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We study a combinatorial model of the spread of influence in networks that generalizes 
existing schemata recently proposed in the literature. In our model, agents change 
behaviours/opinions on the basis of information collected from their neighbours in a 
time interval of bounded size whereas agents are assumed to have unbounded memory
in previously studied scenarios. In our mathematical framework, one is given a network 
G = (V , E), an integer value t(v) for each node v ∈ V , and a time window size λ. The 
goal is to determine a small set of nodes (target set) that influences the whole graph. The 
spread of influence proceeds in rounds as follows: initially all nodes in the target set are 
influenced; subsequently, in each round, any uninfluenced node v becomes influenced if 
the number of its neighbours that have been influenced in the previous λ rounds is greater 
than or equal to t(v). We prove that the problem of finding a minimum cardinality target 
set that influences the whole network G is hard to approximate within a polylogarithmic 
factor. On the positive side, we design exact polynomial time algorithms for paths, rings, 
and trees.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many phenomena can be represented by dynamical processes on networks. Examples include cascading failures in physi-
cal infrastructure networks [24], information cascades in social and economic systems [9], spreads of infectious diseases [3], 
and the spreading of ideas, fashions, or behaviours among people [12,41]. Therefore, it comes as no surprise that the 
study of dynamical processes on complex networks is an active area of research, crossing a variety of different disciplines. 
Epidemiologists, social scientists, physicists, and computer scientists have studied diffusion phenomena using very similar 
models to describe the spreading of diseases, knowledge, behaviours, and innovations among individuals of a population 
(see [5,10,27] for surveys of the area).

A particularly important diffusion process is that of viral marketing [32], which refers to the spread of information about 
products and behaviours and their adoption by people. Recently, it has also become an important tool in the communication 
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strategies of politicians [33,40] (see also [38] for a nice survey of the area). Although there are many similarities between 
social and epidemiological contagion [26], social contagion is usually an intentional act on the part of the transmitter and/or 
the adopter, unlike a pathogen contagion. The spread of ideas requires extra mechanisms in addition to mere exposure, e.g., 
some kind of “social pressure”. More importantly, in the marketing scenario one is interested in maximizing the spread of 
information [25], while this is not likely to happen in the spread of pathogenic viruses. The intent of maximizing the spread 
of viral information across a network naturally suggests many optimization problems. Some of them were first articulated in 
the seminal papers [30,31], under various adoption paradigms. The recent monograph [15] contains an excellent description 
of the area. In the next section, we will explain and motivate our model of information diffusion, state the problem that we 
are investigating, describe our results, and discuss how they relate to the existing literature.

2. The model, the context, and the results

The network is represented by a pair (G, t), where G = (V , E) is an undirected graph and t : V −→ N = {1, 2, . . . , } is 
a function assigning integer thresholds to nodes. We assume that 1 ≤ t(v) ≤ deg(v) for each v ∈ V , where deg(v) is the 
degree of v . For a given set S ⊆ V and a time window size λ ∈ N, we consider a dynamical process of influence diffusion in 
G defined by two sequences of node subsets, Influenced[S, r] and Active[S, r], r = 0, 1, . . . , where

Influenced[S,0] = S, Active[S,0] = ∅,

and for any r ≥ 1 it holds that

Influenced[S, r] = Influenced[S, r − 1] ∪ {
v : ∣∣N(v) ∩ Active[S, r]∣∣ ≥ t(v)

}

Active[S, r] =
{
Influenced[S, r − 1] if r ≤ λ

Influenced[S, r − 1] \ Influenced[S, r − 1 − λ] if r > λ
(1)

Intuitively, the set S might represent a group of people who are initially influenced/convinced to adopt a product or an idea. 
Then the cascade proceeds in rounds. In each round r, the set of influenced nodes is augmented by including each node v
that has a number of influenced and still active neighbours greater than or equal to its threshold t(v). A node is active for λ
rounds after it becomes influenced and then it becomes inactive.

Our model is based on the models in [23,34] which assume that people can be divided into three classes at any time 
instant. Ignorants are those not aware of a rumour/not yet influenced, spreaders are those who are spreading it, and stiflers
are those who know the rumour/have been influenced but have ceased to spread the rumour/influence.1 Several rules have 
been proposed to govern the transition from ignorants to spreaders and from spreaders to stiflers, and many papers have 
studied the dynamics of these systems, mostly in stochastic scenarios (see [8,35] and references quoted therein). Here, we 
posit that any ignorant node becomes a spreader if the number of its neighbours who are spreaders is above a certain 
threshold (i.e., the node is subject to a large enough amount of “social pressure”), and any spreader becomes a stifler after 
λ rounds (because the spreader loses interest in the rumour, for instance). Other papers have studied information diffusion 
under similar assumptions [21,29].

Our model also captures another important characteristic of influence diffusion. Indeed, research in Behavioural Eco-
nomics shows that humans take decisions mostly on the basis of very recent events, even though they might hold much 
more in their memory [2,14]. Moreover, it is well known (e.g. [4]) that people are more inclined to react to pieces of in-
formation cumulatively heard during a “short” time interval than to information heard during a considerably longer period 
of time. In other words, one is more likely to be convinced of an opinion heard from a certain number of friends during 
the last few days than by an opinion heard sporadically during the last year from the same number of people. Therefore, 
it seems reasonable to study diffusion processes in which people have bounded memory, and only the number of spreaders 
heard during the last λ rounds may contribute to the change of status of an ignorant node.2 Formally, one has a dynami-
cal process of influence diffusion on G described by the sequence of node subsets Influenced′[S, r], r = 0, 1, . . . , where 
Influenced′[S, 0] = S , and for any r ≥ 1 it holds that

Influenced′[S, r] = Influenced′[S, r − 1] ∪ {
v : ∣∣N(v) ∩ Influenced′[S, r − 1]∣∣ ≥ t(v)

}
(2)

if r ≤ λ, and

Influenced′[S, r] = Influenced′[S, r − 1]
∪ {

v : ∣∣N(v) ∩ (Influenced′[S, r − 1] \ Influenced′[S, r − 1 − λ])∣∣ ≥ t(v)
}

(3)

if r > λ.

1 The reader will notice an analogy with the well known SIR model of mathematical epidemiology [3], in which individuals can be classified as Suscep-
tible, Infected, and Recovered.

2 Another model in which individuals carry a memory of the “amount of influence” received during a bounded time interval has been studied in [26].
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It is immediate that (2) and (3) are an equivalent way to write (1): for any S ⊆ V and r ≥ 1, Influenced′[S, r] =
Influenced[S, r], so we get that the spreading process with “stiflers” also describes the spreading process with “bounded 
memory” governed by (2) and (3).

Summarizing, the specific problem that we shall study in this paper is the following:

Time Window Constrained Target Set Selection (TWC–TSS)
Input: A graph G = (V , E), a threshold function t : V −→N, and a time window size λ.
Output: A minimum size set S ⊆ V such that Influenced[S, r] = V , for some r ≥ 0.

In this paper, we will use the term TWC target set to indicate a set S ⊆ V such that Influenced[S, r] = V for some r ≥ 0.
When λ is large enough, for instance equal to the number n of nodes, our Time Window Constrained Target Set Se-

lection problem is equivalent to the classical Target Set Selection problem studied in [1,6,7,11,13,16–20,22,37,42], among 
others. Strictly related is also the area of dynamic monopolies (see [28,36], for instance). In terms of our second formula-
tion of the TWC–TSS problem, the classical Target Set Selection problem can be viewed as an extreme case in which it is 
assumed that people have unbounded memory. In general, the TWC–TSS and the TSS problems are quite different. One of 
the main difficulties of the new TWC–TSS problem is that the sequence of sets Active[S, r], r = 0, 1, . . . is not necessarily 
monotonically non-decreasing: it is possible that Active[S, r] is larger than Active[S, r + 1] for some values of r. When 
λ = n, we have Active[S, r] = Influenced[S, r − 1] for any r, and monotonicity is restored. At the other extreme, when 
λ = 1, a node v becomes influenced at time r only if at least t(v) of its neighbours become influenced at exactly time r − 1. 
This sort of synchronization in the propagation of influence poses new challenges, both in the assessment of the compu-
tational complexity of the TWC–TSS problem and, especially, in the design of algorithms for its solution. The example in 
which the graph G is a path is particularly illuminating. As we shall see in Section 4.1, the Target Set Selection problem is 
trivial to solve on a path; it is far from being so when there is a fixed time window size λ.

Example 1. Consider the tree T in Fig. 1. The number inside each circle is the node threshold. For convenience, we 
consider T to be rooted at v0. If the time window size is λ = 1, then one set that influences all nodes of T is 
S = {v1,2, v2,2, v2,6, v3,4}. Indeed we have

Influenced[S,0] = {v1,2, v2,2, v2,6, v3,4} = Active[S,1]
Influenced[S,1] = Influenced[S,0] ∪ {v1,1, v1,3, v2,1, v2,3, v2,5, v3,3, v3,5}

Active[S,2] = Influenced[S,1] \ Influenced[S,0] = {v1,1, v1,3, v2,1, v2,3, v2,5, v3,3, v3,5, }
Influenced[S,2] = Influenced[S,1] ∪ {v0, v2,4, v3,2}

Active[S,3] = Influenced[S,2] \ Influenced[S,1] = {v0, v2,4, v3,2}
Influenced[S,3] = Influenced[S,2] ∪ {v3,1} = V

In particular we notice that

– v2,4 ∈ Influenced[S, 2] since both its child v2,5 and its parent v2,3 are active in round 2;
– v0 ∈ Influenced[S, 2] since t(v0) = 2 of its children are active in round 2;
– v3,1 ∈ Influenced[S, 3] since both the root v0 and its child v3,2 are active in round 3.

If we assume a larger value of λ, then a smaller set can be chosen; in particular if λ ≥ 3 then the set S = {v1,2, v2,4, v3,4}
influences all nodes of T . Indeed for λ = 3 we have

Influenced[S,0] = {v1,2, v2,4, v3,4} = Active[S,1]
Influenced[S,1] = Influenced[S,0] ∪ {v1,1, v1,3, v2,3, v2,5, v3,3, v3,5} = Active[S,2]
Influenced[S,2] = Influenced[S,1] ∪ {v2,2, v2,6, v3,2}

Active[S,3] = Influenced[S,2] = {v1,1, v1,2, v1,3, v2,2, v2,3, v2,4, v2,5, v2,6, v3,2, v3,3, v3,4, v3,5}
Influenced[S,3] = Influenced[S,2] ∪ {v2,1}

Active[S,4] = Influenced[S,3] \ Influenced[S,0]
= {v1,1, v1,3, v2,1, v2,2, v2,3, v2,5, v2,6, v3,2, v3,3, v3,5}

Influenced[S,4] = Influenced[S,3] ∪ {v0}
= {v0, v1,1, v1,2, v1,3, v2,1, v2,2, v2,3, v2,4, v2,5, v2,6, v3,2, v3,3, v3,4, v3,5}

Active[S,5] = Influenced[S,4] \ Influenced[S,1] = {v0, v2,1, v2,2, v2,6, v3,2}
Influenced[S,5] = Influenced[S,4] ∪ {v3,1} = V
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Fig. 1. The tree T , rooted at node v0, considered in Example 1. The number inside each node is its threshold.

Our results In Section 3, we prove a strong inapproximability result for the TWC–TSS problem under a plausible com-
putational complexity assumption. The result is obtained by a modification of a proof of the inapproximability of TSS 
by Chen [13]. In view of the strong inapproximability of the TWC–TSS problem, we then turn our attention to special 
cases of the problem. In Section 4 we present the main results of the paper: exact polynomial time algorithms for paths, 
rings, and trees. The algorithms for paths and rings are based on dynamic programming. The algorithm for trees is also 
based on dynamic programming and requires the solution of polynomially many integer linear programs. The polynomial 
time solvability of each integer linear program is guaranteed by the unimodularity of the associated matrix of coeffi-
cients.

3. Hardness of TWC–TSS

In general, our optimization problem TWC–TSS is unlikely to be efficiently approximable, as the following result shows.
The following theorem is a generalization of a similar inapproximability result given in [13] for the Target Set Selection

problem that, as said before, corresponds to our Time Window Constrained Target Set Selection problem when the time 
window size λ is unbounded. Our result holds for any fixed value of λ.

Theorem 1. For any fixed value of the time window size λ, the TWC–TSS problem cannot be approximated within a ratio of O (2log1−ε n)

for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Proof. We prove the theorem by a polynomial time reduction from the same MINREP problem used in [13]. Let G = (V , E)

be a bipartite graph, where V = V A ∪ V B , V A ∩ V B = ∅, and E ⊆ V A × V B . Let A be a family of subsets of V A that partitions 
V A into |A| equally sized subsets, and analogously let the family B be a partition of V B into |B| equally sized subsets. Given 
graph G and partitions A, B, the MINREP problem asks for a subset U ⊆ V of minimum size such that for each A ∈ A and 
B ∈ B

E ∩ (A × B) �= ∅ implies [E ∩ (A × B)] ∩ (U × U ) �= ∅. (4)

Given an instance I of MINREP consisting of the bipartite graph G = (V , E) and the pair of partitions (A, B), we 
construct an instance I ′ of the TWC–TSS problem. More precisely, we will construct a suitable graph G ′ = (V ′, E ′) and 
threshold function t : V ′ −→N = {1, 2, . . . , }, but we will not fix λ since our aim is to prove inapproximability for any value 
of λ.

We denote by �� the gadget shown in Fig. 2(a), which consists of � paths of length 2 connecting the same pair of nodes. 
If λ ≤ 8, we need another gadget �λ

� which is shown in Fig. 2(b); it consists of � paths, each having length 11 − λ and 
connecting the same pair of extremal nodes. All internal nodes of the gadgets have threshold 1.

Now, given an instance I of MINREP, we construct an instance I ′ of TWC–TSS as follows. Let N = |V | +|E|. The graph G ′
(cf. Fig. 3) consists of the node sets V 1, V 2, V 3, V 4 and the connecting gadgets as follows:
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Fig. 2. (a) The gadget �� consisting of � paths of length 2 sharing the extremal nodes. (b) The gadget �λ
� consisting of � paths of length 11 − λ sharing the 

extremal nodes.

Fig. 3. The construction of the graph G ′ of instance I ′ .

• V 1 = V and each node has threshold N2.
• V 2 = {x(a,b) : (a, b) ∈ E}; each node x(a,b) ∈ V 2 has threshold 2N5 and is connected to each of a ∈ V 1 and b ∈ V 1 by a 

gadget �N5 . If λ ≤ 8, each x(a,b) is also connected to each of a ∈ V 1 and b ∈ V 1 by a gadget �λ
N5 .

• V 3 = {y A,B : A ∈ A, B ∈ B, (A × B) ∩ E �= ∅}; each node y A,B ∈ V 3 has threshold N4 and is connected by a gadget �N4

to each x(a,b) ∈ V 2 with a ∈ A and b ∈ B .
• V 4 = {z1, . . . , zN }; each node z ∈ V 4 has threshold |V 3|N2 and is connected by a gadget �N2 to each node in V 3 and by 

a gadget �N to each node in V 1.

We shall show that any optimal solution U of the MINREP instance I gives a solution U ⊆ V 1 for the TWC–TSS instance 
I ′ and that the size of any optimal solution for the MINREP instance I is at most twice the size of an optimal solution for 
the TWC–TSS instance I ′ .

First, suppose that U is an optimal MINREP solution for I and consider U ⊆ V 1 in the TWC–TSS instance I ′ . Since U is 
a MINREP solution, we know that for each A ∈ A and B ∈ B it holds that

E ∩ (A × B) �= ∅ ⇒ E ∩ ((A ∩ U ) × (B ∩ U )) �= ∅. (5)

Now recall the existence of the gadgets �N5 between nodes in V 1 and nodes in V 2 and that each node in V 2 has thresh-
old 2N5. Hence, we get that Influenced[U , 2] ⊇ {x(a,b) ∈ V 2| a, b ∈ U }. From this and (5), we get that the nodes in 
Influenced[U , 2] ∩ V 2 can influence (through the �N4 gadgets between nodes in V 2 and V 3) each node in V 3 in round 4, 
that is,

V 3 ⊆ Influenced[U ,4].
This allows all the nodes in V 4 to become influenced in round 6, that is,

V 4 ⊆ Influenced[U ,6].
Hence, V 4 ⊆ Active[U , 7] and the remaining nodes in V 1, namely V 1 − U , become influenced in round 8.
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Therefore, all nodes in V 1 have become influenced either in round 0 or in round 8 and

V 1 ⊆ (Active[U ,1] ∪ . . . ∪ Active[U , λ]) ∪ Active[U ,9].
The influence of the nodes in V 1 − U reaches the nodes in V 2 in round 10 through �N5 gadgets. If λ > 8, then the nodes 
in U ⊆ V 1 are still active in round 9 and can influence nodes in V 2 in round 10 through �N5 gadgets. If λ ≤ 8, then 
the influence of the nodes in U reaches the nodes in V 2 in round 11 − λ through �λ

N5 gadgets and this influence re-

mains until round 11 − λ + (λ − 1) = 10. In either case, each uninfluenced node x(a,b) ∈ V 2 has at least N5 neighbours 
that belong to Active[U , 10] for both a, b ∈ V 1. Hence, V 2 ⊆ Influenced[U , 10]. In conclusion, V 1 ∪ V 2 ∪ V 3 ∪ V 4 ⊆
Influenced[U , 10]. Recalling that each gadget node has threshold 1, we have that each node in V ′ becomes influenced, 
thus completing the process.

Now we want to show that if we have a solution S to TWC–TSS, then we can construct a solution to MINREP of size at 
most 2|S|.

We start by showing that we can assume S ⊂ V 1 ∪ V 4. To this aim, we first notice that the influence process can only 
proceed from nodes in V 1 to nodes in V 2, from nodes in V 2 to nodes in V 3, and from nodes in V 3 to nodes in V 4; namely 
we have that:

a) A node in V 4 can become influenced at some round r only if all nodes in V 3 are active in round r − 2 (otherwise the 
threshold |V 3|N2 cannot be reached, independently of which nodes in V 1 are active; indeed if there exists a node in V 3
that is not active at round r − 2, then the sizes of the gadgets between a node z ∈ V 4 and nodes in V 3 and V 1 implies 
that at round r − 1 at most (|V 3| − 1)N2 + |V 1|N < |V 3|N2 neighbours of z can be active).

b) A node y A,B ∈ V 3 can become influenced at some round r only if there exist a ∈ A and b ∈ B such that the node 
x(a,b) ∈ V 2 is active in round r − 2 (otherwise the threshold N4 cannot be reached independently of which nodes in V 4
are active).

c) A node x(a,b) ∈ V 2 can become influenced in some round r only if both a and b (a, b ∈ V 1) are active in round r − 2
if λ > 8 and in round r − 2 or r − (11 − λ) if λ ≤ 8 (otherwise the threshold 2N5 cannot be reached independently of 
which nodes in V 3 are active).

Moreover:

• We can assume that S does not contain any node internal to any gadget; indeed, due to the thresholds of the extremal 
nodes of the gadgets, such nodes could be useful only if � nodes in a gadget �� (or �λ

� ) are in S , but any gadget has 
� ≥ N > |V |.

• We can assume that S ∩ V 3 = ∅. Suppose to the contrary that S ∩ V 3 �= ∅. By c), nodes in S ∩ V 3 cannot contribute to 
the influencing of any node in V 2. Moreover, by b) we can replace each y A,B ∈ S ∩ V 3 by a node x(a,b) ∈ V 2 for some 
a ∈ A and b ∈ B to obtain a new feasible solution having size at most |S| and empty intersection with V 3.

• If S ∩ V 2 = ∅ then, using c), we can replace each x(a,b) ∈ S ∩ V 2 by the two nodes a and b in V 1. This gives a feasible 
solution with size at most 2|S|.

Summarizing, we can assume the existence of a feasible solution S ′ of size |S ′| ≤ 2|S| such that S ′ ⊂ V 1 ∪ V 4. Notice that 
V 1 is a trivial solution, so we can assume that |S| ≤ |V | < N , and that each node in V 1 has threshold N2. Hence, we get 
that nodes in S ′ ∩ V 4 = S ∩ V 4 cannot influence any node in V 1 − S . By a), b), and c), this implies that S ′ ∩ V 1 can influence 
all nodes in V ′ and is a solution for the MINREP instance I . �
4. Polynomially solvable cases of TWC–TSS

We now present exact polynomial time algorithms to solve the TWC–TSS problem in some classes of graphs.

4.1. Paths

Let Ln = (V , E) be a path on n nodes, with V = {0, . . . , n − 1} and E = {(i, i + 1) : 0 ≤ i ≤ n − 2}. Since the threshold of 
each node cannot exceed its degree, we have that t(0) = t(n − 1) = 1 and t(i) ∈ {1, 2}, for each i = 1, . . . , n − 2.

The TWC–TSS problem is trivial to solve in case λ is unbounded. Letting {i1, i2, . . . , im} be the nodes of Ln having 
threshold equal to 2, one can see that {i1, i3, . . . , im−2, im} is an optimal solution when m is odd, whereas the subset 
{i1, i3, . . . , im−1, im} is optimal when m is even. In case λ has some fixed value, the situation is much more complicated. 
Indeed, because of the time window constraint, one must judiciously choose the initial target set in such a way that, for 
every node with threshold 2 that does not belong to the initial target set, its two neighbours become influenced at the 
correct times.

To avoid trivialities, we assume that Ln has at least two nodes with threshold equal to 2. Should it be otherwise, for 
instance all nodes have threshold 1, then any subset S of V with |S| = 1 is an optimal solution. If exactly one node, say i, 
has threshold 2, then {i} is an optimal solution.
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Lemma 1. If � = min{i ∈ V : t(i) = 2} and s = max{i ∈ V : t(i) = 2}, then there exists an optimal solution S such that

a) S ∩ {0, . . . � − 1} = ∅ = S ∩ {s + 1, . . .n − 1};
b) �, s ∈ S.

Proof. Since t(�) = 2 = t(s), we immediately get that

S ∩ {0, . . . , �} �= ∅ and S ∩ {s, . . . ,n − 1} �= ∅. (6)

It is easy to see that if i ∈ S with i < � (resp. i > s), then the set S ′ = S − {i} ∪ {�} (resp. S ′ = S − {i} ∪ {s}) is also an optimal 
solution. Therefore, we can assume that S satisfies a). If S is an optimal solution satisfying a), then a) and (6) imply that S
satisfies b). �

Lemma 1 implies that we can ignore all nodes in Ln that are either to the left of the lowest numbered node with 
threshold 2, or to the right of the highest numbered node with threshold 2, when constructing an optimal solution. To 
simplify the notation in the following proofs, we will remove these nodes leaving a path Ln with left and right extremal 
nodes having degree 1 and threshold 2, that is,

t(0) = t(n − 1) = 2.

For each i = 0, . . . , n − 1, let Ln
i denote the sub-path consisting of the last n − i nodes {i, i + 1, . . . , n − 1} of Ln . We denote 

by s(i) the minimum size of a TWC target set for Ln
i that contains both of the extremal nodes, that is, i and n − 1. Our goal 

is to compute s(0), the size of an optimal solution for Ln
0 = Ln .

Let us define the array D[0 . . . (n − 1)], where D[n − 1] = n − 1 and for each 0 ≤ i < n − 1,

D[i] = min{ j : i < j ≤ n − 1 and t( j) = 2}. (7)

Since t(n − 1) = 2, the value D[i] is always well defined.
One can check that the following algorithm computes an array D satisfying (7).

Algorithm ARRAY(Ln) [ Input: A path Ln with threshold function t(·)]
1. j = n − 1
2. D[n − 1] = n − 1
3. for i = (n − 2) down to 0 do
4. D[i] = j
5. if t(i) = 2 then j = i

Lemma 2. Fix the time window size λ and consider the family of all TWC target sets for Ln
i that include both node i and node n − 1. 

If i < n − 1, then such a family contains a minimum size TWC target set whose second smallest element belongs to the set

{
D[i]} ∪ {

x : max{D[i] + 1, 2D[i] − i − λ + 1} ≤ x ≤ min{2D[i] − i + λ − 1, D[D[i]]}}. (8)

Proof. Let S denote a minimum size solution for Ln
i among all the TWC target sets containing both i and n − 1. Clearly, the 

smallest element in S is i. Let j be the second smallest element of S and assume by contradiction that j does not belong 
to the set in (8). We distinguish four cases based on the value of j. These cases cover all possible values of j for each 
possible ordering of the quantities defining the set in (8); in each case we derive a contradiction to the assumption that S
is a minimum size solution for Ln

i .

Case 0 < j < D[i]: In this case, the set S ′ = S − { j} ∪ {D[i]} is a TWC target set of size at most |S| satisfying the claim. 
Indeed, by definition of the vector D , any node x, i < x < D[i], has t(x) = 1. Since i ∈ S , we have that x is influenced no 
later than round x − i, that is, x ∈ Influenced[S ′, x − i]. Moreover, the influencing of any node y > D[i] cannot depend 
on the presence of j in the target set, that is, S − { j} = S ′ − {D[i]} is a TWC target set for Ln−1

D[i]+1.

Case D[i] < j < 2D[i] − i − λ + 1: In this case, we have that D[i] /∈ S (since 0 < D[i] < j) and t(D[i]) = 2. Therefore, to 
become influenced, node D[i] needs two neighbours that are active in the same round. Each node x = i + 1, . . . , D[i] − 1
has threshold 1 and becomes influenced in round x − i because i ∈ S , that is, x ∈ Influenced[S, x − i]. In particular, node 
D[i] −1 becomes influenced in round D[i] −1 − i and remains active for the λ subsequent rounds D[i] − i, . . . , D[i] − i +λ −1, 
that is,

(D[i] − 1) ∈
D[i]−i+λ−1⋂

r=D[i]−i

Active[S, r], and (9)

(D[i] − 1) /∈ Active[S, r] for r ≤ D[i] − i − 1 and r ≥ D[i] − i + λ. (10)
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Analogously, each node y with D[i] < y < j becomes influenced because j ∈ S , so y ∈ Influenced[S, j − y]. In particular, 
node D[i] + 1 becomes influenced in round j − D[i] − 1 and remains active for λ rounds, that is,

(D[i] + 1) ∈
j−D[i]+λ−1⋂

r= j−D[i]
Active[S, r] and (D[i] + 1) /∈ Active[S, j − D[i] + λ]. (11)

The hypothesis of this case implies that j − D[i] + λ − 1 < (2D[i] − i − λ + 1) − D[i] + λ − 1 = D[i] − i. This inequality, 
together with (9) and (10), imply that there is no round r such that both D[i] − 1 and D[i] + 1 belong to Active[S, r]; 
thus node D[i] cannot become influenced and we have reached a contradiction.

Case 2D[i] − i + λ − 1 < j < D[D[i]]: As already seen in the previous case, node D[i] − 1 becomes influenced in round 
D[i] − 1 − i and remains active for the subsequent λ rounds as stated in (9) and (10). On the other side, node D[i] + 1
becomes influenced in round j − D[i] − 1, and

(D[i] + 1) ∈ Active[S, j − D[i]] but (D[i] + 1) /∈ Active[S, r],∀r ≤ j − D[i] − 1.

The hypothesis of this case implies that j − D[i] > (2D[i] − i + λ − 1) − D[i] = D[i] − i + λ − 1. This, together with (9) and 
(10), imply that there is no round when both neighbours of D[i] are active; thus node D[i] cannot become influenced. Again 
a contradiction.

Case j > D[D[i]]: We have that no node x with i < x < j belongs to S . In particular, D[i] and D[D[i]] are two nodes 
with threshold 2 such that i < D[i] < D[D[i]] < j. This clearly prevents the two nodes D[i] and D[D[i]] from becoming 
influenced. �

Clearly, node i must belong to any target set for Ln
i . Hence, s(n − 1) = 1. Moreover, Lemma 2 implies that there is an 

optimal target set that contains the node min
{
s(D[i]), min j s( j)

}
, corresponding to the minimum value in the set in (8), 

and does not contain any node from i + 1 to min
{
s(D[i]), min j s( j)

} − 1. Hence,

s(i) = 1 + min
{
s(D[i]),min

j
s( j)

}
(12)

where j satisfies max
{

D[i] + 1, 2D[i] − i − λ + 1
} ≤ j ≤ min

{
2D[i] − i + λ − 1, D[D[i]]}.

Lemma 3. For each node d ∈ {0, . . . , n − 1} of Ln with t(d) = 2 there exists an integer sd such that for each i = d, . . . , D[d] it holds 
s(i) ∈ {sd, sd − 1}.

Proof. Let d1 = 0 < d2 < . . . < dm = (n − 1) be the nodes of Ln with threshold 2. For each � = 2, . . . , m and i =
d�−1, . . . , d� − 1, we have that D[i] = D[d�−1] = d� and the value of the function s(i) is obtained as in (12) where the 
minimum is computed in the range

max
{

d� + 1,2d� − i − λ + 1
} ≤ j ≤ min

{
2d� − i + λ − 1,d�+1

}
. (13)

By definition we have s(dm) = s(n − 1) = 1 and we can fix sdm = 1. We prove now, by induction on � from m − 1 down 
to 1, that there exists a value sd�

such that

sd�
− 1 ≤ s(i) ≤ sd�

(14)

for each integer i = d�, . . . , d�+1.
By (12), we have that s(i) = s(dm) + 1 = 2 for each i = dm−1, . . . , dm − 1. Hence we can fix sdm−1 = 2 and (14) holds for 

� = m − 1.
Now suppose that (14) is true for each integer from � to m; we prove it true for � − 1 ≤ m − 2.
By (13) and using the inductive hypothesis on �, we have

sd�
≤ s(i) ≤ sd�

+ 1

for any i = d�−1, . . . , d� − 1. It follows that the value sd�−1 = max{s(i) | d�−1 ≤ i ≤ d� − 1} satisfies (14) for i =
d�−1, . . . , d� − 1.

It remains to show that sd�−1 − 1 ≤ s(d�) ≤ sd�−1 . We notice that if s(d�) = sd�
− 1, then by (13) we have s(i) =

s(d�) + 1 = sd�
for each i = d�−1, . . . , d� − 1. Hence, we have that sd�−1 = sd�

= s(d�) + 1 and (14) holds for i = d� .
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Fig. 4. (a) A path on 23 nodes; (b) the pruned path L20.

Theorem 2. For any time window size λ, an optimal TWC target set for the path Ln can be computed in time O (n).

Proof. The size of an optimal target set for Ln can be computed as s(0). By Lemma 3, one can implement the computation 
in (13) as shown in the following algorithm LINE(Ln). In the algorithm, the variable d represents the current node of 
threshold 2 and the variable s has value sd (cf. Lemma 3). To carry out the computation, we consider the array J such that 
for any i the value J[i] represents the maximum index j with d ≤ j ≤ i such that s( j) = s − 1 (if none exists, we define 
J[i] = d). This value is used to check if any of the values needed to compute min j s( j) in (12) is sd − 1, that is, the smaller 
of the two possibilities according to Lemma 3.

Algorithm: LINE(Ln) [ Input: A path Ln and the array D satisfying (7)]
1. J[n − 1] = n − 1, s(n − 1) = 1 [Here d is the last node n − 1]

2. d = min{i | D[i] = n − 1} [Now d is the penultimate node of threshold 2
3. s(d) = 2, s= 2 and we can set s(i) to 2 for each i up to n − 2;
4. for i = d + 1 to D[d] − 1 moreover, we set J[i] = i since all s(i) have
5. s(i) = 2, J[i] = i the same value s]

6. while d > 0 do
7. d′ = d
8. d = min{i | D[i] = d′}
9. for i = d to D[d] − 1

10. [We compute s(i) ∈ {s,s+ 1} as in (13). Recall that here D[i] = D[d]]
11. If s(D[i]) = s− 1 then s(i) = s
12. else
13. Set jmin = max

{
D[i] + 1, 2D[i] − i − λ + 1

}
14. Set jmax = min

{
2D[i] − i + λ − 1, D[D[i]]}

15. If (s( jmax) = s− 1 OR jmin ≤ J[ jmax]) then s(i) = s else s(i) = s+ 1
16. s= max{s(i) | d ≤ i ≤ D[d]}
17. [We set the values of the vector L in the range i = d, . . . , D[d].
18. Note that all values in the initial part of the interval are set to d as long as s(i) = s ]
19. J[d] = d
20. For i = d + 1 toD[d]
21. If s(i) = s− 1 then J[i] = i else J[i] = J[i − 1].

The algorithm takes time O (1) to compute each s(i), i = n − 1, . . . , 0, for a total of O (n). The actual TWC target set of 
optimal size s(0) can be constructed using standard backtracking techniques. �

Example 2. Consider the path in Fig. 4(a). The threshold of each node is indicated inside the circle representing the node. 
Pruning the extremal nodes of threshold 1, we get a path of 20 nodes. Naming them from 0 to 19, we get the path L20

in Fig. 4(b) where the nodes of threshold 2 are d1 = 0, d2 = 1, d3 = 5, d4 = 14, and d5 = 19; hence, D[18] = D[17] = . . . =
D[14] = 19, D[13] = . . . = D[5] = 14, D[4] = . . . = D[1] = 5, D[0] = 1.

Let the time window size be λ = 2. Denote by s(i) the cardinalities of the optimal solutions to the subproblems and by 
Si a corresponding optimal set (recall that in general Si is not unique). We have
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s(19) = 1 and S19 = {19},
s(i) = 1 + s(19) = 2, and Si = {i,19}, for i = 18,17, . . . ,14,

s(i) = 1 + s(14) = 3, and Si = {i,14,19}, for i = 13,12,11,

s(i) = 1 + s(19) = 2, and Si = {i,19}, for i = 10,9,8,

s(i) = 1 + s(14) = 3, and Si = {i,14,19}, for i = 7,6,5,

s(4) = 1 + s(5) = 4, and S4 = {4,5,14,19},
s(3) = 1 + s(8) = 3, and S3 = {3,8,19},
s(2) = 1 + s(8) = 3, and S2 = {2,8,19},
s(1) = 1 + s(9) = 3, and S1 = {1,9,19},
s(0) = 1 + s(3) = 4, and S0 = {0,3,8,19}.

Hence, the optimal size of a TWC target set for the path is s(0) = 4 and an optimal set is S0 = {0, 3, 8, 19}.

4.2. Rings

We can use Theorem 2 above to design an algorithm for the TWC–TSS problem on rings. Let Rn denote the ring on 
n nodes {0, . . . , n − 1} with edges (i, (i + 1) mod n) and thresholds t(i), for i = 0, . . . , n − 1.

We first notice that if all nodes have threshold 2, then an optimal TWC target set for Rn trivially has size �n/2�, so let 
us now assume that there exists a node j that has threshold t( j) = 1. Either j is in an optimal TWC target set for Rn or it 
is not. Consider the path Rn

j,2 obtained by “breaking” the ring Rn at node j, duplicating node j into j and j′ , and assigning 
threshold 2 to both j and j′ (regardless of the original threshold value t( j) = 1 in Rn). Therefore, the edges of Rn

j,2 are 
( j, j + 1), ( j + 1, j + 2), . . . , (n − 2, n − 1), (n − 1, 0), . . . ( j − 2, j − 1), ( j − 1, j′). The thresholds of Rn

j,2 are

t j,2(i) =
{

t(i) if 0 ≤ i ≤ n − 1 and i �= j
2 if i = j or i = j′.

We can use the algorithm of Section 4.1 to compute the size of an optimal TWC target set S j,2 for the path Rn
j,2. Notice 

that both j and j′ must be in S j,2, so S j,2 −{ j′} is a TWC target set for the ring Rn , optimal among all TWC target sets that 
include node j.

Now we want to compute a TWC target set for the ring Rn that is optimal among all TWC target sets that do not include 
node j. To do this, consider the path Rn

j,1 that has the same nodes and edges as Rn
j,2 but has thresholds

t j,1(i) =
{

t(i) if 0 ≤ i ≤ n − 1 and i �= j
1 if i = j or i = j′.

In particular, the endpoints of Rn
j,1 have thresholds t j,1( j) = t j,1( j′) = 1. First, we apply Lemma 1 to Rn

j,1 and then we use 
the algorithm of Section 4.1 to compute the size of an optimal TWC target set S j,1. Since j, j′ /∈ S j,1, we have that S j,1 is a 
TWC target set for the ring Rn , optimal among all TWC target sets that do not include node j.

An optimal solution for the ring Rn is then obtained by choosing the smaller of S j,2 − { j′} and S j,1. In conclusion we 
have the following result.

Theorem 3. For any value of the time window size λ, an optimal TWC target set for the ring Rn can be computed in time O (n).

4.3. Trees

Let T = (V , E) be a tree with threshold function t : V −→N, and let λ ≥ 1 be a fixed value of the time window size. We 
consider T to be rooted at some arbitrary node p ∈ V . For each node v ∈ V , we denote by T v = (V v , E v) the subtree of T
rooted at v . Moreover, we denote by Ch(v) the set of all children of node v in T v .

Definition 1. Given node v ∈ V and integers t, r, with t ∈ {t(v), t(v) − 1} and r ≥ 0, we denote by s(v, t, r) the mini-
mum size of a TWC target set S ⊆ V v for subtree T v that influences node v in round r (that is, v ∈ Influenced[S, r] \
Influenced[S, r − 1]), under the assumption that v has threshold t in T v . The threshold of each other node w �= v in T v

is its original one t(w).

The size of an optimal TWC target set for the tree T can be computed as

min
r
s(p, t(p), r), (15)

where r ranges between 0 and the maximum possible number of rounds needed to complete the influence diffusion process. 
The number of rounds is always upper bounded by the number of nodes in the graph (since at least one new node must 
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be influenced in each round before the diffusion process stops). However, for a tree T , this value is upper bounded by the 
length of the longest path in T . In other words, the parameter r in Definition 1 is bounded by the diameter diam(T ) of T .

We use a dynamic programming approach to compute the value in (15). Then, the corresponding optimal TWC target 
set S can be built using standard backtracking techniques. In our dynamic programming algorithm we compute all of the 
values

s(v, t, r) for each v ∈ V , each t ∈ {t(v), t(v) − 1}, and r = 0, . . . ,diam(T ),

and the computation is performed according to a reverse breadth-first search (BFS) ordering of the nodes of T , so that 
each node v is considered only when all of the values s(·, ·, ·) for all of its children are known. The rationale behind the 
computation of both s(v, t(v), r) and s(v, t(v) − 1, r) is the following:

i) s(v, t(v), r) corresponds to the case of a target set S for tree T such that
– v ∈ Influenced[S, r] \ Influenced[S, r − 1] and
– at least t(v) of v ’s children belong to Active[S ∩ V v , r] ⊆ Active[S, r];

ii) s(v, t(v) − 1, r) is the size of an optimal target set S for T satisfying
– v ∈ Influenced[S, r] \ Influenced[S, r − 1],
– Active[S, r] contains v ’s parent in T , and
– at least t(v) − 1 of v ’s children belong to Active[S ∩ V v , r] ⊆ Active[S, r].

In the following, we show how to compute the above values s(·, ·, ·). The procedure is summarized in algorithm TREE.

Algorithm TREE(T , p, λ, t) [Input: Tree T rooted at p, time window size λ, threshold function t.]
1. For each v ∈ T in reverse order to a BFS of T
2. [We compute s(v, t, r) for each t ∈ {t(v), t(v) − 1} and 0 ≤ r ≤ diam(T )]
3. If v is a leaf of T then [ here t(v) = 1]
4. For r = 0, . . . ,diam(T )

5. Set s(v,0, r) = 0 and s(v,1, r) =
{

1 if r = 0
∞ otherwise

6. If v is NOT a leaf of T then
7. For r = 0, . . . ,diam(T ) AND t ∈ {t(v), t(v) − 1} (only t = t(v) if v = p)
8. If r = 0 OR t ≤ 1 then
9. For each w ∈ Ch(v) compute

10. min(w) = min
{

minr+1≤ j≤r+λ s(w, t(w) − 1, j),minr−1≤ j≤diam(T ) s(w, t(w), j)
}

11. If r = 0 then Set s(v, t,0) = 1 + ∑
w∈Ch(v) min(w)

12. If r ≥ 1 and t = 0 then Set s(v,0, r) = ∑
w∈Ch(v) min(w)

13. If r ≥ 1 and t = 1 then
14. Set z = argminw∈Ch(v){s(w, t(w), r − 1) − min(w)}
15. Set s(v,1, r) = ∑

w∈Ch(v)\{z} min(w) + s(z, t(z), r − 1)

16. If r ≥ 1 and t > 1 then
17. Set s(v, t, r) = min

∑
w∈Ch(v) m(w), where

18. m(w) ∈ {s(w, τ , j) : (τ = t(w) AND j ≥ 0) OR (τ = t(w) − 1 AND r + 1 ≤ j ≤ r + λ)}
19. |{w : m(w) = s(w, t(w), j), max {0, r − λ} ≤ j ≤ r − 1}| ≥ t
20. |{w : m(w) = s(w, t(w), j), max {0, � − λ} ≤ j ≤ � − 1}| < t, ∀� = 1, . . . , r − 1

First, consider the computation of s(v, t, r) when v is a leaf of T in lines 3. to 5. In this case we have t(v) = deg(v) = 1.

– If r = 0, v trivially must belong to the target set since v needs to be active at time 0; hence s(v, t, 0) = 1.
– If r > 0 and t = t(v) = 1, we observe that any TWC target set that influences leaf v at time exactly r cannot contain 

v and, therefore, must influence v ’s parent at time r − 1. To do so, we set s(v, 1, r) = ∞ in the algorithm; this forces 
the minimum at line 10. or 17. to be reached with threshold t(v) − 1 = 0, thus forcing v ’s parent to be active in round 
r − 1.

– If r > 0 and t = t(v) − 1 = 0 then, trivially, s(v, 0, r) = 0.

Now consider an arbitrary internal node v . Since we process nodes in a reverse BFS order, each child of v has already 
been processed when the algorithm processes v . If r = 0, then v must necessarily be in the target set and any w ∈ Ch(v)

can benefit from this. Therefore, the size s(v, t, 0) of an optimal solution for the subtree T v (line 11.) for both t = t(v) and 
t = t(v) − 1 is equal to

s(v, t,0) = 1 +
∑

min(w) = 1 +
∑

min

{
min

1≤ j≤λ
s(w, t(w) − 1, j), min

0≤ j≤diam(T )
s(w, t(w), j)

}
.

w∈Ch(v) w∈Ch(v)
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Notice that we have constrained j to be in the range 1, . . . , λ in the formula above when w ’s threshold is t(w) − 1. This is 
correct since v is active and able to influence w only in rounds j = 1, . . . , λ.

Now, let us consider the computation of s(v, t, r) with r ≥ 1, that is, when v is not part of the target set and v is 
influenced at time r by t of its children (plus its parent if t = t(v) − 1). To determine the optimal solution, we need to know 
the best among the values s(w, τ , j) for each w ∈ Ch(v) and for all possible values of parameters τ and j, subject to the 
following two constraints:

1) if τ = t(w) − 1, then r + 1 ≤ j ≤ r + λ (indeed v is active and can influence w only during the λ rounds after it has 
become influenced, that is, in rounds j = r + 1, . . . , r + λ),

2) at least t nodes in Ch(v) are active in round r but at most t − 1 are active in any previous round j ≤ r − 1 (otherwise 
v would become influenced before the required round r).
The special case t = 0 (line 12.) can hold only if t(v) = 1 and t = t(v) − 1 = 0; hence node v must be influenced by its 
parent at round r and none of its children can be active before round r. Recall that s(v, t, r) asks for the minimum size 
of a target set in T v (or equivalently a target set for T having the smallest possible intersection with V v ) which makes 
v have at least t active children at exactly round r.

More formally, in the algorithm we compute

s(v, t, r) = min
∑

w∈Ch(v)

m(w)

where the following three conditions must be satisfied

m(w) ∈ {s(w, τ , j) : (τ = t(w) AND j ≥ 0) OR (τ = t(w) − 1 AND r + 1 ≤ j ≤ r + λ)},
|{w : m(w) = s(w, t(w), j), max {0, r − λ} ≤ j ≤ r − 1}| ≥ t,

|{w : m(w) = s(w, t(w), j), max {0, � − λ} ≤ j ≤ max {0, � − 1}}| < t,∀� = 1, . . . , r − 1. (16)

Lemma 4. The value in (16) can be computed in polynomial time.

Proof. Consider the computation of s(v, t, r). Define the variables x(w, t, j), for each w ∈ Ch(v) and for each choice of 
t ∈ {t(w) − 1, t(w)} and j ≥ 0 such that if t = t(w) − 1 then r + 1 ≤ j ≤ r + λ. We can re-write (16) as

Compute

min
∑

w∈Ch(v)

⎛
⎝∑

j≥0

x(w, t(w), j)s(w, t(w), j) +
r+λ∑

j=r+1

x(w, t(w) − 1, j)s(w, t(w) − 1, j)

⎞
⎠

subject to

x(w, t, j) ∈ {0,1}, for w ∈ Ch(v), t = t(w), t(w) − 1, j = 0, . . . ,diam(T )

diam(T )∑
j=0

x(w, t(w), j) +
r+λ∑

j=r+1

x(w, t(w) − 1, j) = 1, for each w ∈ Ch(v)

∑
w∈Ch(v)

�−1∑
j=�−λ

−x(w, t(w), j) ≥ −(t − 1), for each � = λ, . . . , r − 1

∑
w∈Ch(v)

r−1∑
j=r−λ

x(w, t(w), j) ≥ t

The coefficient matrix M of the above linear program is shown in Fig. 5. We shall prove that M is totally unimodular. (As 
a matter of fact, one can also show that the above linear program corresponds to a minimum cost flow problem in an 
associated auxiliary network). Therefore, the linear program can be optimally solved in polynomial time [39]. It is known 
that M is totally unimodular iff it satisfies the Ghouila-Houri property: each subset R of rows of M can be partitioned into 
R1 and R2 so that each entry of the vector 

∑
r∈R1

r − ∑
r∈R2

r belongs to {−1, 0, 1} [39].
We first notice that

• the sub-matrix formed by the columns corresponding to variables x(w, t, j) for each fixed node w ∈ Ch(v) does not 
depend on w ,

• for any fixed row, all of the non-zero entries have the same sign,
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . w(0) w(1) . . . w(λ − 1) w(λ) . . . w(r − λ − 1) w(r − λ) . . . w(r − 2) w(r − 1)
w( j)

... ...
j≥r

w ′( j)
... ...

r≤ j≤r+λ

. . . 1 1 . . . 1 1 . . . 1 1 . . . 1 1 1 1

. . . −1 −1 . . . −1 0 . . . 0 0 . . . 0 0 0 0

. . . 0 −1 . . . −1 −1 . . . 0 0 . . . 0 0 0 0

. . .
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . . 0 0 . . . 0 0 . . . −1 −1 . . . −1 0 0 0
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Fig. 5. The portion of the matrix M made of columns corresponding to variables x(w, t, j) for a fixed node w: here w( j) = x(w, t(w), j) and w ′( j) =
x(w, t(w) − 1, j).

• some columns of M have exactly one non-zero component and are therefore influential in deciding the Ghouila-Houri 
property.

We can therefore limit ourselves to considering the simpler matrix M ′:

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1 . . . 1 1 . . . 1 1
1 1 . . . 1 0 . . . 0 0 . . . 0 0
0 1 . . . 1 1 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

. . .
...

...

0 0 . . . 0 0 . . . 1 1 . . . 1 0
0 0 . . . 0 0 . . . 0 1 . . . 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We prove that the transpose of M ′ satisfies the Ghouila-Houri property since the transpose of a totally unimodular matrix 
is also totally unimodular. Namely, we show that each subset C of columns of M ′ can be partitioned into C1 and C2 so 
that each entry of the vector 

∑
c∈C1

c − ∑
c∈C2

c belongs to {−1, 0, 1}. Let M ′′ denote the submatrix of M ′ consisting of the 
columns in C and let ci be the i-th column of M ′′ , for i = 1, . . . , |C |. We can simply partition as follows: c1 ∈ C1 and for 
i = 2, . . . , |C | we add ci to C1 if ci−1 ∈ C2 and we add ci to C2 if ci−1 ∈ C1. �

The algorithm TREE(T , p, λ) requires O (n2) computations of values s(v, t, r) using (16). Hence we get the following 
result.

Theorem 4. For any tree T , the optimal TWC target set can be computed in polynomial time.

5. Concluding remarks

In this paper we have introduced a new model of information diffusion in social networks in which agents change 
behaviours on the basis of information collected from their neighbours in a time interval of bounded size, unlike previous 
models in which agents have unbounded memory. A number of interesting problems remain open. First of all, we would 
like to know whether our result on trees can be extended to graphs of bounded tree-width. Secondly, it seems to us that 
a polynomial time algorithm for complete graphs is possible, but it has so far escaped our attempts. It would also be 
interesting to find sharp upper and lower bounds on the cardinality of a minimum TWC target set, in terms of λ and easily 
computable parameters of the graph. This goal seems to be ruled out for arbitrary graphs by our Theorem 1, but it could 
be achievable for interesting classes of graphs (cf. the work for the classical TSS problem in [1]). Finally, the motivation for 
studying the TWC-TSS problem suggests that it would be interesting to consider a generalization of the model that takes 
into account different time windows λ(v) for the nodes in the graph.
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