
A state-dependent queueing system with asymptotic

logarithmic distribution

V. Giornoa, A.G. Nobilea, E. Pirozzib

aDipartimento di Studi e Ricerche Aziendali (Management & Information Technology)
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Abstract

A Markovian single-server queueing model with Poisson arrivals and state-
dependent service rates, characterized by a logarithmic steady-state distri-
bution, is considered. The Laplace transforms of the transition probabilities
and of the densities of the first-passage time to zero are explicitly evaluated.
The performance measures are compared with those ones of the well-known
M/M/1 queueing system. Finally, the effect of catastrophes is introduced in
the model and the steady-state distribution, the asymptotic moments and
the first-visit time density to zero state are determined.
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1. Introduction

Queueing theory plays an important role in wide areas of science, tech-
nology and management. Applications of queueing can be seen in traffic
modelling, business and industries, computer-communication, health sectors
and medical sciences, etc. In the study of queueing systems the emphasis is
often placed in obtaining steady-state performance measures, but in many
applications it is necessary to know the behavior of the system not only in
the asymptotic regime but also in the transient phase.

In birth-death queueing models the instantaneous arrival and departure
rates, denoted by λn and µn respectively, depend on the number n of cus-
tomers in the system. A systematic study of the birth-death queue with
varying arrival and service rates has been carried out by Conolly, Chan,
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Gupta and Srinivasa Rao, Hadidi, Kyriakidis, Natvig, Parthasarathy and
Servaraju, Sudhesh, Van Doorn. These authors give transient and station-
ary solutions for the queue length process, waiting time, busy period and
output for special birth-death queues with adaptive demand and service
mechanism (see [5, 11, 12, 20, 22, 23, 30, 31, 32, 34, 37, 40]). The transient
analysis of the state-dependent queueing systems often presents consider-
able difficulties and also numerical solutions are generally difficult to get.
Even in the simple M/M/1 queueing system, which can be described by
a birth-death process with constant rates of arrivals and departures, the
transient probabilities involve an infinite series of Bessel functions and their
integrals (cf., for instance, [1, 13, 36]). In some queueing systems modeled
as birth-death processes it is assumed that new customers enter into the
system according to a Poisson process with constant rate λ, so that the
PASTA property holds; moreover, the servers may not work at a constant
rate, but they adapt their behavior to the state of the system by speeding
up to empty the queue or by slowing down when they are overworked.

The busy period and the first-passage time (FPT) to state 0 play a
relevant role in a queueing system with state-dependent arrival and service
rates (cf. [10, 21, 25]). The busy period for a single-server system is the time
interval between any two successive idle periods. It starts when a customer
arrives to an empty system and ends when the departing customer leaves the
system idle for the first time thereafter. For a single-server queueing system,
a busy period is equivalent to a FPT from state 1 to state 0. The analysis of
the FPT distributions and their moments is helpful for the efficient planning
of the system. In particular, the FPT probability density function (pdf)
from each integer positive state k to 0 is the convolution of k FPT densities
from state ℓ to state ℓ − 1 (ℓ = 1, 2, . . . , k). In [25], Jouini and Dallery
derive closed-form expressions for FPT moments of a general birth-death
process; furthermore, they compute the moments of the busy period for
some Markovian queues.

Recently there has been a rapid increase in the literature of stochastic
models which are subject to catastrophes; some relevant results on this
topic are given in [4, 17, 18, 33, 35]. In particular, birth-death models with
catastrophes have been discussed in the context of population dynamics
(see, for instance, [6, 7, 29, 39]) and in queueing systems (see, for instance,
[8, 14, 16, 27, 28, 37]). Whenever a catastrophe occurs in a queueing system,
all the customers are destroyed immediately, the server remains inactive
momentarily and it is ready for service when a new arrival occurs. For
instance, queueing models with disasters can be used to analyze system
breakdowns due to a reset order or computer networks with virus infections.
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In [15] and [17] various functional relations are given to describe the birth-
death process in the presence of catastrophes in terms of the birth-death
process without catastrophes, characterized by the same birth and death
rates. Furthermore, in [15] the problem of first-visit time (FVT) to state 0
and of the first occurrence of an effective catastrophe are discussed.

In this paper we investigate a single-server queueing system with Pois-
son arrivals (interarrival intervals of type M) and a special state-dependent
service mechanism, assuming an infinite waiting-room and a first-come-first-
served queueing discipline. We suppose that the queue length evolves as
a birth-death process with constant arrival rates λn = λ and with state-
dependent service rates µn, such that µ1 = µ and µn = µn/(n − 1) for
n = 2, 3, . . ., being n the number of customers present in the system. For
this model, in Section 2 the asymptotic analysis is carried out, showing that
the steady-state distribution is of logarithmic type. The Laplace transforms
of the transition probabilities and of the first two moments are obtained.
In Section 3, the Laplace transforms of the FPT pdf to 0 are determined;
furthermore, the mean and the variance of the busy period are studied. In
Section 4, we include the effect of total catastrophes in the model. Catas-
trophes occur with exponential rate ξ and reduce the number of customers
instantaneously to 0. For the model with catastrophes, the steady-state
distribution and the first two asymptotic moments are determined. The
Laplace transform of FVT pdf to 0 is given. Finally, the busy period of the
process with catastrophes is analyzed and the mean and the variance are
provided. The obtained results for the model without (with) catastrophes
are compared with the corresponding results for the M/M/1 queue.

2. The state of the system

We consider a single-server queueing system with infinite waiting-room
and a first-come-first-served queueing discipline, described by a birth-death
process {N(t), t ≥ 0} with rates

λn = λ (n = 0, 1, . . .), µn =





µ, n = 1

(
1 +

1

n− 1

)
µ, n = 2, 3, . . .

(1)

where λ > 0 and µ > 0 (cf. Figure 1).
The process N(t) describes the number of customers in an adaptive

queueing system with constant arrival rates and state-dependent service
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Figure 1: The state diagram of the process N(t).

rates. The service rates in (1) are such that µn = µ(1 + fn), where fn de-
pends on the number of customers in the waiting queue. Specifically, f1 = 0
and, for n ≥ 2 one has that fn is inversely proportional to the number n− 1
of customers in the waiting queue, so that it decreases from 1 to 0 and
limn→+∞ µn = µ.

We remark that the model with rates (1) is one of the few variants of
the M/M/1 queue that admits a detailed exact analysis.

We denote by

pj,n(t) = P{N(t) = n|N(0) = j} (n, j = 0, 1, . . .)

the probability that n customers are in the system at time t, by assuming
that N(0) = j. Then, for j = 0, 1, . . . the forward Kolmogorov equations
are:

dpj,0(t)

dt
= −λ pj,0(t) + µ pj,1(t)

dpj,1(t)

dt
= λ pj,0(t)− (λ+ µ) pj,1(t) + 2µ pj,2(t) (2)

dpj,n(t)

dt
= λ pj,n−1(t)−

(
λ+

nµ

n− 1

)
pj,n(t) +

(n+ 1)µ

n
pj,n+1(t)

(n = 2, 3, . . .),

with pj,n(0) = δj,n.

Moreover, we denote by {Ñ (t), t ≥ 0} the queueing systemM/M/1 with
arrival rates λn = λ (n = 0, 1, . . .) and service rates µn = µ (n = 1, 2, . . .)
and let p̃j,0(t) = P{Ñ(t) = n|Ñ(0) = j} be the transition probabilities of

Ñ(t). As well-known, the steady-state distribution of Ñ(t) exists if and
only if ̺ < 1 and one has q̃n = limt→+∞ p̃j,n(t) = (1 − ̺)̺n (n = 0, 1, . . .),

E(Ñ ) = ̺/(1− ̺) and E(W̃ ) = (µ− λ)−1.
In the following for the process N(t) we determine the steady-state dis-

tribution and the Laplace transforms of the transition probabilities and of
the first two moments. Furthermore, we compare the obtained results with
those ones of the process Ñ(t).
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2.1. Steady-state analysis

The processN(t) admits a steady-state distribution qn = limt→+∞ pj,n(t)
if and only if ̺ = λ/µ < 1 and one has:

q0 = [1− ln(1− ̺)]−1, qn =
̺n

n
[1− ln(1− ̺)]−1 (n = 1, 2, . . .). (3)

We note that
qn =

(
̺−

̺

n

)
qn−1 (n = 2, 3, . . .); (4)

hence, (3) belongs to the Sundt-Jewell class of distributions and it is called
logarithmic distribution (cf. [38]). Making use of the inequality (cf., for
instance, [2], n. 4.1.34)

̺ < − ln(1− ̺) <
̺

1− ̺
(0 < ̺ < 1), (5)

we note that q0 > q̃0 and q1 > q̃1; moreover, for n = 2, 3, . . . one has qn > q̃n
for n < q0/q̃0 and qn < q̃n otherwise. These properties are shown in Figure 2,
where we plot the steady-state probabilities qn (solid circle) and q̃n (solid
square) for ̺ = 2/3 (on the left) and ̺ = 6/7 (on the right).
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Figure 2: The probabilities qn (solid circle) are compared with q̃n (solid square) for n =
0, 1, . . . , 10.

Furthermore, for ̺ < 1 one has q̃n qn−1 ≥ q̃n−1 qn (n = 1, 2, . . .), so
that Ñ ≥ℓr N , i.e. Ñ dominates N in likelihood ratio ordering. Therefore,
Ñ ≥st N , i.e. P (Ñ > n) ≥ P (N > n) for n = 0, 1, . . .. Since Ñ dominates
N in stochastic ordering, one has E[h(Ñ )] ≥ E[h(N)] for all increasing
function h(·) (cf. [24]).

Denoting by

λ∗ = λ, µ∗ =
1

1− q0

+∞∑

n=1

µn qn =
λ

1− q0
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the effective mean arrival rate and service rate, respectively, it follows that
in steady-state regime the traffic intensity for N(t) is

̺∗ =
λ∗

µ∗
= −

ln(1− ̺)

1− ln(1− ̺)
,

and the expected value of the duration of a service results:

E(S) =
1

µ∗
=

1− q0
λ

·

Note that the traffic intensity for N(t) is lower than that of M/M/1 queue,
i.e. ̺∗ < ̺; furthermore, E(S) < E(S̃) = 1/µ. Finally, in equilibrium
regime the mean number of customers and the mean waiting time in the
system are:

E(N) =

+∞∑

n=1

n qn =
̺

1− ̺
q0, E(W ) =

1

µ− λ
q0 (̺ < 1), (6)

respectively. For ̺ < 1 one has E(N) = q0E(Ñ ) and E(W ) = q0E(W̃ ), so

that E(N) < E(Ñ) and E(W ) < E(W̃ ). Hence, the model (1) has asymp-
totically better performance measures with respect to the model M/M/1.

2.2. Laplace transforms of probabilities

We consider the Laplace transforms of the probabilities pj,n(t) with re-
spect to time:

πj,n(s) =

∫ +∞

0
e−s t pj,n(t) dt (j, n = 0, 1, . . . ; Re s > 0). (7)

Assuming that j = 0, we define the following generating functions:

G(z, t) =

+∞∑

n=0

p0,n(t) z
n, ϕ(z, s) =

+∞∑

n=0

π0,n(s) z
n (8)

for 0 ≤ z ≤ 1 and Re s > 0. We transform the equations in (2), with j = 0,
into a set of algebraic equations by employing the Laplace transforms:

(s+ λ)π0,0(s) = 1 + µπ0,1(s)

(s+ λ+ µ)π0,1(s) = λπ0,0(s) + 2µπ0,2(s) (9)

[(s+ λ)n (n − 1) + µn2] π0,n(s) = λn (n− 1)π0,n−1(s)

+(n− 1) (n + 1)µπ0,n+1(s) (n = 2, 3, . . .).
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The solution of system (9) can be obtained by applying the method intro-
duced by Bailey [3] and used in [9] to analyze various queueing models.
Indeed, multiplying the last equation in (9) by zn, adding over n = 2, 3, . . .
and making use of the first two equations, we obtain the following second
order partial differential equation:

[−λ z3 + (s+ λ+ µ) z2 − µ z]
∂2ϕ(z, s)

∂z2
+ (−2λ z2 + µ z + µ)

∂ϕ(z, s)

∂z
= µ (z + 1)π0,1(s) (10)

to solve with the conditions:

lim
z→0

ϕ(z, s) = π0,0(s) =
1 + µπ0,1(s)

s+ λ
, lim

z→1
ϕ(z, s) =

1

s
· (11)

The function π0,1(s) can be determined from the consideration that ϕ(z, s)
must converge for 0 < z < 1, provided Re s > 0.

In the sequel we denote by

ψi(s) =
s+ λ+ µ±

√
(s+ λ+ µ)2 − 4λµ

2λ
[i = 1, 2; ψ1(s) > ψ2(s)],

(12)

α(s) =
s+ λ+ 2µ− 3λψ1(s)

λ [ψ1(s)− ψ2(s)]
.

The functions ψi(s) (i = 1, 2) are solutions of the equation λ z2 − (s + λ+
µ) z + µ = 0 and one has ψ1(s) > 1 and 0 < ψ2(s) < 1. We note that ψ2(s)
coincides with the Laplace transform of the busy period of the M/M/1
queueing system. Furthermore, for s > 0 the inequality −2 < α(s) < −1
holds.

Proposition 1. The solution of (10) with the conditions (11) is:

ϕ(z, s) =
1

s
+
λ

s

H(z, s)

λ− (s + λ)H(0, s)
, (13)

where

H(z, s) =
λ

µ

{
ψ1(s)

z − ψ2(s)

ψ1(s)− z
F
(
1, α(s) + 2;α(s) + 3;−

z − ψ2(s)

ψ1(s)− z

)

−ψ2(s)
α(s) + 1

α(s) + 3

z − ψ2(s)

ψ1(s)− z
F
(
1, α(s) + 3;α(s) + 4;−

z − ψ2(s)

ψ1(s)− z

)

−ψ1(s)
1− ψ2(s)

ψ1(s)− 1

}
, (14)
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with

F (a, b; c;x) =

+∞∑

n=0

(a)n (b)n
(c)n

xn

n!
(15)

denoting the Gauss hypergeometric function. Furthermore, one has:

π0,0(s) =
λ− sH(0, s)

s [λ− (s+ λ)H(0, s)]
, (16)

π0,1(s) =
λ2

s µ [λ− (s+ λ)H(0, s)]
· (17)

Proof. Setting β(z, s) = ∂ϕ(z, s)/∂z, Eq. (10) leads to

z[λ z2−(s+λ+µ) z+µ]
∂β(z, s)

∂z
+(2λ z2−µ z−µ)β(z, s) = −µ (z+1)π0,1(s),

whose general solution is:

β(z, s) =
z [z − ψ1(s)]

α(s)

[z − ψ2(s)]α(s)+3

[
C(s)−

µ

λ
π0,1(s)

∫ z u+ 1

u2
[u− ψ2(s)]

α(s)+2

[u− ψ1(s)]α(s)+1
du

]
,

(18)

with C(s) arbitrary real function. From (8) it follows that

β(z, s) =

+∞∑

n=1

nzn−1 π0,n(s) ≤
1

s

+∞∑

n=1

nzn−1 =
1

s (1− z)2

must converge for 0 < z < 1, provided Re s > 0. Since α(s)+3 > 1, the zero
of denominator in (18) is ψ2(s), so that the numerator must vanish when
z = ψ2(s). Therefore, from (18) one has

β(z, s) =
µ

λ
π0,1(s)

z [z − ψ1(s)]
α(s)

[z − ψ2(s)]α(s)+3

∫ ψ2(s)

z

u+ 1

u2
[u− ψ2(s)]

α(s)+2

[u− ψ1(s)]α(s)+1
du.

(19)

Then, recalling that β(z, s) = ∂ϕ(z, s)/∂z and making use of the second
condition in (11), one has:

ϕ(z, s) =
1

s
+
µ

λ
π0,1(s)H(z, s), (20)

where

H(z, s) =

∫ 1

z

x [x− ψ1(s)]
α(s)

[x− ψ2(s)]α(s)+3
dx

∫ x

ψ2(s)

u+ 1

u2
[u− ψ2(s)]

α(s)+2

[u− ψ1(s)]α(s)+1
du. (21)
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In Appendix A we prove that (21) leads to (14). Moreover, taking the limit
as z ↓ 0 in (14), by virtue of (A.9) one has:

H(0, s) = −
λ

µ

{
ψ1(s)− ψ2(s)

ψ1(s)− 1
+

[ψ2(s)]
2

ψ1(s)[α(s) + 3]
F
(
1, α(s)+3;α(s)+4;

ψ2(s)

ψ1(s)

)}
.

(22)
In order to determine π0,1(s), we take the limit as z ↓ 0 in (20). Recalling
the first of (11) one has:

1

s
+
µ

λ
π0,1(s)H(0, s) =

1 + µπ0,1(s)

s+ λ
,

from which (17) follows. Substituting (17) in the first of (9), one is led to
(16). Finally, by virtue of (17), from (20) one obtains (13). �

Remark 1. For λ < µ, the asymptotic probability generating function is:

G(z) = lim
t→+∞

G(z, t) =
1− ln(1− λ z/µ)

1− ln(1− λ/µ)
(0 ≤ z ≤ 1). (23)

Proof. For λ < µ, from (12) follows that ψ1(0) = µ/λ, ψ2(0) = 1 and
α(0) = −1. Furthermore, recalling that (cf. [19], p. 1006, n. 9.121.6)

F (1, 1; 2;x) = −
ln(1− x)

x
, F (1, 2; 3;x) = −

2 [x+ ln(1− x)]

x2
,

from (14) one obtains:

lim
s→0

H(z, s) = ln
( µ− λ

µ− λ z

)
. (24)

Therefore, (23) follows from (13) by noting that

G(z) = lim
s→0

[s ϕ(z, s)] = 1 + λ lim
s→0

H(z, s)

λ− (s+ λ)H(0, s)
(λ < µ).

�

Eq. (23) can be also obtained making use of the asymptotic distribution (3).
We now derive the Laplace transforms π0,n(s) (n = 2, 3, . . .) by expand-

ing the function ϕ(z, s) in power series of z.
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Proposition 2. For n = 2, 3, . . . one has:

π0,n(s) =
π0,1(s)

n [ψ1(s)]n−1

{
1 +

ψ1(s)− ψ2(s)

ψ1(s)

n−1∑

r=0

(−1)r
(

n

r + 1

)
r [α(s) + 1]

α(s) + r + 2

×F
(
1, α(s) + 2;α(s) + r + 3;

ψ2(s)

ψ1(s)

)}
, (25)

with π0,1(s) given in (17).

Proof. From (8) and (13), for n = 1, 2, . . . we note that

π0,n(s) =
1

n!

∂nϕ(z, s)

∂zn

∣∣∣∣
z=0

=
1

n!

λ

s [λ− (s+ λ)H(0, s)]

∂nH(z, s)

∂zn

∣∣∣∣
z=0

=
1

n!

µπ0,1(s)

λ

∂nH(z, s)

∂zn

∣∣∣∣
z=0

, (26)

where H(z, s) is defined in (14). Denoting by

Cn,k+1(s) =
1

n!

∂n

∂zn

(z − ψ2(s)

ψ1(s)− z

)k+1
∣∣∣∣
z=0

(k = 0, 1, . . .), (27)

and recalling (14), from (26) one has:

π0,n(s) = π0,1(s)

{
ψ1(s)

+∞∑

k=0

(−1)k
α(s) + 2

α(s) + k + 2
Cn,k+1(s)

−ψ2(s)
α(s) + 1

α(s) + 3

+∞∑

k=0

(−1)k
α(s) + 3

α(s) + k + 3
Cn,k+1(s)

}
(n = 1, 2, . . .). (28)

In Appendix B we prove that

C0,k+1(s) =
[
−
ψ2(s)

ψ1(s)

]k+1
(k = 0, 1, . . .),

(29)

Cn,k+1(s) =
[
−
ψ2(s)

ψ1(s)

]k+1 k + 1

n [ψ1(s)]n

min(k,n−1)∑

r=0

(
k

r

)(
n

r + 1

)[ψ2(s)− ψ1(s)

ψ2(s)

]r+1

(k = 0, 1, . . . , n = 1, 2 . . .).

Therefore, substituting (29) in (28), after some cumbersome calculations,
for n = 1, 2, . . . one has:

π0,n(s)=π0,1(s)
ψ1(s)−ψ2(s)

n [ψ1(s)]n

{n−1∑

r=0

(
n

r+1

)[ψ2(s)−ψ1(s)

ψ2(s)

]r +∞∑

j=r

(
j

r

)[ψ2(s)

ψ1(s)

]j
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+

n−1∑

r=0

r

(
n

r + 1

)[ψ2(s)− ψ1(s)

ψ2(s)

]r +∞∑

j=r

α(s) + 1

α(s) + j + 2

(
j

r

)[ψ2(s)

ψ1(s)

]j}
. (30)

Finally, recalling that

+∞∑

j=r

(
j

r

)
xj =

xr

(1− x)r+1
,

+∞∑

j=r

(
j

r

)
xj

j
=

xr

r (1− x)r
,

+∞∑

j=r

(
j

r

)
xj

a+ j + 2
=

xr

a+ r + 2
F (r + 1, a+ r + 2; a + r + 3;x),

from (30) one obtains (25). �

Starting from (16), (17) and (25) one can check that
∑+∞

n=0 π0,n(s) = 1/s.
Furthermore, for λ < µ, the steady-state probabilities (3) can be also derived
from (16), (17) and (25) making use of Tauberian theorem.

2.3. Laplace transforms of the moments

For k = 1, 2, . . ., let

E[Nk(t)|N(0)=0] =
+∞∑

n=1

nk p0,n(t), Mk(s) =

∫ +∞

0
e−s tE[Nk(t)|N(0)=0] dt

the conditional moments of N(t) and their Laplace transforms, respectively.

Proposition 3. The Laplace transforms of first two moments of the process
N(t) are:

M1(s) =
µπ0,1(s)

λ [ψ1(s)− 1]2

{
ψ1(s)− ψ2(s)

ψ2(s)
−

s

λ[α(s) + 3] [ψ1(s)− 1]

×F
(
1, α(s) + 2;α(s) + 3;−

1 − ψ2(s)

ψ1(s)− 1

)}
, (31)

M2(s) =
2µπ0,1(s)

λ [ψ1(s)− 1]2

{
2[λψ1(s) + µψ2(s)− 2µ] + s[ψ1(s)− ψ2(s)]

2 s ψ2(s)

−
2(λ− µ) + s

2λ [α(s) + 3][ψ1(s)− 1]
F
(
1, α(s) + 2;α(s) + 3;−

1− ψ2(s)

ψ1(s)− 1

)}
,

(32)

with π0,1(s) given in (17).

11



Proof. By virtue of (8), one has:

M1(s) =
∂ϕ(z, s)

∂z

∣∣∣
z=1

, M2(s) = M1(s) +
∂2ϕ(z, s)

∂z2

∣∣∣
z=1

. (33)

By noting that

∂

∂z
F
(
1, α(s) + k;α(s) + k + 1;−

z − ψ2(s)

ψ1(s)− z

)
=

α(s) + k

z − ψ2(s)

×

{
1−

ψ1(s)− ψ2(s)

ψ1(s)− z
F
(
1, α(s) + k;α(s) + k + 1;−

z − ψ2(s)

ψ1(s)− z

)}
, (34)

for k = 1, 2, . . ., from (13) and (14) one obtains:

∂ϕ(z, s)

∂z
=

µπ0,1(s)

λ [ψ1(s)− z]

{
1−

s

λ [ψ1(s)− ψ2(s)] [ψ1(s)− z]

×

[
ψ1(s)

α(s) + 2
F
(
1, α(s) + 2;α(s) + 3;−

z − ψ2(s)

ψ1(s)− z

)

−
ψ2(s)

α(s) + 3
F
(
1, α(s) + 3;α(s) + 4;−

z − ψ2(s)

ψ1(s)− z

)]}
. (35)

Hence, by virtue of (A.9), relation (31) immediately follows from (33) and
(35). Furthermore, by using (34), one has

∂2ϕ(z, s)

∂z2
=

µπ0,1(s)

λ [ψ1(s)− z]2

{
1 +

s

λ [z − ψ2(s)]
+

s

λ [ψ1(s)− z][ψ1(s)− ψ2(s)]

×

[
ψ1(s)

(
2

α(s) + 2
−
ψ1(s)− ψ2(s)

z − ψ2(s)

)
F
(
1, α(s) + 2;α(s) + 3;−

z − ψ2(s)

ψ1(s)− z

)

−ψ2(s)

(
2

α(s) + 3
−
ψ1(s)− ψ2(s)

z − ψ2(s)

)
F
(
1, α(s) + 3;α(s) + 4;−

z − ψ2(s)

ψ1(s)− z

)]}
,

from which, by virtue of (A.9), relation (32) follows. �

In particular, for λ < µ from (31) and (32) one obtains the asymptotic
moments:

E(N) = lim
s→0

[sM1(s)] =
̺

1− ̺
q0, E(N2) = lim

s→0
[sM2(s)] =

̺

(1− ̺)2
q0,

that follow also by using (3).
Propositions 2 and 3 will be used in Section 4 to obtain the steady-state

distribution and its moments for the process N(t) in the presence of random
catastrophes.
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3. First-passage time to zero state and busy period

Let us define the first-passage time of N(t) to zero state as:

Tj,0 = inf{t ≥ 0 : N(t) = 0} N(0) = j (j = 1, 2, . . .)

and we denote by

gj,0(t) =
d

dt
P{Tj,0 < t}, γj,0(s) =

∫ +∞

0
e−s t gj,0(t) dt

the related FPT pdf and its Laplace transform, respectively. We remark
that g1,0(t) identifies the busy period density of the process N(t).

Proposition 4. The Laplace transform of the busy period density is

γ1,0(s) =
λ

λ− sH(0, s)
(36)

and, for j = 2, 3, . . . one has:

γj,0(s) =
[ µ

λψ1(s)

]j−1 λ

λ− sH(0, s)

{
1 +

ψ1(s)− ψ2(s)

ψ1(s)

j−1∑

r=1

(−1)r
(

j

r + 1

)

×
r [α(s) + 1]

α(s) + r + 2
F
(
1, α(s) + 2;α(s) + r + 3;

ψ2(s)

ψ1(s)

)}
. (37)

Furthermore, for j = 1, 2, . . . the probability of ultimate absorption at zero
is:

P{Tj,0 < +∞} =

∫ +∞

0
gj,0(t) dt

=





1, λ ≤ µ

(µ/λ)j

1− µ/λ+ (µ/λ)2

[µ
λ
+ j

(
1−

µ

λ

)]
, λ > µ.

(38)

Proof. The transition probabilities of a general birth-death process satisfy
the following relation (cf., for instance, [26]):

pj,n(t) =
un
uj

pn,j(t) (j, n = 0, 1, . . .), (39)

where

u0 = 1, uk =
λ0λ1 · · ·λk−1

µ1µ2 · · · µk
(k = 1, 2, . . .)

13



are the potential coefficients of the birth-death process. Note that (39) is a
form of reversibility which allows to turn the forward Kolmogorov equations
for the transition probabilities in the backward Kolmogorov equations and
vice versa.

Specifically, for the process N(t) with rates (1) one has:

u0 = 1, uk =
1

k

(λ
µ

)k
(k = 1, 2, . . .).

The FPT pdf gj,0(t) is solution of the integral equation

pj,0(t) =

∫ t

0
gj,0(τ) p0,0(t− τ) dτ (j = 1, 2, . . .),

so that, taking the Laplace transform, by virtue of (39), one has:

γj,0(s) =
πj,0(s)

π0,0(s)
= j

(µ
λ

)j π0,j(s)
π0,0(s)

(j = 1, 2, . . .). (40)

For j = 1, substituting (16) and (17) in (40), relation (36) follows. Similarly,
for j = 2, 3, . . . making use of (16) and (25) in (40) one obtains (37).

To prove (38), we note that P{Tj,0 < +∞} = lims→0 γj,0(s). Further-
more, since

ψ1(s)− ψ2(s)

ψ1(s)− 1
=

1− ψ2(s)

s ψ2(s)

{
µ− λ [ψ2(s)]

2
}
,

from (22) one has:

λ− sH(0, s) = λ+
λ

µ

1− ψ2(s)

ψ2(s)

{
µ− λ [ψ2(s)]

2
}

+
λ sψ2

2(s)

µψ1(s)[α(s) + 3]
F
(
1, α(s) + 3;α(s) + 4;

ψ2(s)

ψ1(s)

)
. (41)

Recalling (12), one has:

• if λ < µ then ψ1(0) = µ/λ, ψ2(0) = 1, α(0) = −1;

• if λ = µ then ψ1(0) = ψ2(0) = 1, α(0) = −3/2;

• if λ > µ then ψ1(0) = 1, ψ2(0) = µ/λ, α(0) = −2.

14



Therefore, from (41) it follows

lim
s→0

[λ− sH(0, s)] =





λ, λ ≤ µ

λ2 − λµ+ µ2

µ
, λ > µ,

so that, from (36) and (37) one immediately obtains (38). �

We note that if λ > µ one has

P{T1,0 < +∞} < 1,
P{Tj+1,0 < +∞}

P{Tj,0 < +∞}
=

1 + j (1− µ/λ)

1 + j (1− µ/λ)(λ/µ)
< 1,

so that P{Tj,0 < +∞} decreases as j increases. In particular, the busy
period of N(t) ends with probability 1 if and only if λ ≤ µ and there is
non-zero probability that the busy period, when ̺ > 1, is infinitely large.

Let T̃j,0 be the random variable describing the FPT to zero state for the

M/M/1 queueing system Ñ(t). The Laplace transform of the FPT density
g̃j,0(t) is γ̃j,0(s) = [ψ2(s)]

j , so that P (T̃j,0 < +∞) = 1 for λ ≤ µ and

P (T̃j,0 < +∞) = (µ/λ)j if λ > µ. Hence, if ̺ ≤ 1 one has P (Tj,0 < +∞) =

P (T̃j,0 < +∞) = 1, whereas P (T̃j,0 < +∞) < P (Tj,0 < +∞) if ̺ > 1.

Moreover, since the rates of N(t) and of Ñ(t) are such that λn = λ and
µn ≥ µ, one has (cf. [41]):

Tj,0 ≤st T̃j,0 j = 1, 2, . . .), (42)

so that E[T k
j,0] ≤ E[T̃ k

j,0] for k = 1, 2, . . ., provided that the moments exist.
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20
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Figure 3: On the left we compare λE(T1,0) (solid curve) and λE(T̃1,0) (dashed curve); on

the right we plot λ SD(T1,0) (solid curve) and λ SD(T̃1,0) (dashed curve).
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Proposition 5. For λ < µ the mean and the variance of the busy period
are:

E(T1,0) = −
1

λ
ln(1− ̺)

(43)

Var(T1,0) =
4̺2 + 2̺(1− ̺) ln(1− ̺) + (1− ̺)2[ln(1− ̺)]2 − 2̺PolyLog(2, ̺)

λ2(1− ̺)2
,

where

PolyLog(2, x) =
+∞∑

k=1

xk

k2
·

Proof. Since the interarrival intervals are exponentially distributed with
mean 1/λ, one has:

E(T1,0) =
(1 − q0)

λ q0
,

from which the first of (43) follows by virtue of (3). Furthermore, from (36)
it follows:

E(T 2
1,0) =

d2γ1,0(s)

ds2

∣∣∣
s=0

=
2

λ2
lim
s→0

{
[H(0, s)]2 + λ

dH(0, s)

ds

}
. (44)

From (24) one has lims→0H(0, s) = ln(1 − ̺). Moreover, as proved in
Appendix C, it results:

lim
s→0

dH(0, s)

ds
=

2̺+ (1− ̺) ln(1− ̺)− PolyLog(2, ̺)

µ(1− ̺)2
· (45)

Hence, making use (45) in (44) it follows:

E(T 2
1,0) =

2 [(1− ̺)2 ln2(1− ̺) + 2 ̺2 + ̺(1− ̺) ln(1− ̺)− ̺PolyLog(2, ̺)]

λ2(1− ̺)2
,

from which the second of (43) immediately follows. �

For ̺ < 1, the mean and variance of the busy period of theM/M/1 queueing
system Ñ(t) are E(T̃1,0) = [µ(1− ̺)]−1 and Var(T̃1,0) = (1+ ̺)/[µ2(1− ̺)3],

respectively. Making use of inequalities (5), we note that E(T1,0) < E(T̃1,0)

and Var(T1,0) < Var(T̃1,0), so that mean and variance of the busy period
for the process N(t) are less than those of M/M/1 queue. In Figure 3 we
compare the mean and the standard deviation (SD) for the busy periods of
processes N(t) and Ñ(t).
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4. Effect of catastrophes on the system

We consider a birth-death process {M(t), t ≥ 0} in the presence of catas-
trophes, such that births and deaths occur with rates (1). We assume that
catastrophes occur according to a Poisson process with rate ξ, the effect
of each catastrophe being the instantaneous transition to the state 0 (cf.
Figure 4).

4.1. The state of the system
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Figure 4: The state diagram of the process M(t).

The transition probabilities of the process M(t)

rj,n(t) = P{M(t) = n|M(0) = j} (j, n = 0, 1, 2, . . .) (46)

satisfy the following forward Kolmogorov equations:

drj,0(t)

dt
= −(λ+ ξ) rj,0(t) + µ pj,1(t) + ξ

drj,1(t)

dt
= λ rj,0(t)− (λ+ µ+ ξ) rj,1(t) + 2µ rj,2(t) (47)

drj,n(t)

dt
= λ rj,n−1(t)−

(
λ+

nµ

n− 1
+ ξ

)
rj,n(t) +

(n+ 1)µ

n
rj,n+1(t),

(n = 2, 3, . . .).

with rj,n(0) = δj,n. The probabilities rj,n(t) can be also expressed in terms
of the probabilities pj,n(t) of the process N(t). Indeed, conditioning on the
age of the catastrophe process, for a birth-death process one has (see, for
instance, [17], [18], [33], [35]):

rj,n(t) = e−ξt pj,n(t) + ξ

∫ t

0
e−ξτ p0,n(τ) dτ (n, j = 0, 1, . . . , t > 0). (48)
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Hence, the steady-state probabilities of M(t) are given by

ωn = lim
t→∞

rj,n(t) = ξ π0,n(ξ) (n = 0, 1, . . .), (49)

so that the asymptotic moments of the process M(t) are:

E(Mk) =

+∞∑

n=1

nk ωn = ξ

+∞∑

n=1

nkπ0,n(ξ) = ξMk(ξ) (k = 1, 2, . . .), (50)

where Mk(s) denotes the Laplace transform of the kth-order conditional
moment of N(t).

Making use of (16), (17) and (25) in (49), one obtains the following
expressions:

ω0 = P{M = 0} =
λ− ξH(0, ξ)

λ− (ξ + λ)H(0, ξ)
,

ω1 = P{M = 1} =
λ2

µ [λ− (ξ + λ)H(0, ξ)]
,

(51)

ωn = P{M = n} =
ω1

n [ψ1(ξ)]n−1

{
1 +

ψ1(ξ)− ψ2(ξ)

ψ1(ξ)

n−1∑

r=0

(−1)r
(

n

r + 1

)

×
r [α(ξ) + 1]

α(ξ) + r + 2
F
(
1, α(ξ) + 2;α(ξ) + r + 3;

ψ2(ξ)

ψ1(ξ)

)}
(n = 2, 3, . . .),

with ψi(s) (i = 1, 2) and α(s) defined in (12) and H(0, s) given in (22).
We note that the steady-state distribution of M(t) always exists, differently
from that of the process N(t) without catastrophes, in which it exists only
if ̺ < 1. Furthermore, making use of (31) and (32) in (50) one obtains:

E(M) =
µω1

λ [ψ1(ξ)− 1]2

{
ψ1(ξ)− ψ2(ξ)

ψ2(ξ)
−

ξ

λ[α(ξ) + 3] [ψ1(ξ)− 1]

×F
(
1, α(ξ) + 2;α(ξ) + 3;−

1− ψ2(ξ)

ψ1(ξ)− 1

)}
,

E(M2) =
2µω1

λ [ψ1(ξ)− 1]2

{
2[λψ1(ξ) + µψ2(ξ)− 2µ] + ξ[ψ1(ξ)− ψ2(ξ)]

2 ξ ψ2(ξ)

−
2(λ− µ) + ξ

2λ [α(ξ) + 3][ψ1(ξ)− 1]
F
(
1, α(ξ) + 2;α(ξ) + 3;−

1 − ψ2(ξ)

ψ1(ξ)− 1

)}
.

Now, let M̃(t) be the process M/M/1 in the presence of catastrophes
to zero state, that occur according to a Poisson process with rate ξ. The
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steady-state probabilities of M̃ (t) are (cf., for instance, [14]):

ω̃n = P{M̃ = n} =
[
1−

λ

µ
ψ2(ξ)

] [λ
µ
ψ2(ξ)

]n
(n = 0, 1, . . .). (52)

In Figure 5 we compare (51) and (52) for some choices of the parameters;
specifically, Figure 5(a) refers to the case ̺ < 1, whereas Figure 5(b) refers
to ̺ > 1.
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(a) λ = 0.6, µ = 0.7, ξ = 0.05
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Figure 5: The probabilities ωn (solid circle) are compared with ω̃n (solid square) for
n = 0, 1, . . . , 10 (on the left) and for n = 0, 1, . . . , 20 (on the right).

In Figures 6 and 7 we compare the asymptotic mean and variance for
the process M(t) with the related quantities for the M̃ (t) process (cf., for
instance, [14]):

E(M̃ ) =
1

ψ1(ξ)− 1
, Var(M̃ ) =

ψ1(ξ)

(ψ1(ξ)− 1)2
·

In particular, in Figure 6 we assume that λ = 0.6 and µ = 0.7; in the
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Figure 6: E(M) and Var(M) (solid curves) are compared with E(M̃) and Var(M̃) (dashed
curves) for λ = 0.6 and µ = 0.7.
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Figure 7: As in Figure 6 with λ = 0.7 and µ = 0.6.

absence of catastrophes E(M) = 2.03672, Var(M) = 10.1088 and E(M̃ ) =

6, Var(M̃ ) = 42. Instead, in Figure 7 we assume that λ = 0.7 and µ = 0.6;
in this case, in the absence of catastrophes, the stationary distribution does
not exist, so that when ξ ↓ 0 mean and variance diverge.

4.2. First-visit time to zero state

Let
Θj,0 = inf{t ≥ 0 :M(t) = 0}, M(0) = j > 0

be the first-visit time (FVT) ofM(t) to 0 starting from the initial state j and
let hj,0(t) = dP (Θj,0 ≤ t)/dt be its pdf. For j = 1, 2, . . . the random variable
Θj,0 has the same distribution as min(Tj,0, Z), where Z is an exponentially
distributed random variable, with mean 1/ξ, independent of Tj,0. Therefore,
one has:

hj,0(t) = e−ξt gj,0(t) + ξ e−ξt
[
1−

∫ t

0
gj,0(τ) dτ

]
(j = 1, 2, . . .), (53)

where gj,0(t) is the pdf of Tj,0. Denoting by ηj,0(s) the Laplace transform of
hj,0(t) and making use of (53), for j = 1, 2, . . . one obtains:

ηj,0(s) =
ξ

s+ ξ
+

s

s+ ξ
γj,0(s + ξ), (54)

where γj,0(s) is the Laplace transform of gj,0(t), given in (36) and (37). We
note that P (Θj,0 < +∞) = 1, i.e. the first-visit time of M(t) to zero state
occurs with probability 1, whereas for N(t) such an event has probability
equal to 1 only if λ < µ.

Let now Θ̃j,0 be the FVT of M̃(t) to 0 starting from the initial state

j. Since Θ̃j,0 has the same distribution as min(T̃j,0, Z), where Z is an ex-
ponentially distributed random variable, with mean 1/ξ, recalling (42) it
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follows:
Θj,0 ≤st Θ̃j,0 (j = 1, 2, . . .), (55)

i.e. the FVT to zero state for M(t) is smaller than the FVT for the M/M/1
with catastrophes in the stochastic order. Consequently, E[Θk

j,0] ≤ E[Θ̃k
j,0]

for k = 1, 2, . . ..
Recalling (36), the Laplace transform of the busy period of M(t) is

η1,0(s) =
1

s+ ξ

[
ξ +

λ s

λ− (s+ ξ)H(0, s + ξ)

]
, (56)

with H(0, s) given in (22). Moreover, by virtue of (56), we obtain the mean
and the variance of the busy period in the presence of catastrophes:

E(Θ1,0) =
H(0, ξ)

ξ H(0, ξ)− λ
,

Var(Θ1,0) =
1

[λ− ξ H(0, ξ)]2

[
H2(0, ξ) + 2λ

d

dξ
H(0, ξ)

]
. (57)

In Figures 8 and 9 we compare the mean and the standard deviation
of the busy period for the process M(t) with the related quantities for the

M̃(t) process (cf., for instance, [14]):

E(Θ̃1,0) =
1

ψ1(ξ)− 1
, Var(Θ̃1,0) =

ψ1(ξ)

(ψ1(ξ)− 1)2
·

In particular, in Figure 8 we set λ = 0.6 and µ = 0.7; in the absence of
catastrophes E(Θ1,0) = 3.24318, SD(Θ1,0) = 8.15072 and E(Θ̃1,0) = 10,

SD(Θ̃1,0) = 36.0555. In Figure 9 we have λ > µ.
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Figure 8: E(Θ1,0) and SD(Θ1,0) (solid curves) are compared with E(Θ̃1,0) and SD(Θ̃1,0)
(dashed curves) for λ = 0.6 and µ = 0.7.
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Figure 9: As in Figure 8 with λ = 0.7 and µ = 0.6.

5. Conclusions

In the present paper we consider an adaptive single-server queueing
model with constant arrival rates and state-dependent service rates (1). For
this model, the asymptotic analysis is performed showing that the steady-
state distribution is of logarithmic type. Moreover, the Laplace transforms
of the transition probabilities are determined. Furthermore, the effect of
total catastrophes, occurring according to a Poisson process with constant
rate, is included and the asymptotic behaviour of the obtained model is
studied. The analysis of the busy period for the system without and with
catastrophes is carried out. The performance measures are compared with
those of the M/M/1 system.

Appendix A. Evaluation of H(z, s)

In this appendix, starting from (21), we prove (14). By performing in
(21) the change of variables w = [u − ψ2(s)]/[ψ1(s) − u] and y = [x −
ψ2(s)]/[ψ1(s)− x] and recalling that (cf. [19], p. 315, n. 194.1)

∫ x

0

wξ−1

(1 + β w)ν
dw =

xξ

ξ
F (ν, ξ; ξ + 1;−β x) (Re ξ > 0, | arg(1 + β x)| < π),

one obtains:

H(z, s) = −
1

α(s) + 3

1

[ψ1(s)− ψ2(s)]2

∫ [1−ψ2(s)]/[ψ1(s)−1]

[z−ψ2(s)]/[ψ1(s)−z]
ζ(y, s) dy, (A.1)

where we have set

ζ(y, s) =
[
ψ2(s) + ψ1(s)y

]{ψ1(s)[ψ1(s)− 1]

ψ2(s)
F
(
1, α(s) + 3;α(s) + 4;−

ψ1(s)

ψ2(s)
y
)
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+
ψ1(s) [ψ1(s)− ψ2(s)]

[ψ2(s)]2
F
(
2, α(s) + 3;α(s) + 4;−

ψ1(s)

ψ2(s)
y
)

−[ψ1(s)− 1]F
(
1, α(s) + 3;α(s) + 4;−y

)

−[ψ1(s)− ψ2(s)]F
(
2, α(s) + 3;α(s) + 4;−y

)}
. (A.2)

We now note that the Gauss hypergeometric functions satisfy the follow-
ing recurrence relations (cf. [19], p. 1010, n. 9.137.11, n. 9.137.12 and n.
9.137.18):

c F (a, b; c;w) − c F (a, b + 1; c;w) − awF (a+ 1, b+ 1; c+ 1;w) = 0,

c F (a, b; c;w) − c F (a + 1, b; c;w) + bw F (a+ 1, b+ 1; c+ 1;w) = 0, (A.3)

c F (a, b; c;w) − (c− a)F (a, b; c + 1;w) − aF (a+ 1, b; c + 1;w) = 0.

Furthermore, since ψ1(s)ψ2(s) = µ/λ and ψ1(s) + ψ2(s) = (s + λ + µ)/λ,
one has:

[ψ1(s)− 1]− [α(s) + 2] [ψ1(s)− ψ2(s)] =
s

λ
,

(A.4)

[ψ1(s)− 1]− [α(s) + 2]
ψ1(s)− ψ2(s)

ψ2(s)
= 0.

Hence, making use of (A.3) and (A.4) in (A.2), after some calculations, one
obtains:

ζ(y, s) = [α(s) + 3]
ψ1(s)− ψ2(s)

y + 1

+
s

λ

{
−ψ2(s)F (1, α(s) + 3;α(s) + 4;−y)

+ψ1(s)
α(s) + 3

α(s) + 2
F (1, α(s) + 2;α(s) + 3;−y)

}
. (A.5)

Therefore, one can calculate (A.1) by using (A.5). Indeed, recalling that
∫ x

0
F (1, β;β+1;−y) dy =

−xF (1, β;β + 1;−x) + β ln(1 + x)

β − 1
(Re x ≥ −1),

and using the identities:

ψ1(s)

α(s) + 1
−

ψ2(s)

α(s) + 2
= −

λ

s
[ψ1(s)− ψ2(s)]

2,

(A.6)

1

[α(s) + 1] [α(s) + 2]
= −

λ2

s µ
[ψ1(s)− ψ2(s)]

2,
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from (A.1) one has:

H(z, s) =
λ

µ

{z − ψ2(s)

ψ1(s)− z
K(z, s)−

1− ψ2(s)

ψ1(s)− 1
K(1, s)

}
, (A.7)

where we have set:

K(z, s) = ψ1(s)F
(
1, α(s) + 2;α(s) + 3;−

z − ψ2(s)

ψ1(s)− z

)

−ψ2(s)
α(s) + 1

α(s) + 3
F
(
1, α(s) + 3;α(s) + 4;−

z − ψ2(s)

ψ1(s)− z

)
. (A.8)

Furthermore, from (A.3) it results:

F (1, α(s)+2;α(s)+3; y) = 1+y
α(s) + 2

α(s) + 3
F (1, α(s)+3;α(s)+4; y). (A.9)

Hence K(1, s) = ψ1(s), so that (14) follows from (A.7) and (A.8).

Appendix B. Evaluation of Cn,k+1(s)

In this appendix, starting from (27) we prove (29). Since 0 < z < ψ1(s)
one has:

z − ψ2(s)

ψ1(s)− z
=

z − ψ2(s)

ψ1(s)
[
1−

z

ψ1(s)

] =

+∞∑

j=0

γj(s) z
j

where

γ0(s) = −
ψ2(s)

ψ1(s)
, γj(s) =

ψ1(s)− ψ2(s)

ψ1(s)

[ 1

ψ1(s)

]j
(j = 1, 2, . . .).

Recalling the power series raised to powers (cf. [19], p. 17, n. 0.314) one has

(z − ψ2(s)

ψ1(s)− z

)k+1
=

(+∞∑

j=0

γj(s) z
j
)k+1

=
+∞∑

j=0

Cj,k+1(s) z
j (k = 0, 1, . . .),

(B.1)
with

C0,k+1(s) = [γ0(s)]
k+1,

Cn,k+1(s) =
1

n γ0(s)

n∑

j=1

[j(k + 1)− n+ j] γj(s)Cn−j,k+1(s) (n = 1, 2, . . .).

from which, proceeding by induction on n, one can prove that (29) hold.
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Appendix C. Derivation of (45)

In this appendix, starting from (22) we prove (45). From (22) one ob-
tains:

dH(0, s)

ds
= −

λ

µ

d

ds

[ψ1(s)− ψ2(s)

ψ1(s)− 1

]

−
λ

µ

d

ds

{ [ψ2(s)]
2

ψ1(s)[α(s) + 3]

}
F
(
1, α(s) + 3;α(s) + 4;

ψ2(s)

ψ1(s)

)

−
λ

µ

[ψ2(s)]
2

ψ1(s)[α(s) + 3]

d

ds
F
(
1, α(s) + 3;α(s) + 4;

ψ2(s)

ψ1(s)

)
. (C.1)

Recalling that ̺ < 1, from (12) one has ψ1(0) = µ/λ, ψ2(0) = 1, α(0) = −1,

dψ1(s)

ds

∣∣∣
s=0

=
1

λ(1− ̺)
,

dψ2(s)

ds

∣∣∣
s=0

= −
1

µ(1− ̺)
,

dα(s)

ds

∣∣∣
s=0

= −
1

µ(1− ̺)2
.

Therefore, for ̺ < 1 we have

lim
s→0

d

ds

[ψ1(s)− ψ2(s)

ψ1(s)− 1

]
=

̺

µ(1− ̺)2
,

lim
s→0

d

ds

{ [ψ2(s)]
2

ψ1(s)[α(s) + 3]

}
=

̺(6̺− 5)

4µ(1 − ̺)2
.

Furthermore, recalling (15), one has:

F
(
1, α(s) + 3;α(s) + 4;

ψ2(s)

ψ1(s)

)
=

+∞∑

k=0

α(s) + 3

α(s) + 3 + k

[ψ2(s)

ψ1(s)

]k
,

so that

lim
s→0

F
(
1, α(s) + 3;α(s) + 4;

ψ2(s)

ψ1(s)

)
= F (1, 2, 3; ̺) = −

2

̺2
[̺+ ln(1− ̺)],

lim
s→0

d

ds
F
(
1, α(s) + 3;α(s) + 4;

ψ2(s)

ψ1(s)

)
=

1

λ̺(1− ̺)2

[
̺ (4̺− 9)

+(8̺− 7) ln(1− ̺) + 2PolyLog(2, ̺)
]
.

Finally, taking the limit in (C.1) as s→ 0, one obtains (45).
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