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Abstract—Covariance matrix estimation is a crucial task in
adaptive signal processing applied to several surveillance systems,
including radar and sonar. In this paper we propose a dynamic
learning strategy to track both the covariance matrix of data
and its structure (class). We assume that, given the class, the
posterior distribution of the covariance is described through
a mixture of inverse Wishart distributions, while the class
evolves according to a Markov chain. Hence, we devise a novel
and general filtering strategy, called multi-class inverse Wishart
mixture filter, able to capitalize on previous observations so
as to accurately track and estimate the covariance. Some case
studies are provided to highlight the effectiveness of the proposed
technique, which is shown to outperform alternative methods in
terms of both covariance estimation accuracy and probability
of correct model selection. Specifically, the proposed filter is
compared with class-clairvoyant covariance estimators, e.g., the
maximum likelihood and the knowledge-based recursive least
square filter, and with the model order selection method based
on the Bayesian information criterion.

Index Terms—Random matrices, covariance matrix estimation,
interference covariance matrix, model classification, Bayesian
information criterion, multi-class inverse Wishart mixture filter,
radar and sonar signal processing, adaptive signal processing.

I. INTRODUCTION

The estimation of the covariance matrix is a fundamental
issue in adaptive signal processing and naturally arises in
several contexts including target detection, direction of arrival
evaluation, secondary data selection, target tracking, and
spectral analysis.

In radar and sonar applications, to predict the interference
covariance matrix (ICM), conventional adaptive strategies (such
as sample matrix inversion (SMI) [1] and Kelly’s receiver [2])
rely on the sample covariance matrix of a secondary data set
collected from range gates spatially close to the one under
test. These algorithms ensure satisfactory performance when
secondary vectors exhibit the same spectral properties of the
interference in the cell under test, are statistically independent
of each other, and the size of the training set is larger than
twice the system’s degrees of freedom, i.e., the useful signal
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dimension [3]. The above requirements represent important
limitations, since typical size of homogeneous data is usually
quite limited and, more important, a poor training data selection
can imply severe performance degradation [4].

A possible strategy to circumvent the lack of a sufficient
number of homogeneous secondary data is to exploit some
a-priori information about the scene illuminated by the radar
and reduce the unknown parameters at the estimation stage
by enforcing appropriate structural models on the ICM. In
this respect, several approaches have been proposed, where
the training data is modeled as independent and identically
distributed (i.i.d.), zero-mean, circularly symmetric Gaussian
vectors (homogeneous environment). In [5] the maximum
likelihood (ML) covariance matrix estimator is derived by
modeling the disturbance as the sum of a colored interference
plus a white contribution; relying on the ML principle and
suitable covariance structures, advanced estimators have been
proposed in [6]–[12], both for homogeneous and heterogeneous
environments. Finally, Bayesian ICM estimators have been
developed to cope with training data scarcity [13]–[19], where
the ICM prior is assumed to be a complex inverse Wishart
distribution. Evidently, adaptive signal processing algorithms
based on the aforementioned covariance estimators may suffer
performance degradation in the presence of model mismatches,
e.g., due to changes in the operative conditions arising
from meteorological phenomena and terrain changes or the
appearance and disappearance of interference. A first attempt
to overcome this drawback has been pursued in [20], where
an adaptive classification of the ICM structure is addressed by
resorting to the theory of model order selection (MOS) [21].
By doing so, the actual ICM model can be adaptively predicted
and mismatch loss avoided.

A. Contribution and related work

A general filtering framework is proposed to track, at each
time scan k, a hybrid state that is composed by a discrete
random variable Ck, representing the model or class, and a
positive definite random matrix Rk whose dimension depends
on Ck. The posterior distribution of Rk, conditioned on Ck,
is modeled by an inverse Wishart mixture (IWM) distribution,
while Ck is modeled as a Markov chain. In particular, similarly
to the Gaussian sum filter framework [22], where the posterior
is approximated by a Gaussian mixture (GM) distribution, in
the proposed approach the covariance posterior, conditioned on
Ck, is approximated by an IWM distribution. This choice is not
arbitrary, as the IWM and GM are natural representations of
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posterior distributions for positive definite random matrices [23]
and random vectors [22], respectively. The proposed hybrid
tracking approach is named multi-class inverse Wishart mixture
(MC-IWM) filter.

Hybrid state approaches are common in the tracking literature
and used when the primary objective is to track not only
(possibly multiple) targets, but also to estimate nuisance
parameters, for instance those of the process noise. A notable
example is the interactive multiple model (IMM) filter [24],
where the process noise switches among discrete predefined
classes. More recent developments are reported in [25]–[27],
where the approach is applied also to other parameters, such
as target detection probability and clutter rate. In [28], [29]
the IMM approach has been combined with the measurement
noise covariance estimation in the context of adaptive filtering
for jump Markov systems. The main difference with the
aforementioned works is that the MC-IWM filter tracks positive
definite random matrices, i.e., covariance matrices, whose
dimensions depend on the underlying models, which can also
be nested, as usual in MOS problems [20], [21].

Random matrices are commonly used in tracking problems
to model extended targets. Originally proposed by Koch [30],
this approach adopts the IW distribution for the posterior
distribution of the target extension (e.g., as measured by high
resolution sensors), or to model a coordinated group of targets.
Similarly, the random finite set (RFS) implementation of the
extended target tracking (ETT), proposed in [31], [32], models
the probability hypothesis density (PHD) as a mixture of gamma
Gaussian IW distributions. Nowadays, the ETT is applied
to a number of practical problems involving different sensor
technologies, including camera, X-band radar, light detection
and ranging (LIDAR) [23]. In this context, the MC-IWM filter
can be regarded as a natural extension of random matrix based
ETT filters to the case of targets whose measurements can be
generated by different models, such as targets with peculiar
symmetries or negligible dimensions. Although the proposed
approach is general enough to be applicable also in this
context, the present work is focused on adaptive environment
classification and awareness, specifically for radar and sonar
sensors; its application to ETT is left to future investigations.

In the landscape of adaptive environment classification
techniques for radar application, the proposed approach has
the following innovative peculiar features. First, the MC-IWM
filter sequentially processes multiple time scan observations
of the scene, whereas in [20] observations are processed one
by one. Second, the proposed filter tracks both the ICM and
its structure, so as to achieve a dynamic environment learning
capability. To this end, as in [14], [18], we resort to Bayesian
methods, except that a sequential approach on multiple time
scans is herein adopted.

Summarizing, a unified environment model is proposed
that includes several disturbance classes of practical interest,
and a suitable probabilistic time transition from (Rk, Ck) to
(Rk+1, Ck+1). Given that the transition from Ck to Ck+1 can
imply a change of the matrix dimensions, a suitable moment
matching approach is developed to address prediction and
update steps. Analytical closed-form solutions are provided
for some scenarios of practical interest. For arbitrary models,

a tailored Monte Carlo-based solution for the prediction and
the update steps is also presented. Other than the moment
matching, the criterion of minimizing the Kullback-Leibler
divergence can be also considered, see e.g. [33]–[36].

The paper is organized as follows. In Sec. II we formalize
the problem, while in Sec. III the proposed filtering strategy
is derived and the algorithm structure is discussed. Specific
ICM models are provided in Sec. IV. Results of computer
experiments are reported in Sec. V and concluding remarks are
given in Sec. VI. Finally, three appendices are devoted to the
mathematical details related to the moment matching and the
derivation of the prediction and update steps. A preliminary
version of the MC-IWM filter has been presented in [37].

NOTATION

We adopt the notation of using boldface for vectors a

(lower case), and matrices A (upper case). The transpose, the
conjugate, and the conjugate transpose operators are denoted
by the symbols (·)T , (·)⇤, and (·)†, respectively. I and 0
denote respectively the identity matrix and the matrix with
zero entries (their size is determined from the context). The
Kronecker and Hadamard products are indicated as ⌦ and
�, respectively. C

N , C
N,K , S

N
++, H

N , H
N
+ , and H

N
++ are

respectively the sets of N -dimensional vectors of complex
numbers, of N ⇥K matrices of complex numbers, of N ⇥N
positive definite symmetric matrices, of N ⇥ N Hermitian
matrices, of N ⇥N positive semidefinite Hermitian matrices,
and of N ⇥ N positive definite Hermitian matrices. For
any R 2 C

N,N , diagK1
(R) 2 C

K1N,K1N is a block
diagonal matrix with K1 blocks given by R. For any matrix
A 2 C

K1m,K1m, D [A]mi , i = 0, . . . ,K1 � 1, denotes the
square matrix of size m obtaining extracting from A the entries
i1, i2 2 {im+1, . . . , (i+1)m}. The curled inequality symbol
⌫ (and its strict form �) is used to denote generalized matrix
inequality: for any A 2 H

N , A ⌫ 0 means that A is a
positive semi-definite matrix (A � 0 for positive definiteness).
|X| denotes the determinant of X 2 C

N,N . Besides, for any
set A, |A| represents the cardinality of A. The real part of
A is indicated with < {A}. Finally, E [·] denotes statistical
expectation.

II. PROBLEM FORMULATION

Let Zk = [z1,k, · · · , zN,k] 2 Zm,N , k � 1, be the
measurements collected by the acquisition system at the k-th
scan, whose entries can be complex Z = C or real Z = R. The
goal is to sequentially estimate the positive definite matrix Mk

associated with the measurements Zk given the data up to k,
i.e., Z1:k := {Z1,Z2, · · · ,Zk}. In general, the measurement
equation can be expressed as follows

Zk = h (Mk,Z
w
k ) , (1)

where h(·) is a generic function, Mk is a positive definite ran-
dom matrix of size m, Zw

k is a random matrix whose entries are
assumed i.i.d. The sequence {Zw

1 ,Zw
2 , · · · ,Zw

k } is assumed to
be statistically independent from {M1,M2, · · · ,Mk} , 8k �
1.
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In the case of radar (sonar) systems [20] zi,k, i = 1, . . . , N ,
may represent the measurements from the i-th range bin in the
surveillance area, and m may denote the number of space, time
or space-time channels. Then, focusing on the ICM estimation
problem in the presence of a homogeneous clutter environment
the previous equation is specialized as follows [20]

Zk = M
1
2
k Z

w
k , (2)

where Mk is the ICM, and the entries of Z
w
k 2 C

m,N are
zero-mean circularly symmetric complex Gaussian random
variables with unit variance. This means that, conditioned
on Mk, the columns of Zk are i.i.d. zero-mean circularly
symmetric complex Gaussian random vectors with covariance
matrix Mk.

In the ETT application, see e.g. [30], zi,k represents the i-th
detection coordinate of an extended target at scan k, while m
denotes the coordinate dimension. Assuming a linear model,
zi,k is normally distributed around the target position with
covariance Mk, the measurement equation (1) is specialized
as follows

Zk = 1T
N ⌦Hkxk +M

1
2
k Z

w
k , (3)

where 1N is the unitary column vector of dimension N , xk 2
R

n is the target kinematic state, Hk 2 R
m,n is the observation

matrix, Mk contains the information about the target extension,
and the entries of Zw

k 2 R
m,N are zero-mean Gaussian random

variables with unit variance. The measurement model in (3)
can be framed immediately as in (2) assuming known the target
kinematic xk. The extension taking into account both the target
kinematic and the target size can be derived following the ETT
framework, e.g. see [30]–[32], but is out of the scope of this
work.

A. Covariance matrix class
It is assumed the availability of prior knowledge about the

possible structure of the covariance Mk, which induces a
partition {A1,A2, . . .ANC} on the set of positive definite
matrices. Specifically, at each time scan k, Mk belongs to the
class Ck 2 C := {1, 2, . . . , NC}, such that Mk 2 ACk , where
ACk is the set of the matrices exhibiting a specific structure.
In this context, AC represents the range of a function fC(·),
whose domain is the set of positive definite matrices with a
specific size (not necessarily equal to m) depending on the
specific class C. Thus, the matrix Mk can be written as follows:

Mk = fCk(Rk), Ck 2 C, (4)

where Rk is a positive definite matrix, whose size is a
function of Ck. Otherwise stated, Mk belongs to a specific (but
unknown) class of the positive definite matrices, parametrized
via a (possibly lower dimensional) matrix Rk. For instance,
the class of white noise is described by M = f(R) = R I ,
where R > 0 is a one-dimensional variable and I is the identity
matrix of size m.

The goal is to sequentially estimate both the class Ck and
the matrix Rk based on the observed data up to k, Z1:k =
{Z1,Z2, · · · ,Zk}. The current hybrid state at step k is defined
as Xk := {Rk, Ck} and uniquely determines the matrix Mk.

The estimation is based on the posterior distribution of Xk

given the data observed up to time k

Pk|k (Xk) := P (Xk |Z1:k )

= P (Rk |Ck,Z1:k )P (Ck |Z1:k )

:= Pk|k (Rk |Ck )Pk|k (Ck) , (5)

where we have used the notation Pk|j (Ak) to indicate the
posterior distribution evaluated at Ak at time k, given the data
Z1:j observed up to time j.

B. Hierarchical Markov assumption

In the following, it is supposed that the class Ck evolves
according to a Markov chain with finite sample space and
transition matrix defined as ⇡ij , i.e.,

P (Ck+1 = i |Ck = j ) = ⇡ij , i, j 2 C. (6)

In particular, we assume a hierarchical structure between the
class and the matrix evolution as follows

P (Ck+1 |Ck,Rk, . . . , C1,R1, ) = P (Ck+1 |Ck ) . (7)

Moreover, conditioned on Ck+1, Ck and Rk, we assume that
Rk+1 is statistically independent of the previous states, namely

P (Rk+1 |Ck+1, Ck,Rk, . . . , C1,R1 ) =

P (Rk+1 |Ck+1, Ck,Rk ) . (8)

Based on the aforementioned hierarchical evolution model,
it follows that

P (Xk+1 | Xk, . . . ,X1) = P (Ck+1 | Xk, . . . ,X1)

⇥ P (Rk+1 | Ck+1,Xk, . . . ,X1)

= P (Ck+1 |Ck )

⇥ P (Rk+1 |Ck+1, Ck,Rk )

= P (Xk+1 | Xk) ;

namely, the time evolution of Xk follows a Markov process.
Fig. 1 illustrates a notional behavior of the considered hidden
hierarchical Markov chain. In particular, the state Xk can
only be observed indirectly (hidden model) via the available
measurements Zk. Additionally, the state is described through
two different random objects, i.e., Ck and Rk, that present a
hierarchical relationship, and the structure of Rk depends on
the actual value of Ck.

C. Random matrix state transition

To fix ideas, we provide practical state transition rule valid
for both the cases of ICM estimation and ETT. If Ck+1 and
Ck are the same, i.e., Ck+1 = Ck = i, then it is reasonable to
have a transition with conditional constant mean [30], i.e.,

E [Rk+1 |Ck = i, Ck+1 = i,Rk ] = Rk.

Clearly, more sophisticated transitions can also be taken
into account. Considering that we deal with positive definite
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Ck�1 Ck Ck+1

Rk�1 Rk Rk+1

Mk�1 Mk Mk+1

Zk�1 Zk Zk+1

Fig. 1. Hierarchical Markov model of the hybrid state Xk = {Rk, Ck}.

matrices, we assume that the spread around the mean is ruled
by a Wishart distribution1, yielding [30]

P (Rk+1 |Ck = i, Ck+1 = i,Rk ) = W
✓
Rk+1;

Rk

⌫
, ⌫

◆
,

(9)
where we have indicated, with some abuse of symbolism,
by W (R;M , ⌫), both the real and the complex Wishart
distribution with scale matrix M and ⌫ degrees of freedom. The
choice between real and complex Wishart distribution depends
on the field where Rk, given Ck, is defined and will be easily
determined from the context. If necessary, the transition of Rk

can involve rotation and scaling transformation, see [35].
Finally, if Ck 6= Ck+1, a Wishart distribution, but with

different and suitable parameters, can be used to model the
transition from k to k + 1. Essentially, a suitable mapping
of Mk = fCk(Rk) onto ACk+1 is considered as the mean
matrix of the Wishart distribution; the details are reported in
Appendix III and specific examples will be illustrated in the
following sections.

III. MULTI-CLASS INVERSE WISHART MIXTURE FILTER

With the assumptions made in the previous section, the
random matrix under each class can be inferred by approx-
imating posterior distributions of the corresponding random
matrix Rk with mixtures of IW components. This is similar
to the approach taken in [22], where posterior distributions are
approximated by mixtures of Gaussian components. Besides,
the choice of IW components originates from the Gaussian
nature of the data Zk (conditioned on Mk) and from the IW
distribution being the conjugate prior for Mk, e.g., see [16],
[30]. In general, the moment matching approximation can be
applied to preserve the IWM structure of the posterior.

The proposed filtering approach allows to sensibly reduce
the complexity w.r.t. a brute force particle filtering strategy.
Indeed, as m increases, but even for moderately small values,
the accurate representation of random objects in C

m⇥m would

1The use of the matrix-Gamma distribution [38] can be also considered.

require a prohibitively large number of particles, see also the
discussion in [39].

In order to proceed, let us assume that the predicted posterior
for each class at time k given Z1:k�1 is a mixture of (complex
or real, according to the field where Rk, given Ck, is defined)
inverse Wishart [16], [30]

Pk|k�1 (Rk |Ck ) =
NWX

n=1

w(n,Ck)
k|k�1 IW(Rk; bR(n,Ck)

k|k�1 , ⌫̂
(n,Ck)
k|k�1 ),

(10)
where R̂

(n,Ck)
k|k�1 and ⌫̂(n,Ck)

k|k�1 are the scale matrix and degrees of
freedom associated with the n-th inverse Wishart component
of the mixture characterizing the class Ck. The weight w(n,Ck)

k|k�1
is the probability of the n-th component of the mixture at time
k for the class Ck, having observed the data up to time k � 1:

w(n,Ck)
k|k�1 := P(Nk = n |Ck, Z1:k�1 ) = Pk|k�1(n |Ck ), (11)

where Nk defines the auxiliary discrete random variable that
models the switch among the different modes, from n = 1 to
n = NW . Hereafter, the variable n refers to a specific value of
the random variable Nk, i.e., Nk = n. The quantities R̂

(n,Ck)
k|k�1 ,

⌫̂(n,Ck)
k|k�1 , and w(n,Ck)

k|k�1 summarize the information acquired from
the data up to time k � 1, related to both Ck and Rk. When
a new set of observables Zk is gathered, the aforementioned
quantities are updated.

A. Matrix Update Step
In this subsection we compute Pk|k (Rk |Ck ), Ck 2 C,

namely, the statistical characterization of Rk, given Ck and
Z1:k. From the law of total probability it stems

Pk|k(Rk|Ck) =
NWX

n=1

w(n,Ck)
k|k Pk|k(Rk|n,Ck), (12)

where

w(n,Ck)
k|k := P(Nk = n|Ck,Z1:k),

Pk|k(Rk|n,Ck) := P(Rk|Nk = n,Ck,Z1:k).

The updated mixture weight is computed by Bayes’ rule as

w(n,Ck)
k|k =

P(Zk|n,Ck,Z1:k�1)w
(n,Ck)
k|k�1

PNW

n=1 P(Zk|n,Ck,Z1:k�1)w
(n,Ck)
k|k�1

=
↵(n,Ck)
k w(n,Ck)

k|k�1
PNW

n=1 ↵
(n,Ck)
k w(n,Ck)

k|k�1

, (13)

where we have defined

↵(n,Ck)
k := P(Zk|n,Ck,Z1:k�1) (14)

(a)
=

Z
P(Zk|Ck,Rk)Pk|k�1(Rk|n,Ck) dRk

=

Z
P(Zk|Ck,Rk)

⇥ IW
⇣
Rk; bR(n,Ck)

k|k�1 , ⌫̂
(n,Ck)
k|k�1

⌘
dRk,

and in (a) we have exploited the conditional independence of
Zk from Z1:k�1 and Nk = n, given the state Xk = (Ck,Rk),
i.e.,

P(Zk|n,Ck,Rk,Z1:k�1) = P(Zk|Ck,Rk). (15)
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We proceed analogously to compute the updated components
of the n-th mixand:

Pk|k(Rk|n,Ck) =
P(Zk|Ck,Rk)Pk|k�1(Rk|n,Ck)Z
P(Zk|Ck,Rk)Pk|k�1(Rk|n,Ck) dRk

.

(16)

Being the prior a complex (or real) IW, i.e.,

Pk|k�1(Rk|n,Ck) = IW(Rk; bR(n,Ck)
k|k�1 , ⌫̂

(n,Ck)
k|k�1 )

and the data complex (or real) multivariate Gaussian distributed,
eq. (16) is again (or can be approximated as) an IW (see
Appendix I):

Pk|k(Rk|n,Ck) = IW(Rk; bR(n,Ck)
k|k , ⌫̂(n,Ck)

k|k ), (17)

with the parameter R̂(n,Ck)
k|k and the degrees of freedom ⌫̂(n,Ck)

k|k ,
that clearly depend on Zk, the previous IW parameters, as
well as the class model. Formally:
⇣
bR(n,Ck)
k|k , ⌫̂(n,Ck)

k|k

⌘
= fU

⇣
Zk, bR(n,Ck)

k|k�1 , ⌫̂
(n,Ck)
k|k�1 , Ck

⌘
,

(18)
where the function fU (·) can be obtained according to the
guidelines in Appendix I; specific instances of this update
equation are provided in Sec. IV. Summarizing, the posterior
update of Rk is given by

Pk|k(Rk|Ck) =
NWX

n=1

w(n,Ck)
k|k IW

⇣
Rk; bR(n,Ck)

k|k , ⌫̂(n,Ck)
k|k

⌘

w(n,Ck)
k|k =

↵(n,Ck)
k w(n,Ck)

k|k�1
PNW

n=1 ↵
(n,Ck)
k w(n,Ck)

k|k�1

where the the IW parameters are provided in (18) and ↵(n,Ck)
k

is given by (14).

B. Class Update Step

Let us assume now that the class probability Pk|k�1 (Ck),
Ck 2 C, is available at time k, given the data up to time
k � 1. For ease of notation, let us define the class probability
as pk|j(Ck) := Pk|j (Ck). When the new observation Zk is
available, the class probability is updated as follows

pk|k (Ck) =
P(Zk|Ck,Z1:k�1)pk|k�1 (Ck)X

c2C
P(Zk|Ck = c,Z1:k�1)pk|k�1 (c)

. (19)

Using the law of total probability, the first term of the numerator
in (19) can be expressed as

P(Zk|Ck,Z1:k�1) =
NWX

n=1

P(Zk|n,Ck,Z1:k�1)w
(n,Ck)
k|k�1 ,

(a)
=

NWX

n=1

↵(n,Ck)
k w(n,Ck)

k|k�1 , (20)

where in (a) we have used (14). Substituting (20) in (19) we
finally obtain the update rule for the class probability

pk|k(Ck) =

 
NWX

n=1

w(n,Ck)
k|k�1 ↵

(n,Ck)
k

!
pk|k�1(Ck)

X

c2C

NWX

n=1

w(n,c)
k|k�1 ↵

(n,c)
k pk|k�1(c)

.

The update steps are summarized in Algorithm 1.
In the following subsections we will describe the prediction

procedure to establish the joint posterior distribution of
the class and the related random matrix, namely Xk+1 =
{Rk+1, Ck+1}, at time k + 1, given the observations up to
time k:

Pk+1|k(Xk+1) = Pk+1|k(Rk+1|Ck+1) pk+1|k(Ck+1). (21)

C. Class Prediction Step
The predicted class probability is computed by means of the

Markov chain assumption (6) as follows:

pk+1|k(Ck+1) =
X

Ck2C
P(Ck+1|Ck,Z1:k)P(Ck|Z1:k)

(a)
=
X

Ck2C
P(Ck+1|Ck)pk|k(Ck), (22)

where in (a) we have exploited the independence of Ck+1 from
the data up to k given Ck, which stems from the hierarchical
Markov assumption discussed in Sec. II-B.

In summary, the predicted class probability is

pk+1|k(Ck+1) =
X

Ck2C
P(Ck+1|Ck) pk|k(Ck).

D. Matrix Prediction Step
Focusing now on the matrix prediction step, i.e., Rk+1

given Z1:k and Ck+1, the law of total probability on Ck can
be exploited as follows

Pk+1|k(Rk+1|Ck+1) =
X

Ck2C
P(Rk+1|Ck+1, Ck,Z1:k)

⇥ P(Ck|Ck+1,Z1:k), (23)

where the last term in the previous summation can be recast
applying Bayes’ rule:

P(Ck|Ck+1,Z1:k) =

P(Ck+1|Ck)z }| {
P(Ck+1|Ck,Z1:k)

Pk|k(Ck)z }| {
P(Ck|Z1:k)

P(Ck+1|Z1:k)| {z }
Pk+1|k(Ck+1)

=
P(Ck+1|Ck)pk|k(Ck)

pk+1|k(Ck+1)
. (24)

Using again the total probability rule on Rk, the first factor
at the right-hand side of (23) can be expressed as

P(Rk+1|Ck+1, Ck,Z1:k) =

Z P(Rk+1|Ck+1,Ck,Rk)z }| {
P(Rk+1|Ck+1, Ck,Rk,Z1:k)

⇥ P(Rk|Ck+1, Ck,Z1:k)dRk,

(25)
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where the dependence on Z1:k is deleted in the first term of
the integrand, being Rk+1 independent of Z1:k conditioned
on Ck+1, Ck, and Rk. The second term can be computed as

P(Rk|Ck+1, Ck,Z1:k) =
P(Rk, Ck+1, Ck|Z1:k)

P(Ck+1, Ck|Z1:k)

(a)
=

P(Rk, Ck|Z1:k)

P(Ck+1|Ck)z }| {
P(Ck+1|Ck,Rk,Z1:k)

P(Ck|Z1:k) P(Ck+1|Ck,Z1:k)| {z }
P(Ck+1|Ck)

= Pk|k(Rk|Ck), (26)

where in (a) we have exploited the hierarchical Markov
property by which Ck+1 conditioned on Ck is independent of
Rk and Z1:k. Substituting (26) in (25), we obtain:

P(Rk+1|Ck+1, Ck,Z1:k)

=

Z
P(Rk+1|Ck+1, Ck,Rk)Pk|k(Rk|Ck)dRk

=
NWX

n=1

w(n,Ck)
k|k

Z
P(Rk+1|Ck+1, Ck,Rk)

⇥ IW(Rk; bR(n,Ck)
k|k ; ⌫̂(n,Ck)) dRk. (27)

Enforcing the solution of the integral in the last equality
of (27) to be again an IW via moment matching (see details
in Appendix II) and marginalizing (27) w.r.t. Ck, see eq. (23),
we obtain the prediction matrix distribution

Pk+1|k(Rk+1|Ck+1) =
NWX

n=1

X

Ck2C
w

(n,Ck+1,Ck)
k+1|k

⇥IW(Rk+1; bR(n,Ck+1,Ck)
k+1|k ; ⌫̂(n,Ck+1, Ck)), (28)

where

w
(n,Ck+1,Ck)
k+1|k = w(n,Ck)

k|k P(Ck|Ck+1,Z1:k)

= w(n,Ck)
k|k

P(Ck+1|Ck) pk|k(Ck)

pk+1|k(Ck+1)
. (29)

The IW parameters bR(n,Ck+1,Ck)
k+1|k and ⌫̂(n,Ck+1,Ck) of the

prediction step follow a suitable moment matching approxi-
mation, reported in Appendix II and III, that generalizes the
approach in [30] including the cases with Ck 6= Ck+1 that
accounts for the different matrix structures of distinct classes.
In particular, each of the NW modes associated to a given
Ck will lead to a new mixand component. Such update is
expressed by the function
⇣
bR(n,Ck+1,Ck)
k+1|k , ⌫̂

(n,Ck+1,Ck)
k+1|k

⌘

= fP
⇣
bR(n,Ck)
k|k , ⌫̂(n,Ck)

k|k , Ck, Ck+1

⌘
. (30)

The function fP (·) can be obtained according to the guidelines
provided in Appendix II and III.

Remark: In the prediction step, the number of components
of the mixture in each class increases to NW ⇥ NC . In
order to avoid an increase of the computational complexity,
following [22], at each time update a pruning criterion is
adopted. For instance, only the first NW components, sorted

according to their weights are retained. Furthermore IW
components close to each other can be also merged, see
e.g. [33]. The new weights are then normalized to one and the
modes again indexed via the finite set {1, . . . , NW } (having
removed, without loss of generality, the explicit dependency
on the previous class).

In summary, the prediction distribution of the matrix condi-
tioned on the class is

Pk+1|k(Rk+1|Ck+1)

=
NWX

n=1

w
(n,Ck+1)
k+1|k IW(Rk+1; bR(n,Ck+1)

k+1|k , ⌫̂
(n,Ck+1)
k+1|k ),

where w
(n,Ck+1)
k+1|k , bR(n,Ck+1)

k+1|k and ⌫̂
(n,Ck+1)
k+1|k refer, respectively,

to the update weights (their sum over n is equal to one), the
scale matrix, and the degrees of freedom associated to the n-th,
n = 1, . . . , NW , selected mode for the class Ck+1.

IV. ICM MODELS FOR HOMOGENEOUS CLUTTER

This section is devoted to the specialization of the MC-
IWM filter to radar and sonar applications, for the adaptive
classification and estimation of the ICM of homogeneous clutter,
e.g., see [1], [20]. This scenario is of primary interest in radar, as
it approximates real operating environments [2], [40]–[42]. Note
that in the presence of clutter outliers, a selection procedure
should be exploited to censor outliers and come up with a set
of homogeneous data [20].

Here we consider a scenario with three classes. The first
class is the white noise class, with Mk = Rk I and Rk > 0;
the second class describes persymmetric matrices (which model
the radar ICM for symmetrically spaced temporal or spatial
samples), i.e., Mk = U

†
RkU [41], with Rk 2 S

m
++ and

being U the specific unitary matrix defined in [41]. Finally, in
the third class Mk = Rk is a generic m⇥m ICM.

Assuming homogeneous clutter, the data are distributed
according to (2) and then the likelihood is given by

P(Zk|Rk, Ck)

=

8
><

>:

(⇡Rk)
�Nm e�Tr(ZkZ

†
kR

�1
k ) Ck = 1,

|⇡Rk|�N e�Tr(<{UZkZ
†
kU

†}R�1
k ) Ck = 2,

|⇡Rk|�N e�Tr(ZkZ
†
kR

�1
k ) Ck = 3.

(31)

The variables ↵(n,Ck)
k in Algorithm 1 are given as follows

↵(n,Ck)
k =

Z
P (Zk|Ck,R) IW

⇣
R; bR(n,Ck)

k|k�1 , ⌫̂
(n,Ck)
k|k�1

⌘
dR.

(32)
Specifically, for Ck = 1, eq. (32) specializes to

↵(n,1)
k = 2Nm⇡�Nm

��� bR(n,1)
k

���
⌫̂
(n,1)
k|k�1

2 1(2Nm+ ⌫̂(n,1)k|k�1)

1(⌫̂
(n,1)
k|k�1)

⇥
���2Tr

⇣
ZkZ

†
k

⌘
+ bR(n,1)

k|k�1

���
�

2Nm+⌫̂
(n,1)
k|k�1

2
, (33)
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for Ck = 2 to

↵(n,2)
k = 2Nm⇡�Nm

��� bR(n,2)
k|k�1

���
⌫̂
(n,2)
k|k�1

2 m(2N + ⌫̂(n,2)k|k�1)

m(⌫̂(n,2)k|k�1)

⇥
���2<

n
UZkZ

†
kU

†
o
+ bR(n,2)

k|k�1

���
�

2N+⌫̂
(n,2)
k|k�1
2

, (34)

and for Ck = 3 to

↵(n,3)
k = ⇡�Nm

��� bR(n,3)
k|k�1

���
⌫̂(n,3)
k|k�1

̃m(N + ⌫̂(n,3)k|k�1)

̃m(⌫̂(n,3)k|k�1)

⇥
���ZkZ

†
k + bR(n,3)

k|k�1

���
�(N+⌫̂(n,3)

k|k�1
)
, (35)

where p(⌫) and ̃p(⌫) are defined as

p(⌫) = ⇡p(p�1)/4
pY

i=1

�


1

2
(⌫ + 1� i)

�
, (36)

̃p(⌫) = ⇡
p(p�1)

2

pY

i=1

� [(⌫ + 1� i)] . (37)

Furthermore, for any mode n = 1, . . . , NW , being fCk(Rk) =
ACkdiagKCk

(Rk)A
†
Ck

, with KC = m for C = 1, KC = 1

for C = 2, 3, ACk 2 C
m,m and

⇣
ACkA

†
Ck

⌘
� 0, the IW

distribution is the the conjugate prior for Rk, see details in
Appendix I. Hence, it follows that the function fU (·) defined
in (18) is given by

bR(n,Ck)
k|k =

8
>><

>>:

2Tr
⇣
ZkZ

†
k

⌘
+ bR(n,Ck)

k|k�1 Ck = 1,

2<
n
UZkZ

†
kU

†
o
+ bR(n,Ck)

k|k�1 Ck = 2,

ZkZ
†
k + bR(n,Ck)

k|k�1 Ck = 3,

and

⌫̂(n,Ck)
k|k =

8
>><

>>:

2Nm+ ⌫̂(n,Ck)
k|k�1 Ck = 1,

2N + ⌫̂(n,Ck)
k|k�1 Ck = 2,

N + ⌫̂(n,Ck)
k|k�1 Ck = 3.

Finally, the specialization of (28) to the three-class example
is not reported here for brevity, but easily follows from the
general treatment developed in Appendix II and III.

V. COMPUTER EXPERIMENTS

This section is devoted to the performance analysis of
the proposed MC-IWM filter on simulated data and its
comparison with other methods. We assume homogeneous
Gaussian disturbance generated according to (2) and several
time-varying structures of the ICM Mk; a case study with the
appearance of an additional interference term is also included.
In the computer simulations, the hybrid state (Rk, Ck) over
time does not necessarily evolve according to the statistical
model assumed in the previous sections (i.e., the state can
be piecewise constant in time). This mismatch is intentional
and proves the robustness of the proposed approach. In all the
simulations, the degrees of freedom of the transition Wishart
distribution (9) is set to ⌫ = N⌧ , with N⌧ > m + 4, if

Ck = Ck+1, and to ⌫ = m + 4 otherwise, in order to allow
a larger spread of any IW around its mean when the class
changes from k to k + 1; the parameter ⌧ can be seen as the
analogous of a forgetting factor for the MC-IWM filter, and
can be tuned depending on the specific application. Among
all the available Bayesian estimators, we select the posterior
mean, defined as:

cMk|k = E [Mk|Z1:k] =
NCX

c=1

NWX

n=1

pk|k(c)w
(n,c)
k|k

cMk|k(n, c),

where cMk|k(n, c) is the expected mean conditioned to the
n-th mode of the IW mixture of the class c. Recalling that the
mean of an IW distribution IW

⇣
R; bR, ⌫̂

⌘
of dimensionality

p is bR/(⌫̂ � p� 1) if real, or bR/(⌫̂ � p) if complex. For the
classes defined in Sec. IV we have

cMk|k(n, c) =

8
>>>><

>>>>:

⇣
⌫̂(n,1)k|k � 2

⌘�1 bR(n,1)
k|k I, c = 1,

⇣
⌫̂(n,2)k|k �m� 1

⌘�1 bR(n,2)
k|k , c = 2,

⇣
⌫̂(n,3)k|k �m

⌘�1 bR(n,3)
k|k , c = 3.

A. Single class

In the first experiment we assume a homogeneous Gaussian
clutter environment, with ICM

Mk = Mc + �2
aI. (38)

The ICM Mc is exponentially shaped, with entries given by

Mc(k, l) = �2
c⇢

|k�l|pej2⇡(k�l)fc , (39)

where j =
p
�1 is the imaginary unit, ⇢ is the one-lag

correlation coefficient of the clutter [43], and �c and fc
denote, respectively, the clutter power level and normalized
Doppler frequency. In this first experiment, we simulate a
homogeneous land environment, assuming ⇢ = ⇢(l) = 0.999,
p = p(l) = 1, fc = f (l)

c = 0 and clutter to noise ratio
CNR(l) = �2

c/�
2
a = 30dB. In Fig. 2 the Frobenius norm

of the MC-IWM filter estimation error (suitably normalized
w.r.t. its trace) of Mk is reported, for several values of ⌧ . As
expected, the estimation error decays slower as ⌧ increases.
The error does not converge to zero: there exists a floor value
to which the estimation error converges for large k. The larger
is ⌧ , the smaller the floor level is, and later the convergence
takes place. To the limit, when ⌧ ! 1, the estimation error
of the proposed MC-IWM filter converges to zero as k ! 1
and to the performance of a ML filter that operates on all the
data observed up to time step k, depicted in the same figure
with a solid black line. Finally, the performance is compared
with that of a knowledge-based recursive least square (KB-
RLS) filter [44], also in its version that takes advantage of
the persymmetric structure of the covariance matrix (KB-RLS-
P). For fairness of comparison, it should be noted that the
increased performance of the MC-IWM filter comes at a cost
of a higher computational complexity.
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Fig. 2. Single-class analysis of the covariance matrix estimation error of the
proposed MC-IWM filter compared with that of other approaches available
in literature. The covariance matrix estimation error is suitably normalized
w.r.t. its trace in order to be comparable with that of the RLS and RLS-P
approaches. Values on the y axis are in decibel units. Data is generated as
described in Sec. V-A. Dashed lines to the RLS and RLS-P algorithms [44],
with the forgetting factor � set to 0.99. Solid lines refer to the estimation
error of the MC-IWM filter, for several values of the adaptation rate ⌧ . Finally,
the solid black line refer to a ML estimator that operates on all the observed
data. Curves are averaged over 100 runs and m = 8.

B. Sea-land-sea clutter transition

A second experiment is devoted to the analysis of perfor-
mance when the clutter environment is not homogeneous in
space, being instead composed of three different regions; the
first and last regions contain homogeneous sea clutter, while the
second one contains homogeneous land clutter. Also, smooth
transitions at the interfaces between regions with different
clutter properties are simulated by gradually increasing the ratio
of measurements from the regions before and after the transition.
The land clutter ICM is simulated as in the previous experiment;
the sea clutter ICM is also exponentially shaped and generated
according to (38) and (39), but with p = p(s) = 2, a lower
one-lag correlation coefficient ⇢ = ⇢(s) = 0.8 and a non-
null normalized Doppler frequency fc = f (s)

c = 0.2. The
performance of the MC-IWM filter, configured as described in
Sec. IV, is depicted in Fig. 3a and 3c, in terms of classification
capability and ICM estimation error, respectively. Having both
the sea and land clutter a persymmetric covariance matrix, the
proposed filter correctly classifies the data as belonging to
class 2, as it is reported in Fig. 3a. This is a consistent trend
over k, with the exception of the transition regions, where
the posterior probability for class 2 drops, for a couple of
samples, below 0.5. Conversely, the BIC seems unaffected by
the transition, and correctly assigns a posterior probability of
1 to class 2. Fig. 3c, showing the norm of the ICM estimation
error, suitably normalized w.r.t. its trace, offers a comparison
of the proposed approach with other techniques available in
literature. First, it must be noted the accuracy improvement
over both the ML estimator and its clairvoyant version, which
has knowledge of the true disturbance class and uses it to
achieve a higher estimation accuracy. From the same figure,

the estimation error can be compared also with that of the KB-
RLS and KB-RLS-P [44], which initially perform better than
the MC-IWM filter, but then prove to be less reactive to the
change of environment than the proposed solution. Moreover,
the KB-RLS and KB-RLS-P filters require prior knowledge on
the position of the clutter edges, which is not required with the
proposed approach. A priori information can also be employed
in the proposed approach, for instance by allowing the greatest
possible spread around the mean for the predictive distribution
of the ICM. This is also reported in Fig. 3c by the curve
labeled KB-MC-IWM (knowledge-based MC-IWM), which
slightly improves the accuracy over clutter edges. Finally, it
should be noted that the decay of the classification performance
around the transitions does not affect the accuracy of the ICM
estimation.

C. Three classes
In the third experiment, a heterogeneous scenario composed

of three different clutter regions is considered. In the first region,
only white disturbance is present; the second region contains
white disturbance, land and sea clutter; finally, the third region
contains all before mentioned, plus a fixed interference term.
Formally, we have

Mk =

8
><

>:

�2
aI data class 1

�2
aI +M

(l)
c +M

(s)
c data class 2

�2
aI +M

(l)
c +M

(s)
c + P data class 3,

(40)

where P is a fixed interference term with the following diagonal
structure

P (i, j) =

(
pii > 0 i = j = 1, . . . , nint

0 i 6= j, i = nint + 1, . . . ,m
(41)

with pmax � P (i, i) � P (i + 1, i + 1) � pmin; this further
term may account, from a physical point of view, for the
presence of additional interference due, e.g., to the appearance
of a frequency modulated radar, or also the activation of a
frequency-hopping jammer of shorter duration than the PRI and
in the same operating band as the radar. The performance of
the proposed MC-IWM filter is reported in Figures 3b and 3d,
in terms of class detection probability and ICM estimation
error, respectively. As it is apparent from Fig. 3b, the proposed
filter is able to correctly detect all three classes; additionally,
for class 3, it also outperforms the classification performance
of the BIC. Running in a single snapshot configuration, the
BIC is in fact able to correctly identify only classes 1 and
2, while class 3 is mistaken for class 2. A complementary
perspective on the filter performance is provided in Fig. 3d,
where the estimation accuracy of the proposed approach is
compared with that of a generic ML estimator and a clairvoyant
ML estimator, which has knowledge of the true ICM structure;
the ML approaches are both outperformed by the proposed
MC-IWM filter, with a noticeable improvement in accuracy.

D. Classification performance vs BIC
Finally, one last experiment is devoted to a more extensive

comparison of the classification performance of the proposed
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filter against that of the BIC. The simulation setup is similar
to the previous experiment: the data is generated as in (40),
but now the clutter regions are considered separately, i.e., once
at a time, and the data class does not change over time in each
run. In order to let vanish the effects of a possibly unmatched
prior, the proposed filter has been let run sufficiently long
(specifically, for 5 samples) before evaluating the probability of
correct classification. The results of the analysis are reported in
Table I, for m = 8 and several values of N . The analysis shows
that the proposed MC-IWM filter is able to correctly identify
all three classes; moreover, its performance is consistently
superior w.r.t. the BIC, especially for low values of ⇢ in the
second class, and also in the third class, where the proposed
approach can evidently achieve the same detection capability
of the BIC with approximately half data (in each snapshot).

VI. CONCLUSION

In this paper, we proposed a novel and general filtering
strategy, able to process sequential observations for tracking
random matrices, that are defined on multiple nested classes.
The proposed filter, referred to as multi-class inverse Wishart
mixture (MC-IWM), relies on a hybrid state composed by a
discrete random variable representing the class and a positive
definite random matrix. We focused on the filtering of the
interference covariance matrix (ICM) from the secondary radar
(sonar) data in homogeneous clutter environments. The perfor-
mance assessment of the proposed method has been evaluated
in terms of both classification, i.e., environment identification,
and ICM estimation accuracy. The results have shown that the
proposed approach may provide better performance against
both single-scan techniques, such as the Bayesian Information
Criterion (BIC), in terms of classification, as well as against
sequential techniques, such as maximum likelihood estimation
and knowledge-based recursive least square filtering, in terms
of ICM estimation accuracy. Possible future research tracks
include the analysis and the performance assessment of the MC-
IWM filter with real data sets, collected by either radar or sonar
systems, as well as the extension of the proposed approach
to the case of compound-Gaussian clutter [45]. Finally, the
proposed filter can also be applied in the context of extended
target tracking to model structured shape extensions, including
targets with length equal to the width, negligible length (or
width), or composed by multiple ellipses.

APPENDIX I
CLASS PARAMETERS POSTERIOR UPDATE

In this section, it is shown that (17) holds true whenever

Mk = fCk(Rk) = ACkdiagKCk
(Rk)A

†
Ck

, (42)

being ACk 2 C
m,m a class-dependent matrix such that⇣

ACkA
†
Ck

⌘
� 0, i.e., it is full-rank. This model encompasses

many classes of practical interest, as illustrated in Sec. IV.

Input :Zk = [z1,k, · · · , zN,k], k = 1, . . . ,K⇣
R(n,C1)

0 , ⌫(n,C1)
0

⌘
, n = 1, . . . , NW , C1 2 C

Output :
⇣
bR(n,Ci)
i|k , ⌫̂(n,Ci)

i|k

⌘
, w(n,Ci)

i|k , pi|k(Ci), for Ci 2 C,
i = k, k + 1, k = 1, . . . ,K, C = {1, . . . , NC}

Initialization
k  � 1, pk|k�1(c) � N�1

C
for C1 2 C do

for n 2 {1, . . . , NW } do
w(n,C1)

k|k�1  � N�1
W⇣

bR(n,C1)
k|k�1 , ⌫̂

(n,C1)
k|k�1

⌘
 �

⇣
R(n,C1)

0 , ⌫(n,C1)
0

⌘

end
end
for k 2 {1, . . . ,K} do

Update
Observe new data Zk

for Ck 2 {1, . . . , NC} do
for n 2 {1, . . . , NW } do

↵(n,Ck)
k  �

Z
P (Zk|Ck,Rk)

⇥ IW
⇣
R; bR(n,Ck)

k|k�1 , ⌫̂(n,Ck)
k|k�1

⌘
dR

w(n,Ck)
k|k  �

↵(n,Ck)
k w(n,Ck)

k|k�1
PNW

n=1 ↵
(n,Ck)
k w(n,Ck)

k|k�1⇣
bR(n,Ck)
k|k , ⌫̂(n,Ck)

k|k

⌘
 �

fU
⇣
Zk, bR(n,Ck)

k|k�1 , ⌫̂(n,Ck)
k|k�1 , Ck

⌘

end
pk|k(Ck) �⇣PNW

n0=1 w
(n0,Ck)
k|k�1 ↵(n0,Ck)

k

⌘
pk|k�1(Ck)

PNC
C0

k=1

PNW
n0=1 w

(n0,C0
k)

k|k�1 ↵
(n0,C0

k)

k pk|k�1(C0
k)

end
Prediction
for Ck+1 2 {1, . . . , NC} do

n0  � 1
pk+1|k(Ck+1) �

P
C0

k
⇡Ck+1C

0
k
pk|k(C

0
k)

for Ck 2 {1, . . . , NC} do
for n 2 {1, . . . , NW } do

w
(n0,Ck+1)

k+1|k = w
(n,Ck+1,Ck)

k+1|k  �

w(n,Ck)
k|k

⇡Ck+1Ckpk|k(Ck)

pk+1|k(Ck+1)⇣
bR(n0,Ck+1)

k+1|k , ⌫̂
(n0,Ck+1)

k|k

⌘
=

⇣
bR(n,Ck+1,Ck)

k+1|k , ⌫̂
(n,Ck+1,Ck)

k|k

⌘
 �

fP
⇣
bR(n,Ck)
k|k , ⌫̂(n,Ck)

k|k , Ck+1, Ck

⌘

n0  � n0 + 1
end

end
end
Pruning
for Ck+1 2 {1, . . . , NC} do

Sort the NW ⇥NC mixture components according to
the weights {w(n0,Ck+1)

k+1|k }NW NC
n0=1 retaining the first

NW elements
for n 2 {1, . . . , NW } do

w
(n,Ck+1)

k+1|k  �
w

(n,Ck+1)

k+1|k
NWX

n0=1

w
(n0,Ck+1)

k+1|k

end
end

end

Algorithm 1: Multi-class inverse Wishart mixture filter.
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TABLE I
PROBABILITY OF CORRECT CLASSIFICATION

P(Ck = 1)
P(Ck = 2) P(Ck = 3)

⇢ = 0.2 ⇢ = 0.3 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.8 ⇢ = 0.99

N MC-IWM BIC MC-IWM BIC MC-IWM BIC MC-IWM BIC MC-IWM BIC MC-IWM BIC MC-IWM BIC MC-IWM BIC

10 1.000 1.000 0.010 0.000 0.340 0.000 0.915 0.000 1.000 0.000 0.995 0.277 1.000 1.000 1.000 0.166

12 0.990 1.000 0.010 0.000 0.420 0.000 0.965 0.000 1.000 0.001 0.995 0.476 1.000 1.000 1.000 0.412

16 1.000 1.000 0.025 0.000 0.655 0.000 0.995 0.000 1.000 0.003 1.000 0.872 1.000 1.000 1.000 0.926

20 1.000 1.000 0.065 0.000 0.905 0.000 0.990 0.000 1.000 0.013 1.000 0.987 1.000 1.000 1.000 0.998

24 1.000 1.000 0.135 0.000 0.970 0.000 1.000 0.000 1.000 0.089 1.000 1.000 1.000 1.000 1.000 1.000

28 1.000 1.000 0.235 0.000 0.980 0.000 1.000 0.000 1.000 0.240 1.000 1.000 1.000 1.000 1.000 1.000

32 1.000 1.000 0.385 0.000 0.990 0.000 1.000 0.000 1.000 0.499 1.000 1.000 0.995 1.000 1.000 1.000

64 1.000 1.000 0.995 0.000 1.000 0.000 1.000 0.026 1.000 1.000 1.000 1.000 0.985 1.000 1.000 1.000

128 1.000 1.000 1.000 0.000 1.000 0.020 1.000 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Probability of correct environment classification of the proposed MC-IWM filter versus the BIC approach. The MC-IWM performance is evaluated after 5 samples,
while the BIC works on single snapshots. The thermal noise power level is set to �2

a = 0dB; the statistical properties of the sea clutter are CNR(s) = 20dB,
⇢(s) = 0.8, p(s) = 2 and f (s)

c = 0.2; the statistical properties of the land clutter are CNR(l) = 30dB, ⇢(l) = 0.999, p(l) = 1, and f (l)
c = 0. The fixed interference

matrix P in class 3 is a diagonal matrix with diagonal components set to [40 dB, 36 dB, 32 dB, 28 dB, 24 dB, 20 dB, 0, 0]. The MC-IWM filter adaptation rate was
set to ⌧ = 10 and the components of the transition matrix to ⇡ij = 0.98 if i = j and to ⇡ij = 0.01 if, otherwise, i 6= j. Results are averaged over 200 runs and
m = 8.

In order to proceed, let us focus on a specific class and,
to simplify the notation, denote c = Ck, R = Rk, Z = Zk,
K = KCk = m/mc (with mc the size of Rk), and ACk = A.
We assume that R ⇠ IW

⇣
R; bR, b⌫

⌘
. Then, if R 2 S

mc
++, the

joint distribution between R and Z is proportional to

P(R,Z)
(a)
/ |R|�

mc+b⌫+1
2 e�

1
2Tr(R

�1 bR)

⇥
��AdiagK (R)A†���N

⇥ e
�Tr

⇣
ZZ†(AdiagK(R)A†)�1

⌘

(b)
/ |R|�

mc+b⌫+1+2KN
2 e�

1
2Tr(R

�1 bR1)

where in (a) we have used the likelihood expression of Z and
the IW distribution of R [46], and (b) follows by algebraic
manipulations, not reported for the sake of brevity. In the above
expression we have defined:

bR1 := bR+ 2
K�1X

i=0

D
h
<
⇣
A

�1
ZZ

†
A

†�1
⌘imc

i
.

Thus, the posterior of R is a real IW with scale matrix bR1 and
b⌫ + 2KN degrees of freedom. If instead R 2 H

mc
++, similarly

to the previous case the joint distribution between R and Z is
proportional to

P(R,Z) / |R|�(mc+b⌫) e�Tr(R�1 bR) ��AdiagK (R)A†���N

⇥ e
�Tr

⇣
ZZ†(AdiagK(R)A†)�1

⌘

/ |R|�(mc+b⌫+KN) e�Tr(R�1 bR1),

where again we have exploited the likelihood and IW expres-
sions [15], [19], [47] with

bR1 = bR+
K�1X

i=0

D
h
A

�1
ZZ

†
A

†�1
imc

i
.

Thus, the posterior of R is a complex IW with scale matrix
bR1 and degrees of freedom b⌫ +KN .

A. General update model

If the classes cannot be described with the model in (42), and
a more general model is required, then, in order to preserve the
IW structure, the general update step (16) can be formulated
in terms of both the moment matching approximation (see
details in Appendix II) and Monte Carlo methods (MCM) [48].
Specifically, the idea is to compute the first and second
moment of the random matrix Rk|Z1:k, n, Ck via MCM and
then enforcing the update distribution to be IW applying the
moment matching technique detailed in Appendix II. To this
end, let h(Rk) be a scalar function of the matrix argument
Rk, for instance an entry of the matrix or its power, and
denote by R

(i)
k , i = 1, . . . , NMCM, i.i.d. matrices drawn from

IW(Rk; bR(n,Ck)
k|k�1 , ⌫̂

(n,Ck)
k|k�1 ) made available from the prediction

step given the data up to time k� 1. Then, applying the MCM
to the distribution given in the update equation (16), it follows
that [48]

E [h (Rk) |Z1:k, n, Ck] ⇡

NMCMX

i=1

h(R(i)
k )P(Zk|Ck,R

(i)
k )

NMCMX

i=1

P(Zk|Ck,R
(i)
k )

,

where, under weak assumptions, the previous equation con-
verges almost surely when NMCM diverges [48].

APPENDIX II
MOMENT MATCHING

Let eR and e�2 be the mean matrix and the total variance of
a random matrix R, i.e.,

e�2 = Tr
⇣
E

h⇣
R� eR

⌘
�
⇣
R

⇤ � eR⇤
⌘i⌘

. (43)

The aim is to approximate the distribution of R with an IW,
whose parameters, RIW and ⌫IW , fulfill the moment matching
conditions. Conditioned on the class, the specific IW mixand,
and the data up to time k, the random matrix R can refer
either to Rk (update) or to Rk+1 (prediction). The conditional
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moments of Rk can be computed2 as in Appendix I-A while
those of Rk+1 can be evaluated as in Appendix III. The
following subsection details the equation systems that ensure
the moment matching.

A. Relation between IW parameters and moments of R
The relation between the IW parameters and the moments

of R are based on the real and complex IW moments
expressions [15], [19], [46], [47]:
8
>>>>>><

>>>>>>:

eR = RIW
⌫IW�mc�1 ,

e�2 =
Pmc

i=1
2R2

IW (i,i)
(⌫IW�mc�1)2(⌫IW�mc�3) ,

R 2 S
mc
++,

eR = RIW
⌫IW�mc

,

e�2 =
Pmc

i=1
R2

IW (i,i)
(⌫IW�mc)2(⌫IW�mc�1) ,

R 2 H
mc
++.

Using the previous equations we can easily obtain the expres-
sion of the IW parameters for both real and complex matrices:
8
>>>>>><

>>>>>>:

⌫IW = mc + 3 + 2
e�2

Pmc

i=1
eR2(i, i),

RIW = eR
⇣
2 + 2

e�2

Pmc

i=1
eR2(i, i)

⌘
,

R 2 S
mc
++,

⌫IW = mc + 1 + 1
e�2

Pmc

i=1
eR2(i, i),

RIW = eR
⇣
1 + 1

e�2

Pmc

i=1
eR2(i, i)

⌘
,

R 2 H
mc
++.

APPENDIX III
PREDICTION STATISTICS EVALUATION

In this subsection, guidelines for the evaluation of the
prediction statistics are provided, as required for the moment-
matching-based IW approximation of the integral in the last
equality of (27). To this end, two covariance classes are
considered, corresponding to the models

fCk(R) = AjdiagKj
(R)A†

j , Ck = j, j 2 {1, 2} ,

where if Ck = 1 then R 2 S
m1
++ and m1 K1 = m; otherwise

if Ck = 2 then R 2 H
m2
++ and m2 K2 = m. In the following,

both the mode n and the observations Z1:k are assumed fixed;
also, all expectations are conditioned to (Ck+1, Ck).

A. Switch between Ck = 1 and Ck+1 = 1

In this case, assuming ⌫ > 0, we have

Rk+1|Ck+1, Ck,Rk ⇠ W
✓
Rk+1,

Rk

⌫
, ⌫

◆
,

Rk|Ck ⇠ IW
⇣
Rk, bRIW , b⌫IW

⌘
,

where Rk is conditionally independent of Ck+1 given Ck. The
conditional moments of Rk+1 are given as follows

eR = E [Rk+1] = E [E [Rk+1|Rk]] =
bRIW

(b⌫IW �m1 � 1)
, (44)

e�2 =
m1X

i=1

�
E
⇥
R

2
k+1(i, i)

⇤
� E

2 [Rk+1(i, i)]
�
. (45)

2In the update step, the moment matching approximation is most useful
when model (42) does not hold; otherwise, the exact forms of Appendix I can
be used to compute the moments.

Hence, from the expressions of the moments reported in [46]
it follows that

E
⇥
R

2
k+1(i, i)

⇤
=

✓
1 +

2

⌫

◆✓
2

b⌫IW �m1 � 3
+ 1

◆

⇥
bR2
IW (i, i)

(b⌫IW �m1 � 1)2
. (46)

Thus, exploiting (44), (45) and (46), we obtain

e�2 =

✓
1 +

2

⌫

◆✓
2

b⌫IW �m1 � 3
+ 1

◆
� 1

�

⇥
 

m1X

i=1

bR2
IW (i, i)

!
1

(b⌫IW �m1 � 1)2
. (47)

B. Switch between Ck = 1 and Ck+1 = 2

We have:

Rk+1|Ck+1, Ck,Rk ⇠ W
 
Rk+1,

K2�1X

i=0

D [g(Rk)]
m2

i

⌫K2
, ⌫

!
,

Rk|Ck ⇠ IW
⇣
Rk, bRIW , b⌫IW

⌘
,

where Rk is conditionally independent of Ck+1 given Ck and

g(Rk) = A21diagK1
(Rk)A

†
21, A21 := A

�1
2 A1,

Note that the matrix 1
K2

PK2�1
i=0 D [g(Rk)]

m2

i , involved in the
Wishart distribution of Rk+1 considered before, is defined
according to a sort of ML-based projection. Precisely,

A2diagK2

 
1

K2

K2�1X

i=0

D [g(Rk)]
m2

i

!
A

†
2

represents the covariance matrix within the second class that
maximizes the likelihood function given the actual covariance
observed at the previous scan, i.e., A1diagK1

(Rk)A
†
1. Let us

now evaluate the statistics of Rk+1|Ck+1, Ck. Based on [15],
[19], [46], [47] and exploiting the linearity of the operators
D[·]m2

i and g(·) we have

eR = E [Rk+1] =

K2�1X

i=0

D
h
g
⇣
bRIW

⌘im2

i

K2(b⌫IW �m1 � 1)

e�2 =
m2X

i=1

�
E
⇥
R

2
k+1(i, i)

⇤
� E

2 [Rk+1(i, i)]
�
,

where

E
⇥
R

2
k+1(i, i)

⇤
= E

⇥
E
⇥
R

2
k+1(i, i)|Rk

⇤⇤
.

According to [47], it follows that

E
⇥
R

2
k+1(i, i)|Rk

⇤
=

 
1

K2

K2�1X

h=0

D[g(Rk)]
m2

h (i, i)

!2✓
1 +

1

⌫

◆
.
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E [Rk(i1, i2)Rk(h1, h2)] =
bRIW (i1, i2) bRIW (h1, h2)

(b⌫IW �m1 � 1)2
+

2 bRIW (i1, i2) bRIW (h1, h2)

(b⌫IW �m1)(b⌫IW �m1 � 1)2(b⌫IW �m1 � 3)

+
bRIW (i1, h1) bRIW (i2, h2) + bRIW (i1, h2) bRIW (h1, i2)

(b⌫IW �m1)(b⌫IW �m1 � 1)(b⌫IW �m1 � 3)
(48)

In order to proceed, let now assume A
†
21 = [a1, . . . ,am] and

observe that

D [g(Rk)]
m2

h (l, l) = a
†
l+hm2

diagK1
(Rk)al+hm2

= Tr

 
Rk

 
K1�1X

e=0

D
h
al+hm2a

†
l+hm2

im1

e

!!
.

Hence,
 

1

K2

K2�1X

h=0

D [g(Rk)]
m2

h (i, i)

!
= Tr

�
RkB

i
�
,

where

B
i =

1

K2

K2�1X

h=0

K1�1X

e=0

D
h
ai+hm2a

†
i+hm2

im1

e
.

As a consequence,

E
⇥
R

2
k+1(i, i)

⇤
=

✓
1 +

1

⌫

◆
E

h�
Tr
�
RkB

i
��2i

=

✓
1 +

1

⌫

◆
vec
⇣
B

iT
⌘T

ERkvec
⇣
B

iT
⌘

where ERk = E
⇥
vec(Rk)vec(Rk)T

⇤
can be computed via

(48). Thus

e�2 =

✓
1 +

1

⌫

◆
Tr (ERkB)�

m2X

i=1

⇣
Tr
⇣
bRIWB

i
⌘⌘2

(b⌫IW �m1 � 1)2

with

B =
m2X

i=1

vec
⇣
B

iT
⌘

vec
⇣
B

iT
⌘T

C. Switch between Ck = 2 and Ck+1 = 1

We have:

Rk+1|Ck+1, Ck,Rk ⇠ W
 
Rk+1,

1

⌫K1

K1�1X

i=0

D [g(Rk)]
m1

i , ⌫

!
,

Rk|Ck ⇠ IW
⇣
bRIW , b⌫IW

⌘
,

where Rk is conditionally independent of Ck+1 given Ck and

g(Rk) = <
n
A12diagK2

(Rk)A
†
12

o
, A12 = A

�1
1 A2.

Also in this case, the scale matrix of the Wishart distribution is
related to the ML-based projection discussed in Appendix III-B.
Let us evaluate the statistics of Rk+1|Ck+1, Ck, leveraging

the expressions of the moments of interest given in [15], [19],
[46], [47] and the linearity of the operators D[·]m1

i and g(·):

eR = E [Rk+1] =

K1�1X

i=0

D
h
g
⇣
bRIW

⌘im1

i

K1(b⌫IW �m2)
.

Given that the computation of the total variance is similar to
the previous case, we report below only the final expression:

e�2 =

✓
1 +

2

⌫

◆
Tr
⇣
ẼRkB̃

⌘
�

m1X

i=1

Tr
⇣
bRIW B̃

i
⌘2

(b⌫IW �m2)2
,

with

B̃ =
m1X

i=1

vec(B̃iT )vec(B̃iT )T ,

B̃
i =

1

K1

K1�1X

h=0

K2�1X

e=0

D
h
ãi+hm1 ã

†
i+hm1

im2

e
,

A
†
12 = [ã1, . . . , ãm] , ẼRk = E

h
vec (Rk) vec (Rk)

T
i
.

where ẼRk can be evaluated according to (49).

D. Switch between Ck = 2 and Ck+1 = 2

We have:

Rk+1|Ck+1, Ck,Rk ⇠ W
✓
Rk+1,

Rk

⌫
, ⌫

◆
,

Rk|Ck ⇠ IW
⇣
Rk, bRIW , b⌫IW

⌘
,

where Rk is conditionally independent of Ck+1 given Ck. The
moments of Rk+1|Ck+1, Ck can be computed as done for the
previous cases. We report in the following the final expressions:

eR = E [Rk+1] =
bRIW

b⌫IW �m2
,

e�2 =

Pm2

i=1
bR2
IW (i, i))

(b⌫IW �m2)2

 �
1 + 1

⌫

�
(b⌫IW �m2)

b⌫IW �m2 � 1
� 1

!
.

E. General prediction model
For an arbitrary class model, MCM can be possibly

exploited to evaluate the moments of interest. Precisely,
let Y

(i), i = 1, . . . ,Mc, be i.i.d. random matrices drawn
from IW(Y ; bR(n,Ck)

k|k ; ⌫̂k|k(n,Ck)). Then, generating Mc

independent random matrices R
(i)
k+1, i = 1, . . . ,Mc, ac-

cording to P(Rk+1|Ck+1, Ck,Y (i)), it follows that, R
(i)
k+1,

i = 1, . . . ,Mc are i.i.d. and distributed as the integral in the
last equality of (27). Hence, as done in the Appendix I-A the
samples Ri

k+1, i = 1, . . . ,Mc, can be exploited to estimate the
desired moments to use in the moment matching procedure.
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E [Rk(i1, i2)Rk(h1, h2)] =
bRIW (i1, i2) bRIW (h1, h2) +

1
⌫IW�m2

bRIW (i1, h1) bRIW (i2, h2)

(b⌫IW �m2)2 � 1
(49)
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Fig. 3. Performance analysis and comparison with other approaches of the proposed MC-IWM filter in terms of classification capability (a)–(b) and ICM
estimation error, in decibel units, (c)–(d). Panels (a) and (c) refer to the simulation study reported in Sec. V-B, while panels (b) and (d) to the experiment
described in Sec. V-C. The background color represents the true environment class over time; in panels (a) and (b), for each time instant, a correct classification is
represented by the highest marker’s color being the same as the background; at each time scan k the class with highest probability is selected and then decisions
are averaged over all Monte Carlo runs. The white noise power level is set to �2

a = 0dB; the statistical properties of the sea clutter are CNR(s) = 20dB,
⇢(s) = 0.8, p(s) = 2, and f

(s)
c = 0.2; the statistical properties of the land clutter are CNR(l) = 30dB, ⇢(l) = 0.999, p(l) = 1 and f

(l)
c = 0. The fixed

interference matrix P in class 3 is a diagonal matrix with diagonal components set to [40 dB, 36.7 dB, 33.3 dB, 30 dB, 26.7 dB, 23.3 dB, 20 dB, 0]. The
MC-IWM filter adaptation rate ⌧ is set to 5. The forgetting factor � of the KB-RLS and KB-RLS-P approach is set to 0.99 in the land and sea regions and
linearly increases from 0.5 to 0.99 in the transition transition regions. Results are averaged over 100 runs; m is set to 8 and N to 16.
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