is applied to solve problem P1 on the network of Figure 1.
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Greedy2 - P1

1. Initialization
Let U ← ∅ be the set of selected links.
Let A be the set of links in the network.

2. Greedy step

2.1 While U is not a feasible solution
Find the link a ∈ A\U such that W (U, a) is maximum;
Set U ← {a};

3. Return U

Table 5: Greedy2 Algorithm to solve Problem P1.

4.2 Greedy2 Approach

Given a subset of links U ⊆ A, our second greedy approach to solve problem P1, iteratively selects a link

a that maximizes a greedy criterion W (U, a) that takes into account three main components: (i) length

of the routes (in terms of number of links) that are covered if link a is selected, (ii) number of routes

that can be univocally identified if link a is selected, and (iii) a measure of the total number of routes

that still need to be differentiated if link a is selected. The algorithm stops when a feasible solution is

obtained. The re-optimization step is applied to the returned solution U . The description of the greedy

function is given next, while the pseudocode of the algorithm is given in Table 5. Let us better describe

the function W (U, a) that is the core of the greedy criterion at Step 2.1. Let R be the set of the routes

on the given network and let U ⊆ A be a subset of links. Function W (U, a) favors the choice of those

links that, on the one hand, improve most the feasibility of the solution, and, on the other hand, leave a

set of routes that are easier to be differentiated. These aspects are taken into account by considering the

sum of three weighted components:

W (U, a) = ρ1f1(U, a) + ρ2f2(U, a) + ρ3f3(U, a)

The first f1(U, a) component is computed as:

f1(U, a) =
∑

Ri∈Cov(U,a)

Avg

|Ri|

where |Ri| is the total number of links contained in route Ri, and Avg is the average number of links of

each route Rj ∈ R (for the example in Figure 1 we have Avg = 19
5 = 3.8). This criterion f1(U, a) takes

into account the total number of routes that can be additionally covered if link a is selected. However,

unlike the covering criterion, it also takes into account the length (in terms of number of links) of the
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additional routes that can be covered. Indeed, routes with a fewer number of links are less likely to be

covered, hence, function f1 favors the selection of those links that cover shortest routes.

The second component f2(U, a) is the following:

f2(U, a) = |D(U, a)|.

This component equals the total number of routes that can be univocally identified by the selection of

link a. This criterion is slightly different from the diversification criterion introduced previously. Indeed,

Div(U, a) is the set of diversification constraints that can be satisfied when link a is selected, while

D(U, a) is the set of routes that are associated with a unique nonempty scanning set in the scanning map

resulting after the selection of link a.

Finally, the last component is the following:

f3(U, a) =
∑

CRi
∈SM(U∪{a}):
Ri /∈D(U,a)
Ri∈Cov(∅,a)

√
|M(CRi)|.

This component considers the scanning map that results after the selection of link a. In particular, for

each route that is covered by link a, i.e. Ri ∈ Cov(∅, a) and that is still not univocally determined, that is

Ri /∈ D(U, a), the associated scanning set CRi is considered. The total number of routes whose scanning

set is equal to CRi , that is |M(CRi)| = |{Rj ∈ R : Rj ̸= Ri and CRj ≡ CRi}| is computed. Function

f3 computes the sum of the square root of the size of these sets. This criterion privileges the selection of

those links that, if selected, split the resulting scanning map as much as possible.

These three functions are properly weighted with weights ρi, i = 1, 2, 3 to define the relative importance

of the corresponding criterion. In our experiments we set ρ1 = 2ρ2, ρ2 = 100 and ρ3 = 1. We chose these

values to favor criterion f1 first, then criterion f2, and finally to take into account criterion f3 in case of

ties.

Figure 3 shows the steps of Greedy2 when it is applied to solve problem P1 on the example of Fig-

ure 1. In the example we set ρ1 = ρ2 = ρ3 = 1. Tables 6-8 show the scanning maps associated with each

link and with sets U = ∅, U = {a1}, and U = {a1, a3} respectively.

In the worst case, the running time required by this algorithm is O(|A||R|2); indeed in the worst case,

the algorithm could, for each link, check the entire set of constraints.
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SM({a1}) SM({a2}) SM({a3}) SM({a4}) SM({a5}) SM({a6}) SM({a7}) SM({a8})
R1 (a1) (a2) (a3) (a4)
R2 (a1) (a4) (a7)
R3 (a1) (a3) (a6) (a8)
R4 (a1) (a3) (a4) (a5)
R5 (a1) (a2) (a4) (a5)

Table 6: Scanning maps associated with the singleton sets {ai}, ∀ai ∈ A. These scanning maps define
the scores of each link as shown in the upper table of Figure 3.

SM({a1}, a2) SM({a1}, a3) SM({a1}, a4) SM({a1}, a5) SM({a1}, a6) SM({a1}, a7) SM({a1}, a8)

R1 (a1, a2) (a1, a3) (a1, a4) (a1) (a1) (a1) (a1)
R2 (a1) (a1) (a1, a4) (a1) (a1) (a1, a7) (a1)
R3 (a1) (a1, a3) (a1) (a1) (a1, a6) (a1) (a1, a8)
R4 (a1) (a3, a1) (a4, a1) (a5, a1) (a1) (a1) (a1)
R5 (a1, a2) (a1, a3) (a4, a1) (a5, a1) (a1) (a1) (a1)

Table 7: Scanning maps associated with the sets {{a1}, ai}, ∀ai ∈ A\{a1}. These scanning maps define
the scores of each link as shown in the middle table of Figure 3.

SM({a1, a4}, a2) SM({a1, a4}, a3) SM({a1, a4}, a5) SM({a1, a4}, a6) SM({a1, a4}, a7) SM({a1, a4}, a8)

R1 (a1, a2, a4) (a1, a3, a4) (a1, a4) (a1, a4) (a1, a4) (a1, a4)
R2 (a1, a4) (a1, a4) (a1, a4) (a1, a4) (a1, a7, a4) (a1, a4)
R3 (a1) (a1, a3) (a1) (a1, a6) (a1) (a1, a8)
R4 (a4, a1) (a3, a4, a1) (a4, a5, a1) (a4, a1) (a4, a1) (a4, a1)
R5 (a4, a1, a2) (a4, a1) (a4, a5, a1) (a4, a1) (a4, a1) (a4, a1)

Table 8: Scanning maps associated with the sets {{a1, a3}, ai}, ∀ai ∈ A\{a1, a3}. These scanning maps
define the scores of each link as shown in the last table of Figure 3.
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f1(∅, ai) f2(∅, ai) f3(∅, ai) W (∅, ai)

a1 5.07 0
√
5 5.07 +

√
5

a2 1.90 0
√
2 1.90 +

√
2

a3 2.85 0
√
3 2.85+

√
3

a4 4.12 0
√
4 4.12 +

√
4

a5 1.90 0
√
2 1.90 +

√
2

a6 0.95 1
√
1 0.95+

√
1

a7 1.27 1
√
1 1.27 +

√
1

a8 0.95 1
√
1 0.95+

√
1

f1({a1}, ai) f2({a1}, ai) f3({a1}, ai) W ({a1}, ai)

a2 0.00 0
√
2

√
2

a3 0.00 1
√
3 1+

√
3

a4 0.00 1 2
√
2 1+2

√
2

a5 0.00 0
√
2

√
2

a6 0.00 1 0 1
a7 0.00 1 0 1
a8 0.00 1 0 1

f1({a1, a4}, ai) f2({a1, a4}, ai) f3({a1, a4}, ai) W ({a1, a4}, ai)

a2 0.00 5 0 5
a3 0.00 5 0 5

a5 0.00 1
√
2 1+

√
2

a6 0.00 1 0 1
a7 0.00 2 0 2
a8 0.00 1 0 1

- Scores of each link of the network of Figure 1 for U = ∅.
- The first selected link is a1: U = {a1}.

- The second selected link is a4: U = {a1, a4}.

- The third selected link is a2 (or also a3): U = {a1, a4, a2}.
- The current set U is feasible.

- The re-optimization step does not eliminate any element from U .

- The final returned solution is optimal.

Figure 3: Steps of Greedy2 algorithm when it is applied to solve problem P1 on the network of Figure 1.
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FindNeighbor(U)

1. Let U ′ ← U ;
2. Randomly select a ∈ U ′;
3. For h iterations do
3.1 Randomly select Ri ∈ Cov(∅, a);
3.2 Randomly select, if it exists, a link â such that â ∈ U ∩Ri;
3.3 Set U ′ ← U ′\{â};

4. Add elements to U ′ by applying Greedy2 until a feasible solution Û is obtained;

5. Return Û .

Table 9: The procedure FindNeighbor(U).

4.3 Tabu Search Approach

In this section we describe the Tabu Search approach we developed to solve problem P1. Given a feasible

solution U ⊆ A for the problem, we defined the neighborhood Nh(U) of this solution as the set of all the

feasible solutions obtained from U by deleting at most h elements. Formally, the following neighborhood

is considered:

k-switch Neigborhood Nh(U)

A subset of links U ′ ∈ Nh(U) if and only if U ′ is such that: |U ′ ∩U | ≥ |U | − h, that is the two subsets U

and U ′ share at least |U | − h links.

Note that, a neighbor U ′ ∈ Nh(U) can be obtained from U by randomly deleting h elements and adding

new elements to restore feasibility; such a procedure, referred to as FindNeighbor(U), is described in

Table 9. The value of parameter h must be, on the one hand, large enough to ensure to find a neighbor

U ′ ∈ N(U)h such that U ′ ̸= U , and, on the other hand, its value should vary according to the size of the

instance. After a tuning phase we set h = 5+ β(|U |), where β(|U |) is a random value between 0 and |U |
10 .

The tabu list memorizes moves corresponding to feasible solutions. Ideally, the tabu list should store

the subset of links of each solution that is contained in the tabu list. Since memorizing such a detailed

information could be heavy from a memory point of view, we decided to store in the tabu list an hash key

H(U) that is univocally associated with solution U . When the algorithm needs to verify whether a given

solution is in the tabu list it looks for its hash key in the tabu list. To give an example, let us consider

U = {ai1 , ai2 , . . . , ais} to be a feasible solution composed of |U | links, where aij is the identification ID

of the link. The corresponding hash key H(U) is obtained by applying the following steps:

• Order the links in U in non decreasing order with respect to their ID and obtain: aij1 ≤ aij2 ≤

, . . . ,≤ aij|U|

• γ(0) = 1
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Iteration i-th of Tabu Search

1. Apply FindNeighbor(U) and obtain Û ;

2. If |Û | < |U∗| then U∗ ← Û , T ← T ∪ {H(U∗)};
3. If |Û | ≥ |U∗| and H(Û) /∈ T and |Û | < |U∗∗| then U∗∗ ← Û ;
4. If after p iterations the incumbent solution U∗ was never updated then U∗∗ ← U∗;

Table 10: The i-th iteration of our tabu search algorithm

• γ(h) = α1aijh + α2γ(h− 1)

• H(U) = γ(|U |)

The first step is to order the links in the solution with respect to their ID. This step ensures that the

hash key associated with a given solution does not depend on the order of the links in the solution. The

hash key associated with U is a value computed by means of a recursive function γ(·). The value γ(h) is

associated with the link in position h, h = 1, 2, . . . , |U |, in the ordered set U ; such a value is computed

according to the value of the recursive function γ(h− 1) associated with the link in the previous position

h− 1. The hash key associated with U is the value of the recursive function computed for the link in the

last position. The values α1 and α2 are prime numbers. If the links were identified by prime numbers

the resulting hash key would be unique. Of course, due to the size of the instance of the problem such

an identification for the links is not possible. This results in a key that may not be unique. To limit the

cases of different feasible solutions associated with the same hash key value, one would choose the values

of α1 and α2 as greater as possible. In our experimentation we set α1 = 4523 and α2 = 31.

Finally, we chose to implement a tabu list with a fixed length equal to 8. The generic iteration step of

our tabu search algorithm is described in Table 10 where U is the current feasible solution, U∗ is the

current incumbent solution, U∗∗ is the second incumbent solution and T is the current tabu list. The

value of parameter p is fixed in our experiments equal to |U | ∗ 5. The initial feasible solution to start

the first iteration of our tabu search is obtained by applying Greedy2. Our Tabu Search terminates if

no improvement in the incumbent solution is obtained after |N | ∗ 150 iteration, where |N | is the total

number of nodes of the input graph.

4.4 Adaptation to solve problem P1b

Our solution approaches described to solve problem P1 can be easily adapted also to solve problem P1b

and therefore to take into account the cost ca of installation of a sensor associated with each link.

The modifications for Greedy1 involve the definition of the Initial Ranking and of the greedy step criterion.
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The Initial ranking is such that the links are ordered increasingly with respect to the link cost; ties are

broken according first to a decreasing order with respect to the Covering Criterion (computed for U = ∅)

and then according to a decreasing order with respect to the Diversification Criterion (computed for

U = ∅).

The greedy Step 2.1 of the Greedy1-P1 (in Table 4) becomes:

Step 2.1. While U is not a feasible solution

- find the link a ∈ A\U with |Cov(U,a)|
ca

maximum;

- in case of ties select the one with |Div(U,a)|
ca

maximum;

- in case of ties select the one with the best position in the Initial Ranking.

The modifications for Greedy2 involve the greedy criterion W (U, a), that becomes W (U,a)
ca

. Such a mod-

ification is also considered in the Tabu Search algorithm. Moreover, Step 3 in the i-th iteration in the

Tabu Search (in Table 10) is also changed to take into account the new objective function. It becomes:

3. If c(Û) ≥ c(U∗) and H(Û) /∈ T and c(Û) < c(U∗∗) then U∗∗ ← Û .

where c(U) =
∑

a∈U ca is the sum of the costs of the links in the set U .

4.5 Adaptation to solve problem P2 and P2b

The adaptation of the approaches to solve problem P2 and P2b requires to take into account a new

objective function (the maximization of total weight of the routes that are observable) and the added

budget constraint involving either the total number of sensors that can be located (problem P2) or the

total cost of the sensors that can be located (problem P2b). All the changes are described for problem

P2b and reported below. The same changes can be applied to solve problem P2 by setting Cmax = k

and ca = 1, ∀a ∈ A. Let z(U) define the total weight of the routes that can be univocally determined if

vehicle-ID sensors are located on the links in U .

The modifications for Greedy1 algorithm involve the Initial Ranking and the Greedy criterion. When

solving problem P2b the Initial Ranking takes into account the cost associated with each link and it is

the same we considered for problem P1b, that is, the links are ordered increasingly with respect to the

link cost; ties are broken according first to a decreasing order with respect to the Covering Criterion

(computed for U = ∅) and then according to a decreasing order with respect to the Diversification

Criterion (computed for U = ∅). The greedy criterion to select link a is modified to take into account

both the total number of additional constraints that can be satisfied, and the weights of the additional

covered routes. In particular, the algorithm selects at each iteration a link a such that: (i) the budget
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Greedy1 - P2b

1. Initialization
Let U ← ∅ be the set of selected links.
Let A be the set of links in the network.

2. Greedy step

2.1 While (c(U) < Cmax) and (A\U ̸= ∅)
find the link a ∈ A\U with |Cov(U,a)|+|Div(U,a)|

c(a) +
∑

Ri∈Cov(U,a) wRi

w̄ maximum

in case of ties select the link with the best position in the Initial Ranking ;
if (c(U) + c(a)) ≤ Cmax then A← A\{a} and U ← U ∪ {a};
else A← A\{a}

3. Return U

Table 11: Greedy1 Algorithm to solve Problem P2b.

constraint is not violated and (ii) the following quantity is maximum

|Cov(U, a)|+ |Div(U, a)|
c(a)

+

∑
Ri∈Cov(U,a) wRi

w̄

where the first element is the ratio between the sum of the covering and diversification scores over the

cost of the link; while the second element is the ration between the sum of the weights of the additional

covered routes divided by the average route weight w̄ =
∑

Ri∈R wRi

|R| . The pseudocode is given in Table 11.

Modifications of the Greedy2 algorithm involves the stopping criterion and the values of the parameters

ρi, i = 1, 2, 3 associated to the three components that are involved in the greedy criterion. The new

values assigned to parameters ρi are: ρ1 = 100, ρ2 = 2ρ1 and ρ3 = 1; this setting favors the choice of

those links that diversify most. Greedy2 stops when the given budget limit is reached. Finally, the same

modifications apply to the Tabu Search algorithm. Moreover, Step 3 in the i-th iteration in the Tabu

Search is also changed to take into account the new objective function. It becomes:

3. If z(Û) ≤ z(U∗) and H(Û) /∈ T and z(Û) > z(U∗∗) then U∗∗ ← Û .

5 Experimentation

In this section we show the experimental results to test the performance of our approaches, in terms of

solution quality and running time, and to evaluate when our proposed enhanced mathematical formu-

lations provide a different optimal solutions than the formulations presented by Castillo et al. [9] and

Minguez et al. [22].

Since there do not exist benchmark instances in the literature, we generated two different classes of

instances. The first one, referred to as Class 1, is a set of instances where the set of routes do not show
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the circular pattern behavior described in section 3. The second class of instances, referred to as Class

2, contains instances where the set of routes in the network show a circular behavior. These instances

are useful to evaluate the effectiveness of our enhanced mathematical formulations in providing better

solutions with respect to those provided by the existing mathematical formulations.

Class 1 and Class 2 instances are downloadable from the authors’ website [1] On each instance, we

compare the results returned by the mathematical models and by our Greedy 1, Greedy 2 and Tabu

search algorithms for each of the four problems. The greedy algorithms and the Tabu Search algorithm

were coded in C and run on a 3.4 Ghz Intel i7 processor. The mathematical formulations were coded in

AMPL and solved by means of the solver CPLEX 11.2. We fixed a threshold on the execution time of

the CPLEX solver equal to 2 hours.

5.1 Instances Description

Class 1 set of instances are modified square grid graphs, where arcs are added randomly between pairs

of vertices of the graph. In particular, a number of arcs equal to 10% of the total number of arcs of a

regular grid were randomly added to each grid. We generated square grids whose dimensions are: 8× 8,

10 × 10 and 15 × 15, for a total number of nodes equal to n = 64, 100 and 225, respectively. For each

grid we generated a fixed number |R| of routes such that |R| = n, 2n, 3n, 4n, 5n. Hence, we generated 15

different scenarios. Costs on links were generated randomly from a uniform variable and they range from

1 to 5. Weights on routes were generated randomly from a uniform variable and they range from 10 to

100. For each scenario, 5 different instances were generated.

Class 2 set of instances are generated considering networks with a total number of nodes equal to

n = 40, 80, 160, 240, 320, 400 and corresponding number of OD pairs equal to n
4 . A fixed number |R| of

routes was generated for each OD pair with |R| = 4, 8, 10, 16. We then generated 24 different scenarios.

Costs on links were generated randomly from a uniform variable and they range from 1 to 5. Weights

on routes were generated randomly from a uniform variable and they range from 10 to 100. For each

scenario, ten different instances were generated.

5.2 Results

All the results are showed in Tables 12-18. Since computational times and memory requirements to solve

the mathematical models hugely increase with the size of the instances, we report the results of our mod-

els for the first 40 instances of Class 1 and the first 60 instances of Class 2, being the time limit reached

for problem P2 and problem P1 for higher dimensional instances. The detailed results on each instance
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on these limited set, returned by the mathematical models, can be downloaded from the authors’ website

[1]. Comparisons of the solutions returned by our heuristic approaches with the optimal solution (when

available), on these limited set of instances, are reported in Table 13 and Table 14 Finally, comparisons of

the quality of the solutions returned by our heuristic approaches on the entire set of instances are given

in Tables 15 - 18.

To compare the effectiveness of the new set of diversification constraints Table 12 shows, for each problem

and each class of instances, the percentage of instances where our mathematical formulation returned a

better solution than the one returned by the models in the literature. Hence, for example, the percentage

of instances of Class 2 where the solution of our mathematical formulation of problem P1 returned a

different (and hence better) solution that the one returned by the existing mathematical formulation is

equal to 80%, and on the remaining 20% of the instances the two mathematical formulations returned

the same solution. The new set of diversification constraints reveals to be more effective in diversifying

routes related to Class 2 instances than those of Class 1 instances. Note that, the budget constraints for

problem P2b makes the new diversification constraints not effective at all.

The analysis of the results in the detailed tables downloadable from the website reveal the average

gap between the optimum solution is 1% on Class 1 instances and 3% on the instances of Class 2. Our

proposed models require more computational time to be solved than those existing in the literature.

This was an expected result being the total number of variables and of constraints greater. Additionally,

comparing the computational times of the instances in Class 1 and Class 2 with the same number of

routes, we can observe that higher computational times are required to solve instances of Class 1 than

those of Class 2, revealing that graphs where the routes show a circular pattern are more easy to deal

with as it was expected. Among the four problems, problem P1b and problem P2b seem easier (in terms

of required computational time) to be solved than problems P1 and P2. In particular, the time limit to

solve our mathematical formulation of problem P1, P1b, P2 and P2b on Class 1 instances was reached,

respectively, on 10, 0, 33, 1 instances out of 40. Moreover, our mathematical formulation was not able

to find a feasible solution within the given time limit for Problem P2 on two instances (namely, instance

37 and instance 39) of Class 1. While, the time limit to solve our mathematical formulation of the four

problems was never reached on the 60 considered instances of Class 2 when solving problems P1, P1b,

and P2b, while it was reached on 8 instances out of 60 when solving problem P2. This can be explained

with the fact that having different cost associated with the arcs allows, on the one hand, to obtain better

bounds that allow to cut off part of the branch and bound tree (for problem P1b), while, on the other

hand, to prune the tree tanks to the budget constraint (for problem P2b).

Tables 13 and 14 compare the quality of the solutions provided by Greedy1, Greedy2 and the Tabu

Search algorithm with the optimum solution (when available) on the 40 instances of Class 1 and the 60
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P1 P1b P2 P2b
Class 1 20% 18% 50% 0%
Class 2 80% 82% 95% 0%

Table 12: Comparison of the mathematical formulations: for each problem and each class of instances,
the percentage of instances where our mathematical formulation returned a better solution than the one
returned by the models in the literature is given.

instances of Class2 on which we run the mathematical formulations to optimality. In each table, the

first three columns report the characteristics of each scenario: scenario ID, the number of nodes (n) and

the number of routes (r). For each algorithm, the tables report the average values taken on the tested

instances of the relative gap between the returned solution and the optimum solution, when available.

In particular, this gap is computed as the ratio UB−Optimum
UB for problem P1 and P1b, and Optimum−LB

LB

for problem P2 and P2b, where UB and LB are the value of the bounds returned by our algorithms.

Whenever at least one instance of the scenario has not been solved to optimality by the solver CPLEX

within the time limit of 7200 secs., the term NA (Not Available) appears in the tables. In such case, of

course, no gap value is reported for all the tested algorithms.

Tables 15 - 18 compare the solutions and the computational time of Greedy1, Greedy2 and the Tabu

Search algorithm on all the instances of Class1 and Class2. In each table, the first three columns report

the characteristics of each scenario: scenario ID, the number of nodes (n) and the number of routes (r).

For each algorithm, the tables report the average values for each scenario taken on the tested instances

(5 instances for Class1 and 10 Instances for Class 2) of the bound and of the computational time (in

seconds)
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The percentage gap from the optimum of the tabu search is always better than those showed by

Greedy1 and Greedy2 as it is expected. This better performance is, however, paid in terms of greater

computational time as it is evident by the analysis of tables 15 - 18. The percentage gap of the Tabu

Search ranges between 0% and 2% when solving problems P1 and P1b. These gaps are higher when

solving problem P2 and P2b. In particular, the gaps for problem P2 are not available for many of the

instances of Class 1 (table 13) while the gaps for problem P2 on instances of Class 2 varies between 4%

and 6% (table 14). Finally, the tabu search, when solving problem P2b has a gap that ranges from 8%

to 61% on Class 1 instances and a gap that ranges from 10 % to 15 % on Class 2 instances. The solution

returned by Greedy2 algorithm is consistently better than that returned by Greedy1. The two algorithms

are however comparable in terms of computational times which are always less than one second, but for

Greedy1 algorithm on scenarios 20, 23 and 24 on instances of Class 2 for problem P2 and on scenarios

16,20,22, 23 and 24 on instances of Class 2 for problem P2b (table 18).
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6 Conclusions

We addressed an important problem in the context of traffic control and management related to the opti-

mum location of vehicle-ID sensors on the links of a network to derive route flow volumes. We considered

both the full observability version of the problem where one seeks for the minimum number of sensors

(or minimum cost) such that all the route flow volumes can be derived and the estimation version of the

problem that arises when there is a limited budget in the location of sensors. Our contribution is both

theoretical and algorithmic. We improved the existing mathematical formulations of the four addressed

problems by better describing the feasible region. Being the problems NP-complete, we proposed three

solution approaches (still missing in the literature) to heuristically solve the problems: two greedy al-

gorithms and a tabu search metaheuristic. We tested our approaches on two different set of instances

to better evaluate the quality of solutions provided by our algorithms and by the mathematical models

when the set of routes show a circular pattern behavior or not.

The proposed analysis is developed under the assumption (common to other papers existing in the

literature [9], [22]) that the information regarding OD routes is correct and complete. An interesting

development of this research is now focused on the analysis of the sensitivity of the solutions with respect

to the level of knowledge of the OD routes.
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