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Given a network represented by a weighted directed graph G , we consider the problem 
of finding a bounded cost set of nodes S such that the influence spreading from S in G , 
within a given time bound, is as large as possible. The dynamics that governs the spread of 
influence is the following: initially only elements in S are influenced; subsequently at each 
round, the set of influenced elements is augmented by all nodes in the network that have 
a sufficiently large number of already influenced neighbors. We prove that the problem is 
NP-hard, even in simple networks like complete graphs and trees. We also derive a series 
of positive results. We present exact pseudo-polynomial time algorithms for general trees, 
that become polynomial time in case the trees are unweighted. This last result improves 
on previously published results. We also design polynomial time algorithms for general 
weighted paths and cycles, and for unweighted complete graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Social influence is the process by which individuals adjust their opinions, revise their beliefs, or change their behaviors 
as a result of interactions with other people. When exposed to the opinions of peers on a given issue, people tend to filter 
and integrate the information they receive and adapt their own judgements accordingly (see for instance [44]). This human 
tendency to harmonize their own ideas and customs with the opinions and behaviors of others [3] may occur for several 
reasons: a) the basic human need to be liked and accepted by others [5]; b) the belief that others, especially a majority 
group, have more accurate and trustworthy information than the individual [41]; c) the “direct-benefit” effect, implying 
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that an individual obtains an explicit benefit when he/she aligns his/her behavior with the behavior of others (e.g., [24], 
Ch. 17). It has not escaped the attention of advertisers1 that the natural human tendency to conform can be exploited in 
viral marketing [33]. Viral marketing refers to the spread of information about products and behaviors, and their adoption by 
people. According to Lately [32], “the traditional broadcast model of advertising-one-way, one-to-many, read-only is increasingly 
being superseded by a vision of marketing that wants, and expects, consumers to spread the word themselves”. For what strictly 
concerns us, the intent of maximizing the spread of viral information across a network naturally suggests many interesting 
optimization problems. Some of them were first articulated in the seminal papers [30,31], under various adoption paradigms. 
The recent monograph [13] contains an excellent description of the area. In the next section, we will explain and motivate 
our model of information diffusion, state the problem that we are investigating, describe our results, and discuss how they 
relate to the existing literature.

1.2. The model

Let G = (V , E) be a directed graph, c : V → N = {1, 2, . . .} be a function assigning costs to vertices and w : E → N0 =
{0, 1, 2, . . .} be a function assigning weights to edges. The value c(v) of each vertex v ∈ V is a measure of how much it costs 
to initially convince the member v of the network to endorse a given product/behavior. The weight of an arc e = (u, v) ∈ E , 
denoted either by w(e) or by w(u, v), represents the amount of influence that node u exercises on node v . Let t : V → N0
be a function assigning thresholds to the vertices of G . For each node v ∈ V , the threshold value t(v) quantifies how 
hard it is to influence node v , in the sense that easy-to-influence elements of the network have “low” t(·) values, and 
hard-to-influence elements have “high” t(·) values [27].

A process of influence diffusion in G , starting at the subset of nodes S ⊆ V (hereafter called a target set), is a sequence of 
vertex subsets

Influenced[S,0] ⊆ Influenced[S,1] ⊆ . . . ⊆ Influenced[S, τ ] ⊆ . . . ⊆ V ,

where Influenced[S, 0] = S , and such that for all τ > 0,

Influenced[S, τ ] = Influenced[S, τ−1] ∪
{

u :
∑

v∈Nin(u)∩Influenced[S,τ−1]
w(v, u) ≥ t(u)

}
.

Here Nin(u) = {v : (v, u) ∈ E} denotes the set of incoming neighbors of u, that is, the set of nodes in G having a directed 
arc towards u. In words, at each round τ a node u becomes influenced if the sum of the influences exercised on u by u’s 
already influenced incoming neighbors meets or exceeds u’s threshold t(u). We say that node u is influenced within round 
τ if u ∈ Influenced[S, τ ]; u is influenced at round τ > 0 if u ∈ Influenced[S, τ ] \ Influenced[S, τ − 1].

The problem that we introduce and study in this paper is defined as follows:

(λ, β)-Maximally Influencing Set ((λ, β)-MIS).
Instance: A directed graph G = (V , E), node thresholds t : V → N0, vertex costs c : V → N, edge influences w : E → N0, 
a latency bound λ ∈ N and a budget β ∈N.
Objective: Find a set S ⊆ V such that c(S) = ∑

v∈S c(v) ≤ β and |Influenced[S, λ]| is as large as possible.

Notice that the assumption that all vertex costs are positive is without loss of generality. Indeed, if c(v) = 0 for some 
vertex v in the graph, then we can consider a new graph G ′ obtained from G by eliminating v and by setting

t′(u) =
{

max{t(u) − w(v, u),0} if u is an out-neighbor of v in G
t(u) otherwise.

The decrease in the threshold of the neighbors of v implies that Influenced[S, τ ] in G ′ is equal to Influenced[S ∪{v}, τ ] in G , 
for each S ⊆ V − {v} and τ ≥ 1; hence S is an optimal solution for G ′ iff S ∪ {v} is an optimal solution for the original 
instance. The above transformation can be carried out for all vertices of zero cost in time O (|V | + |E|) resulting in an 
equivalent instance in which all vertex costs are positive.

We are also marginally interested in the case in which the influence of each arc and the cost to initially activate each 
vertex are unitary (i.e., the network is unweighted), and the graph representing the network is symmetric, that is, (u, v) ∈ E
if and only if (v, u) ∈ E . In this particular scenario, studied in the conference version of this paper [19], the activation 
process obeys the following simpler rule: Influenced[S, 0] = S , and for all τ > 0,

Influenced[S, τ ] = Influenced[S, τ − 1] ∪
{

u : ∣∣N(u) ∩ Influenced[S, τ − 1]∣∣ ≥ t(u)
}
,

and the question is to find a set of vertices S such that |S| ≤ β and |Influenced[S, λ]| is as large as possible, where λ is given 
as input to the problem.

1 And politicians too [9,34,42,40].
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1.3. Related work

The above algorithmic problems have roots in the general study of the spread of influence in Social Networks (see [13,24]
and references quoted therein). For instance, in the area of viral marketing [21,22], companies wanting to promote products 
or behaviors might initially try to target and convince a few individuals who, by word-of-mouth, can trigger a cascade of 
influence in the network leading to an adoption of the products by a much larger number of individuals.

It is clear that the (λ, β)-MIS problem represents an abstraction of the viral marketing scenario if one makes the rea-
sonable assumption that an individual decides to adopt the products if a suitable number of his/her friends have adopted 
the products. Analogously, the (λ, β)-MIS problem can describe other diffusion problems arising in sociological, economical, 
and biological networks (again see [24]). Therefore, it comes as no surprise that special cases of our problem (or variants 
thereof) have recently attracted the attention of the algorithmic community. We shall limit ourselves here to discussing the 
work that is most directly related to ours, and refer the reader to the monographs [13,24] for an excellent overview of the 
area. We just mention that our results also seem to be relevant to other areas, like dynamic monopolies [25,37] for instance.

The first authors to study problems of the spread of influence in networks from an algorithmic point of view were Kempe 
et al. [30,31]. However, they were mostly interested in networks with randomly chosen thresholds. Chen [11] studied the 
following minimization problem: given an unweighted graph G and fixed thresholds t(v), for each vertex v in G , find a set 
of minimum size that eventually influences all (or a fixed fraction of) the nodes of G . He proved a strong inapproximability 
result that makes unlikely the existence of an algorithm with approximation factor better than O (2log1−ε |V |). Chen’s result 
stimulated a series of papers [1,6,7,10,14,17,15,16,20,26,39,45] that isolated interesting cases in which the problem (and 
variants thereof) become tractable.

None of the above quoted papers considered the number of rounds necessary for the spread of influence in the network, 
the fact that different individuals can exercise different amounts of influence on the same person, or that the cost to initially 
convince individuals might vary among different members of the network. However, all of these questions correspond 
to relevant issues. Regarding the first question, it is well known that in viral marketing it is quite important to spread 
information quickly. Indeed, research in Behavioural Economics shows that humans make decisions mostly on the basis of 
very recent events, even though they might remember much more [2,12]. Moreover, the conventional idea of long-living 
viral spread has been challenged by empirical evidence in several real-life datasets, where it has been found that the 
processes of influence diffusion do not extend after the first few initial steps [28,43]. Therefore, it seems reasonable to 
study processes of information diffusion that reach the desired goals within a fixed time bound. Concerning the second 
point, it is generally assumed that the influence that a VIP may have on the behavior of an individual can be much larger 
than the amount of influence exercised on the same person by a less famous acquaintance, and this phenomenon should be 
taken into account when designing effective viral marketing campaigns (e.g., see [29,35]).2 Finally, that different members 
of the network have different activation costs (see [4], for example) is justified by the reasonable assumption that celebrities 
or public figures can charge more for their endorsements of products.

The only paper known to us that has studied the spread of influence with constraints on the number of rounds in which 
the process must be completed (but in unweighted networks and with no costs on vertices) is [18]. How our results are 
related to [18] will be explained in the next section. Paper [38] studied the problem of finding the smallest set of vertices 
that can influence a whole graph (again, in unweighted networks and with no costs on vertices), where each vertex has 
an associated deadline that must be respected by the diffusion process. Finally, we point out that Chen’s inapproximability 
result [11] still holds if the diffusion process must end in a bounded number of rounds.

1.4. The results

In light of Chen’s strong inapproximability results [11], we feel motivated to identify special cases for which our general 
problems become tractable (i.e., tree, cycle, and clique topologies). We also feel that the analyzed networks might approxi-
mate some features of real-life networks; for instance, trees emulate hierarchical structure while cliques resemble strongly 
connected components like communities. Moreover, we believe/hope that our proposed strategies could be useful for the 
development of novel strategies or heuristics on more elaborate topologies.

Our first result shows that the (λ, β)-MIS problem cannot be solved in polynomial time on weighted complete graphs 
unless P = NP. On the other hand, if the graph is complete and unweighted, then a linear time algorithm for the (λ, β)-MIS

problem is quite easy to find.
In Section 3 we turn our attention to trees. We first prove that solving the (λ, β)-MIS problem on weighted trees is 

at least as hard as solving general instances of the well-known NP-hard 0–1 Knapsack problem. Subsequently, we derive 
pseudo-polynomial time algorithms to solve the (λ, β)-MIS problem on weighted trees. We point out that the paper [18]
provided an algorithmic framework to solve the (λ, β)-MIS problem (and related ones), in unweighted graphs of bounded 
clique-width. When instantiated on unweighted trees, the approach of [18] gives algorithms for the (λ, β)-MIS problem 
with complexity that is exponential in the parameter λ, whereas our algorithm, when instantiated on unweighted trees, has 
complexity polynomial in all of the relevant parameters (see Corollary 1).

2 Startups like Klout (http://klout.com) offer a way to quantify the influence of online users of social media.

http://klout.com
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In Section 4, we study the case of weighted paths and cycles and we provide polynomial time algorithms to solve the 
(λ, β)-MIS problem on these classes of graphs.

We conclude this discussion by remarking that, in the very special case λ = 1, thresholds and costs t(v) = c(v) = 1
for each vertex v ∈ V , and edge weights w(e) = 1 for each e ∈ E , problems of influence diffusion reduce to well-known 
domination problems in graphs (and variants thereof). In particular, when λ = 1, t(v) = c(v) = 1 for each v ∈ V , and 
w(e) = 1 for e ∈ E , our (λ, β)-MIS problem reduces to the Maximum Coverage problem considered in [8]. Therefore, our 
results can also be seen as far-reaching generalizations of [8].

2. Complexity of computing (λ, β)-MIS in complete graphs

We prove that the (λ, β)-MIS problem is NP-hard for complete graphs. It was shown in [23] that when t(v) = d(v)

for each vertex v , where d(v) denotes the in-degree of v , the problem of finding the minimum size subset S ⊆ V such 
that Influenced[S, τ ] = V , for some τ ≥ 0, is equivalent to finding a minimum size vertex cover of the graph. Indeed under 
the hypothesis that t(v) = d(v) for each v ∈ V , one has that Influenced[S, τ ] = Influenced[S, 1] for any S ⊆ V and τ >

0; moreover, Influenced[S, 1] = V if and only if S is a vertex cover for G . This observation was used to prove that, for 
any constant k ≥ 3, the above minimization problem cannot be solved in polynomial time, unless P = NP, in the class of 
k-regular non-bipartite unweighted graphs. Now, consider the following problem:

λ-Minimum Size Subset (λ-MSS).
Instance: A graph G = (V , E), thresholds t : V → N0, and a bound λ ∈ N.
Objective: Find a set S ⊆ V of minimum size such that Influenced[S, λ] = V .

Under the assumption that t(v) = d(v) for each v ∈ V , a minimum size subset S ⊆ V such that Influenced[S, λ] = V (where 
now λ is an input to the problem) would still correspond to a minimum vertex cover of the graph. Hence, the λ-MSS

problem cannot be solved in polynomial time unless P = NP.

Theorem 1. The (λ, β)-MIS problem cannot be solved in polynomial time on weighted complete graphs unless P = NP, even if all 
vertex costs c(v) are equal to 1.

Proof. We will prove that if one had a polynomial time algorithm to solve the (λ, β)-MIS problem on an arbitrary complete 
weighted graph, then one could also obtain a polynomial time algorithm for the λ-MSS problem.

Consider an arbitrary graph G = (V , E) with the thresholds on the nodes given by some function t : V → N0. Let n
denote the size of V . We construct a complete graph K = (V , F ) on the same set of vertices V , with weight function on 
the edges given by

for all (u, v) ∈ F w(u, v) =
{

n + 1 if {u, v} ∈ E
1 otherwise,

and for each node v ∈ V , the threshold t′(v) of v in K equal to

t′(v) = (n + 1)t(v).

One can easily check that any set of initially influenced nodes S ⊆ V generates the same dynamics of influenced nodes in 
G and K , that is, for each τ ≥ 0 we have that Influenced[S, τ ] in G is equal to Influenced[S, τ ] in K . The conclusion of the 
proof is now clear: if one had a polynomial time algorithm A for the (λ, β)-MIS problem on arbitrary complete weighted 
graphs, then by using at most log |V | calls to A on the graph K , one could find in polynomial time a minimum size subset 
S ⊆ V such that Influenced[S, λ] = V in the graph G . This, together with the hardness of the λ-MSS problem, completes the 
proof. �

We now turn our attention to positive results, restricting our attention to complete graphs in which all edge weights 
are equal. Without loss of generality, we can assume that all edge weights are equal to 1. Since complete graphs are of 
clique-width at most 2, results from [18] imply that the (λ, β)-MIS problem is solvable in polynomial time on such a class 
of graphs, if λ is constant. Indeed, one can see that the (λ, β)-MIS can be solved in linear time, independently of the value 
of λ, by using ideas from [36].

If the network is a complete graph, then for any subset of vertices S and any round τ ≥ 1, it holds that

Influenced[S, τ ] = Influenced[S, τ − 1] ∪ {v : t(v) ≤ |Influenced[S, τ − 1]|}.
Since Influenced[S, τ − 1] ⊆ Influenced[S, τ ], we have

Influenced[S, τ ] = S ∪ {v : t(v) ≤ |Influenced[S, τ − 1]|}. (1)

From (1), and by using a standard exchange argument, one realizes that a set S with largest influence is the one con-
taining the nodes with highest thresholds. Since it is customary in the case of unweighted graphs to make the reasonable 
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Fig. 1. The weighted tree T .

assumption that t(v) ∈ {0, 1, . . . , n}, the selection of the β nodes with highest threshold can be done in linear time. Sum-
marizing, we have the following result.

Theorem 2. There exists an optimal solution S to the (λ, β)-MIS problem on a complete unweighted graph G = (V , E) that consists 
of the β nodes of V with highest thresholds, and this solution can be computed in linear time.

3. Complexity of computing (λ, β)-MIS in weighted trees

We first show that the (λ, β)-MIS problem on weighted trees is at least as hard as the well-known 0–1 Knapsack 
problem, which is defined as follows:

0–1 Knapsack.
Instance: n items, o1, o2, . . . , on , where each oi has a profit pi and weight wi , a knapsack capacity W , and a profit bound P .
Question: Does there exist a subset of items {oi1 , oi2 , . . . , oik }, such that 

∑k
j=1 wi j ≤ W and 

∑k
j=1 pi j ≥ P ?

Theorem 3. The (λ, β)-MIS problem cannot be solved in polynomial time on weighted star graphs unless P = NP.

Proof. Our reduction will be from the 0–1 Knapsack problem. Starting from an instance of the 0–1 Knapsack problem, 
we build a weighted tree T = (V , E) as depicted in Fig. 1. The tree T consists of n + 1 nodes, one node vi for each 
item oi plus an additional node vn+1. For each i = 1, 2, . . . , n, the node vi has a directed edge to node vn+1 with weight 
w(vi, vn+1) = pi . For each i = 1, 2, . . . , n, the threshold of node vi is t(vi) = 0, and the cost of node vi is c(vi) = wi , 
while t(vn+1) = P and c(vn+1) = W + 1. It is easy to see that T has a target set S ⊆ V of total cost at most W such that 
Influenced[S, 1] = V if and only if the instance of the 0 − 1 Knapsack problem has a Yes answer, from which the theorem 
easily follows.

Let S = {vi1 , vi2 , . . . , vik } ⊆ V be a target set for T such that 
∑k

j=1 c(vi j ) ≤ W and Influenced[S, 1] = V . Since 
c(vn+1) = W + 1 we have that vn+1 /∈ S . The inequality 

∑k
j=1 c(vi j ) ≤ W implies that 

∑k
j=1 wi j ≤ W . The hypothe-

sis that Influenced[S, 1] = V implies that vn+1 ∈ Influenced[S, 1], that is, 
∑k

j=1 w(vi j , vn+1) ≥ t(vn+1) = P . Consequently ∑k
j=1 pi j ≥ P .

Conversely, let K = {oi1 , oi2 , . . . , oik } be a subset of items such that 
∑k

j=1 wi j ≤ W and 
∑k

j=1 pi j ≥ P . Let S = {vi1 , . . . vik }. 
We have that c(S) ≤ W . Since for each i = 1, 2, . . . , n, it holds that t(vi) = 0, we also have {v1, v2, . . . , vn} ⊆ Influenced[S, 1]. 
Moreover, the hypothesis that 

∑k
j=1 pi j ≥ P directly implies that 

∑k
j=1 w(vi j , vn+1) = ∑k

j=1 pi j ≥ P , consequently the nodes 
in S are able to influence the node vn+1 in one step, that is, Influenced[S, 1] = V . �

In the rest of this section we derive a pseudo-polynomial time algorithm for the (λ, β)-MIS problem on weighted trees. 
Let T = (V , E) be a tree having n nodes. Let us denote by � the maximum indegree of T , that is, the quantity

� = max
v∈V

|{u : (u, v) ∈ E}|
and by W the quantity

W = max
v∈V

⎧⎨
⎩

∑
u∈Nin(v)

w(u, v)

⎫⎬
⎭ .

In the following, we will assume that T is rooted at some node r. For any node v in this rooted tree, we denote the subtree 
rooted at v by T (v), the set of children of v by C(v), and the parent of v in T , for v �= r, by p(v). We will develop a 
dynamic programming algorithm that will prove the following theorem.
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Theorem 4. The (λ, β)-MIS problem can be solved in time O (� λ2W β3) on a weighted tree with maximum in-degree � and total 
edge weight W .

The rest of this section is devoted to the design and analysis of the algorithm that proves Theorem 4. The algorithm tra-
verses the input tree T bottom up, in such a way that each node is considered after all of its children have been processed. 
The basic idea is that the nodes in one subtree of a given node v cannot influence nodes in another subtree without passing 
through v . Moreover, considering a node v and one of its children u, there are three possibilities: v influences u (in this 
case v must be influenced before u); u influences v (in this case u must be influenced before v); they do not influence 
each other (the nodes in T (u) cannot influence any other node in T \ T (u)). Two particular cases will be considered:

• v belongs to the initial target set S . In this case all of the children of v can exploit the influence of v starting in 
round 1;

• v /∈ Influenced[S, λ].

In both of these particular cases, the nodes that belong to different subtrees of v cannot influence each other. In light of the 
above observations, for each node v , the algorithm solves all possible (τ , β)-MIS problems on T (v) for all possible values 
of τ ≤ λ and β ≤ b. Moreover, for some of these values, we will consider not only the original threshold t(v) of v , but also 
the decreased value

t′(v) =
{

max{t(v) − w(p(v), v),0} if v �= r
t(v) if v = r

(2)

which we will refer to as the residual threshold. The original threshold is used when the nodes in the subtree T (v) are not 
influenced by p(v) and consequently by any other nodes in T \ T (v). The residual threshold is used when p(v) influences v . 
In this case the strategy must guarantee that p(v) will be influenced before v .

In the following, we assume without loss of generality that

0 ≤ t(u) ≤ W (u) + 1,

where W (u) = ∑
v∈Nin(u) w(v, u), holds for all nodes u ∈ V (otherwise, we can set t(u) = W (u) + 1 for every node u with 

threshold exceeding W (u) + 1 without changing the problem).

Definition 1. For each node v ∈ V , integers b = 0, 1, . . . , β , t ∈ {t′(v), t(v)}, and τ ∈ {0, 1, . . . , λ, ∞}, let us denote by 
MIS[v, b, τ , t] the maximum number of nodes that can be influenced in T (v), in at most λ rounds, starting with a tar-
get set S ⊆ V (T (v)), assuming that

• the target set is of total cost at most b, that is, c(S) ≤ b;
• the threshold of v is t , and for every u ∈ V (T (v)) \ {v}, the threshold of u is t(u);
• the parameter τ is such that

1) if τ = 0 then v must belong to the target set, (3)

2) if 1 ≤ τ ≤ λ then v is not in the target set and the influence of v ’s children at round τ − 1 is sufficiently

large to activate v at round τ , that is
∑

u∈C(v)∩Influenced[S,τ−1] w(u, v) ≥ t; (4)

3) if τ = ∞ then v is not influenced within round λ. (5)

We define MIS[v, b, τ , t] = −∞ when the above problem is infeasible. For instance, if τ = 0 and b < c(v) we have 
MIS[v, b, 0, t] = −∞.

Denote by S(v, b, τ , t) any target set S ⊆ V (T (v)) attaining the value MIS[v, b, τ , t] (in case of feasible instances).

We notice that in the above definition, if 1 ≤ τ ≤ λ, then the assumption that v has threshold t implies that v is 
influenced by round τ and it is able to start influencing its neighbors no later than at round τ + 1.3 The value τ = ∞
means that v could be either influenced after round λ or not influenced at all.

Remark 1. It is worthwhile mentioning that MIS[v, b, τ , t] is monotonically non-decreasing in b and non-increasing in t . 
However, MIS[v, b, τ , t] is not necessarily monotone in τ .

Indeed, partition the set C(v) into two sets: C ′(v), which contains the t children that influence v , and C ′′(v), which 
contains the remaining |C(v)| − t children that may be influenced by v . A small value of τ may require a higher budget 

3 Notice that this does not exclude the case that v becomes an influenced node at some round before τ ′ < τ .
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Fig. 2. A tree T (v) (left) and the value of MIS[v,b, τ ,1] for each b ∈ {0,1} and τ ∈ {0,1,2,∞}.

on subtrees rooted at a node u ∈ C ′(v), and may save some budget on the remaining subtrees; the opposite happens for a 
large value of τ . An example is depicted in Fig. 2. In the example, all of the node costs c(·) and edge weights w(·) are equal 
to 1. The table reports the value of MIS[v, b, τ , 1] for each b ∈ {0, 1} and τ ∈ {0, 1, 2, ∞}.

The maximum number of nodes in T that can be influenced within round λ with any (initial) target set of cost at most 
β can then be obtained by computing

max
τ∈{0,1,...,λ,∞} MIS[r, β, τ , t(r)]. (6)

We compute this quantity in Lemma 1 by decomposing

max
τ∈{0,1,...,λ,∞} MIS[v,b, τ , t],

for each v ∈ V , each b = 0, 1, . . . , β , and each t ∈ {t′(v), t(v)}, into a maximum of three other values which are successively 
and separately computed in Lemmata 2–6.

We proceed in a bottom-up fashion on the tree, so that the computation of the various values MIS[v, b, τ , t] for a node 
v is done after all of the values for v ’s children are known.

For each leaf node � we have

MIS[�,b, τ , t] =
{

1 if (τ = 0 AND b ≥ c(�)) OR (t = 0 AND 1 ≤ τ ≤ λ)

0 if τ = ∞
−∞ otherwise.

(7)

Indeed, a leaf � gets influenced, in the one-node subtree T (�), only when either � belongs to the target set (τ = 0) and 
the budget is sufficiently large (b ≥ c(�)) or the threshold is zero (either t = t(�) = 0 or t = t′(�) = 0) independently of the 
number of rounds.

For any internal node v , we show how to compute each value MIS[v, b, τ , t] in time O (d(v)W (v)λβ2), where d(v)

denotes the in-degree of v .
It will be convenient to analyze the behavior of MIS[v, b, τ , t] by dividing the possible values of τ into three cases, 

according to whether τ = 0, τ ∈ {1, . . . , λ}, or τ = ∞.
To this aim, we will now define three functions, which will be useful for the analysis and the computation of 

MIS[ · , · , · , ·].
In the following we shall also assume that an order has been fixed on the children of any node v , that is, if v has d

children we denote them as v1, v2, . . . , vd , according to the fixed order. Also, we define F (v, i) to be the forest consisting 
of the subtrees rooted at the first i children of v , i.e., F (v, i) = T (v1) ∪ · · · ∪ T (vi). We will also use F (v, i) to denote the 
set of vertices it includes.

Definition 2. Let v be a vertex with d children. For i = 1, . . . , d and j = 0, . . . , β − 1, let Av [i, j] be the maximum number 
of nodes that can be influenced, within λ rounds, in F (v, i) by an influence diffusion process in T (v), assuming that the 
target set contains v and a subset of nodes of F (v, i) of total cost at most j.

Proposition 1. For each vertex v with d children, each b = 0, 1, . . . , β , and each t ∈ {t(v), t′(v)}, it holds that

MIS[v,b,0, t] =
{

1 + Av [d,b − c(v)] if b ≥ c(v)

−∞ otherwise.
(8)

Proof. By Definition 1, if b < c(v) then the statement is trivially true. Otherwise, the statement directly follows from Defi-
nitions 1 and 2. In fact we have

MIS[v,b,0, t] = max
S⊆T (v)

v∈S,c(S)≤b

|Influenced[S, λ] ∩ T (v)|

= 1 + max
v∈S⊆T (v)

c(S∩F (v,d))≤b−c(v)

|Influenced[S, λ] ∩ F (v,d)| (since v ∈ S ⊆ Influenced[S, λ])

= 1 + Av [d,b − c(v)] (by definition of Av [· , ·]). �
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Definition 3. Let v be a vertex with d children and let τ = 1, . . . , λ. For i = 1, . . . , d, j = 0, 1, . . . , β , and k = 0, 1, . . . , t(v), 
we define B v,τ [i, j, k] (resp. B v,τ [{i}, j, k]) to be the maximum number of nodes that can be influenced, within λ rounds, 
by any influence diffusion process in F (v, i) (resp. T (vi)) assuming that

• the target set S is contained in F (v, i) (resp. T (vi)) and is of cost at most j,
• at time τ + 1 the threshold of v� becomes t′(v�), for each � = 1, . . . , i, and
•

∑
u∈{v1,...,vi}

u∈Influenced[S,τ−1]

w(u, v) ≥ k .

We also define B v,τ [i, j, k] = −∞ (resp. B v,τ [{i}, j, k] = −∞) when the above constraints are not satisfiable.

Hence, B v,τ [{i}, j, k] is the same as B v,τ [i, j, k] but computed on the subtree T (vi) instead of the forest F (v, i). Since 
F (v, 1) = T (v1), as a particular case, we have B v,τ [1, j, k] = B v,τ [{1}, j, k].

Proposition 2. For each vertex v with d children, each b = 0, 1, . . . , β , each τ = 1, . . . , λ, and each t ∈ {t(v), t′(v)}, it holds that

MIS[v,b, τ , t] ≥ 1 + B v,τ [d,b, t]. (9)

Proof. Let S be a target set achieving B v,τ [d, b, t]. Then B v,τ [d, b, t] is the number of influenced nodes within λ rounds, 
when the influence diffusion process is run on F (v, d) starting with S . We recall that, by definition, the following conditions 
are satisfied.

1. S ⊆ F (v, d) and c(S) ≤ b
2.

∑
i=1,...,d

vi∈Influenced[S,τ−1]

w(vi, v) ≥ t

3. from round τ + 1 the threshold of v� is decreased to t′(v�), for each � = 1, . . . , d

Now if we use the same target set S in the subtree T (v) with the original thresholds, except for t(v) = t we get that 
v is influenced within time τ as a consequence of condition 2. We observe that MIS[v, b, τ , t] is the largest possible size 
achievable for Influenced[S, λ] under condition 1, and the condition that v is influenced within round τ . Finally, considering 
that the set of influenced vertices contains v , we have (9). �
Definition 4. Let v be a vertex with d children. For i = 1, . . . , d and j = 0, . . . , β , let C v [i, j] be the maximum number of 
nodes that can be influenced, within λ rounds, by an influence diffusion process in F (v, i) assuming that the target set 
S ⊆ F (v, i) is of cost at most j.

Proposition 3. For each vertex v with d children, each b = 0, 1, . . . , β , and each t ∈ {t(v), t′(v)} such that there exists a target set 
S ⊆ F (v, d) with c(S) ≤ b and v /∈ Influenced[S, λ], it holds that

MIS[v,b,∞, t] = C v [d,b]. (10)

Proof. We have

MIS[v,b,∞, t] = max
S⊆F (v,d)

c(S)≤b
v /∈Influenced[S,λ]

|Influenced[S, λ]| (11)

= max
S⊆F (v,d)

c(S)≤b
v /∈Influenced[S,λ]

d∑
i=1

|Influenced[S, λ] ∩ T (vi)| (12)

= max
S⊆F (v,d)

c(S)≤b

d∑
i=1

|Influenced[S ∩ T (vi), λ] ∩ T (vi)| (13)

= C v [d,b], (14)

where (12) follows from (11) because, assuming v is not influenced, there is no influence spreading between T (vi) and 
T (v j) for any 1 ≤ i, j ≤ d with i �= j; (13) follows from (12) because if there is no influence spreading between two different 
subtrees of F (v, d), then the set of influenced nodes can be computed independently in each subtree; finally (14) follows 
from (13) by the definition of Cv [d, b]. �
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Lemma 1. For each vertex v with d children, each b ∈ {0, 1, . . . , β}, and each t ∈ {t(v), t′(v)}, it holds that

max
τ∈{0,1,...,λ,∞} MIS[v,b, τ , t] = max

{
1 + Av [d,b − c(v)],1 + max

1≤τ1≤λ
B v,τ1 [d,b, t], C v [d,b]

}
. (15)

Moreover, the knowledge of quantities Av[d, b − c(v)], B v,τ [d, b, t], and Cv [d, b] also allows the computation of MIS[v, b, τ , t] for 
each value of τ ∈ {0, 1 . . . , λ, ∞}.

Proof. For notational convenience, let M denote the right hand side of (15). First, suppose that there exists a target set 
S ⊆ F (v, d) with c(S) ≤ b such that v �∈ Influenced[S, λ]. Then, by Propositions 1, 2, and 3, we have

max
τ∈{0,1,...,λ,∞} MIS[v,b, τ , t] ≥ M.

Now, suppose that for every target set S ⊆ F (v, d) with c(S) ≤ b we have v ∈ Influenced[S, λ]. We claim that in this case we 
have

C v [d,b] ≤ B v,1[d,b, t] + 1.

Indeed, let S be a target set achieving C v [d, b]. Running the influence diffusion process on F (v, d) with S is equivalent to 
running the process on T (v) and ignoring the influence of v on its children (which can be modeled by setting w(v, vi) = 0
for each i = 1, . . . , d). It can be seen that, given the target set S , increasing the weights on some edges cannot decrease the 
number of nodes in F (v, d) influenced within λ rounds. This implies that C v [d, b] is not greater than the number of nodes 
in F (v, d) influenced within λ rounds when the influence diffusion process is run from S in the tree T (v) with the original 
threshold, which, in turn, does not exceed B v,1[d, b, t] + 1.

Summarizing the above two cases, we see that in any case we have

max
τ∈{0,1,...,λ,∞} MIS[v,b, τ , t] ≥ M. (16)

To see that the converse inequality

max
τ∈{0,1,...,λ,∞} MIS[v,b, τ , t] ≤ M (17)

also holds, let τ ∗ ∈ argmaxτ∈{0,1,...,λ,∞} MIS[v, b, τ , t].
If τ ∗ = 0, we have 1 + Av [d, b − c(v)] = MIS[v, b, τ ∗, t] by Proposition 1. Analogously, if τ ∗ = ∞ then v �∈ Influenced[S, λ]

for the target set S achieving MIS[v, b, τ ∗, t] by Proposition 3. Then, by Definition 1, we have Cv [d, b] = MIS[v, b, τ ∗, t]. 
Hence, in both of the above cases, the desired inequality (17) also holds a fortiori.

Let us now assume that τ ∗ ∈ {1, . . . , λ}. Let S ⊆ F (v, d) be a target set of cost at most b which achieves MIS[v, b, τ ∗, t]. 
Let τ̃ ≤ τ ∗ be the minimum positive integer such that v ∈ Influenced[S, τ̃ ]. Therefore, no influence is spread from v towards 
the subtrees of F (v, d) before round τ̃ . Let Si = S ∩ T (vi). The previous observation implies that Influenced[S, τ ] ∩ T (vi) =
Influenced[S ∩ T (vi), τ ] for each τ ≤ τ̃ , i.e., the spread of influence within T (vi) until round τ is only determined by the 
set Si . From τ̃ on, in T (vi) the fact that v is influenced is equivalent to saying that the threshold of vi has been decreased 
to t′(vi).

Formally, this means that∣∣∣∣∣
⋃

i

(Influenced[S, λ] ∩ T (vi))

∣∣∣∣∣ ≤ B v,τ̃ [d,b, t]

hence we have

max
τ∈{1,...,λ} MIS[v,b, τ , t] = MIS[v,b, τ ∗, t]

= 1 +
∣∣∣∣∣
⋃

i

(Influenced[S, λ] ∩ T (vi))

∣∣∣∣∣
≤ 1 + B v,τ̃ [d,b, t]
≤ 1 + max

τ∈{1,...,λ} B v,τ [d,b, t]. (18)

This concludes the proof of (17) that, together with (16), yields the desired result, i.e., formula (15).
Notice that the above reasoning proves a slightly more general fact, that is, the inequality

max′ MIS[v,b, τ ′, t] ≤ 1 + max′ B v,τ ′ [d,b, t] (19)

τ ∈{1,...,τ } τ ∈{1,...,τ }
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for any τ = 1, 2, . . . , λ. Formula (19), together with Proposition 2, allows us to conclude that

max
τ ′∈{1,...,τ }

MIS[v,b, τ ′, t] = 1 + max
τ ′∈{1,...,τ }

B v,τ ′ [d,b, t] (20)

for any τ = 1, 2, . . . , λ.
Moreover, for each τ = 1, 2, . . . , λ − 1 we also have MIS[v, b, τ , t] ≤ MIS[v, b, τ + 1, t]. Therefore by comparing 

maxτ ′∈{1,...,τ } MIS[v, b, τ ′, t] and maxτ ′∈{1,...,τ+1} MIS[v, b, τ ′, t], we are also able to compute MIS[v, b, τ , t] for each value 
of τ = 1, 2, . . . , λ. Recalling that, for τ = 0 and τ = ∞, the value of MIS[v, b, τ , t] is easily determined using Propositions 1
and 3, respectively, we have that the knowledge of quantities Av [d, b −c(v)], Cv [d, b], and B v,τ1 [d, b, t] for each τ1 = 1, . . . , λ
also allows the computation of MIS[v, b, τ , t] for each value of τ ∈ {0, 1 . . . , λ, ∞}. �
Lemma 2. For each vertex v, for each b = 0, 1, . . . , β , and for each t ∈ {t(v), t′(v)}, the quantity MIS[v, b, 0, t] can be computed in 
time O (dλb2), where d is the number of children of v.

Proof. If b < c(v) then the problem is infeasible and MIS[v, b, 0, t] = −∞. Otherwise, by Proposition 1, it is enough to 
show that we can compute Av [d, b − c(v)] in the claimed bound. This will be a consequence of the following recursive 
characterization of Av [i, j], for each i = 1, 2, . . . , d and j = 0, 1, . . . , b − c(v).

For i = 1, we have

Av [1, j] = max
τ1,t1

{MIS[v1, j, τ1, t1]}, (21)

where

1. τ1 ∈ {0, . . . , λ,∞} 2. t1 ∈ {t(v1), t′(v1)} 3. if t1 = t′(v1) then τ1 ≥ 1.

To see that the left hand side of (21) is at least as large as the right hand side we observe that

Av [1, j] = max
τ1∈{0,1,...,λ,∞} MIS[v1, j, τ1, t′(v1)]

≥ max{MIS[v1, j,0, t(v1)], max
τ1∈{1,...,λ,∞} MIS[v1, j, τ1, t′(v1)]}

and the last expression is exactly the right hand side of (21).
For the inequality in the other direction, let S ⊆ T (v) be a target set (of cost at most j) achieving Av [1, j]. If v1 ∈ S then 

the node v does not have any effect on the nodes influenced in T (v1). Hence we have

Av [1, j] = |Influenced[S, λ] ∩ T (v1)| ≤ MIS[v1, j,0, t(v1)|. (22)

If v1 /∈ S then let τ ∗ ∈ {1, . . . , λ, ∞} be the minimum positive integer such that v1 is influenced at time τ ∗ because of S; 
v1 /∈ Influenced[S, λ] then τ ∗ = ∞. Then, since in the definition of Av [1, j] we assume that v is influenced, or equivalently 
that the threshold of v1 is reduced to t′(v1), we have that

Av [1, j] = |Influenced[S, λ] ∩ T (v1)| ≤ MIS[v1, j, τ ∗, t′(v1)], (23)

where the last inequality follows by observing that, in the middle expression, the role of v is only to reduce the threshold 
of v1 to t′(v1).

The last expressions in both (22)–(23) contribute to the max on the right hand side of (21), hence this is also an upper 
bound for Av [1, j].

For i > 1, we will show that

Av [i, j] = max
0≤a≤ j

{
Av [i − 1,a] + max

τi ,ti
{MIS[vi, j − a, τi, ti]}

}
(24)

where

1. τ1 ∈ {0, . . . , λ,∞} 2. t1 ∈ {t(v1), t′(v1)} 3. if ti = t′(vi) then τi ≥ 1.

This means that we can compute the quantity Av [i, j] by considering all possible ways of partitioning the budget j into 
two values a and j − a, recursively solving a subproblem on F (v, i − 1) with budget a and a subproblem on T (vi) with 
budget j − a, and then combining the solutions.

In order to prove (24) we have
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Av [i, j] = max
S⊆F (v,i)
c(S)≤ j

|Influenced[S ∪ {v}, λ] ∩ F (v, i)| (25)

= max
S⊆F (v,i)
c(S)≤ j

{|Influenced[(S ∩ F (v, i − 1)) ∪ {v}, λ] ∩ F (v, i − 1)|

+ |Influenced[(S ∩ T (vi)) ∪ {v}, λ] ∩ T (vi)|} (26)

= max
0≤a≤ j

{
max

c(S1)≤a,S1⊆F (v,i−1)
|Influenced[S1 ∪ {v}, λ] ∩ F (v, i − 1)|

+ max
c(S2)≤ j−a,S2⊆T (vi)

|Influenced[S2 ∪ {v}, λ] ∩ T (vi)

}
(27)

= max
0≤a≤ j

{
Av [i − 1,a] + max

τi ,ti
MIS[vi, j − a, τi, ti]

}
(28)

where

• (26) follows from (25) because the spread of influence between F (v, i − 1) to T (vi) can only happen via v ,
• (27) is obtained from (26) by standard algebraic manipulation, taking into account that F (v, i − 1) ∩ T (vi) = ∅,
• (28) follows from (27) because

max
c(S1)≤a,S1⊆F (v,i−1)

|Influenced[S1 ∪ {v}, λ] ∩ F (v, i − 1)| = Av [i − 1,a]

holds by definition and, by proceeding in perfect analogy with the proof of (21), one can prove that

max
c(S2)≤ j−a,S2⊆T (vi)

|Influenced[S2 ∪ {v}, λ] ∩ T (vi)| = max
τi ,ti

MIS[vi, j − a, τi, ti]

under the conditions

1. τi ∈ {0, . . . , λ,∞} 2. ti ∈ {t(vi), t′(vi)} 3. if ti = t′(vi) then τi ≥ 1.

From the above recursive formulas, it immediately follows that the computation of Av [d, b − 1] comprises O (db) val-
ues each of which can be computed recursively in time O (λb). This together with (8) implies that MIS[v, b, 0, t] can be 
computed in time O (dλb2). �

We now consider the computation of B v,τ [d, b, t]. We prepare two technical lemmata. For this we will rely on the 
definition of B v,τ [{i}, j, k] as the restriction of B v,τ [i, j, k] where the forest F (v, i) is replaced by the single subtree T (vi).

Lemma 3. For each vertex v with d children, each τ = 1, . . . , λ, each i = 1, . . . , d, and each j = 0, . . . , β , we have

B v,τ [{i}, j,0] = max

⎧⎪⎨
⎪⎩ max

τi∈{0,1,...,λ,∞} MIS[vi, j, τi, t(vi)], max
τi∈{τ+1,...,λ}

MIS[vi , j,τi ,t
′(vi)]>MIS[vi , j,τ ,t′(vi)]

MIS[vi, j, τi, t′(vi)]

⎫⎪⎬
⎪⎭ . (29)

Proof. For notational convenience, let R denote the right hand side of (29).
By definition, if a target set S ⊆ T (vi) achieves the value B v,τ [{i}, j, 0], then |Influenced[S, λ] ∩ T (vi)| = B v,τ [{i}, j, 0].

• If there is a target set S ⊆ T (vi) that achieves B v,τ [{i}, j, 0] and vi �∈ Influenced[S, λ] ∩ T (vi) then |Influenced[S, λ] ∩
T (vi)| ≤ MIS[vi, j, ∞, t(vi)] ≤ R .

• If there is a target set S ⊆ T (vi) that achieves B v,τ [{i}, j, 0] and vi ∈ Influenced[S, τ ] then |Influenced[S, λ] ∩ T (vi)| ≤
MIS[vi, j, τ , t(vi)] ≤ R .

• If for every target set S ⊆ T (vi) that achieves B v,τ [{i}, j, 0] it holds that: (i) vi /∈ Influenced[S, τ ], and (ii) vi ∈
Influenced[S, τ ′] for some τ + 1 ≤ τ ′ ≤ λ, then we have that for any such S it holds that |Influenced[S, λ] ∩ T (vi)| ≤
MIS[vi, j, τ ′, t′(vi)]. Moreover, by (i) and (ii) we also have that MIS[vi, j, τ ′, t′(vi)] > MIS[vi, j, τ , t′(vi)]. Hence, 
|Influenced[S, λ] ∩ T (vi)| ≤ MIS[vi, j, τ ′, t′(vi)] ≤ R .

The above three cases show that B v,τ [{i}, j, 0] ≤ R .
To show the inequality in the other direction, we consider two cases according to which of the two max expressions in 

the right hand side of (29) gives R .

• Let τi ∈ {0, 1, . . . , λ, ∞} be such that MIS[vi, j, τi, t(vi)] = R . Let S be a target set achieving MIS[vi, j, τi, t(vi)]. Then 
the influence diffusion process restricted to T (vi) and starting with S , in λ rounds, in each of which the threshold of 
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vi is t(vi), will influence some set I of size MIS[vi, j, τi, t(vi)]. Clearly, starting the process with the same set S and 
reducing the threshold of vi to t′(vi) from round τ + 1 can only result in a set of influenced nodes which is a superset 
of I . Hence, R = MIS[vi, j, τi, t(vi)] ≤ B v,τ [{i}, j, 0] for each τi = 0, 1, . . . , λ, ∞.

• Suppose that R is achieved only by the second component of the max on the right hand side of (29), i.e.,

max
τi∈{0,1,...,λ,∞} MIS[vi, j, τi, t(v1)] < R = MIS[vi, j, τ̂ , t′(vi)]

for some τ̂ ∈ {τ + 1, . . . , λ} such that MIS[vi, j, τ̂ , t′(vi)] > MIS[vi, j, τ , t′(vi)]. Because of the inequality MIS[vi, j, τ̂ ,

t′(vi)] > MIS[vi, j, τ , t′(vi)], there must exist a target set S achieving MIS[vi, j, τ̂ , t′(vi)] such that, in the influence 
diffusion process in T (vi) started with S , the vertex vi is influenced later than round τ . Therefore, this influence 
diffusion process exploits the reduction of the threshold of vi only after round τ , which implies that

R = MIS[vi, j, τ̂ , t′(vi)] = |Influenced[S, λ] ∩ T (vi)|
≤ max

S ′⊆T (vi), c(S ′)≤ j
t(vi)=t′(vi) from round τ+1

|Influenced[S ′, λ] ∩ T (vi)|

= B v,τ [{i}, j,0].
In both cases we have R ≤ B v,τ [{i}, j, 0]. This together with the previously shown inequality in the other direction completes 
the proof of (29). �
Lemma 4. For each vertex v with d children, each τ = 1, . . . , λ, each i = 1, . . . , d, each j = 0, . . . , β , and each 0 < k ≤ w(vi, v), we 
have

B v,τ [{i}, j,k] = max
τi∈{0,1,...,τ−1} MIS[vi, j, τi, t(vi)]. (30)

Proof. Let set S ⊆ T (vi) achieve the value B v,τ [{i}, j, k], that is, |Influenced[S, λ] ∩ T (vi)| = B v,τ [{i}, j, k]. Since k > 0, it 
means that by time τ the only child of v , namely vi ,4 exerts some influence on v , hence vi has already been influenced by 
time τ − 1. Let τ ′ ∈ {0, 1, . . . , τ − 1} denote the minimum round at which vi gets influenced, with t(vi) being the threshold 
of vi at time τ ′ . Then

B v,τ [{i}, j,k] ≤ max
S ′⊆T (vi)
c(S ′)≤ j

vi∈Influenced[S ′,τ ′]

|Influenced[S ′, λ] ∩ T (vi)| = MIS[vi, j, τ ′, t(vi)].

For the opposite inequality, let τi ∈ {0, 1, . . . , τ − 1} be such that MIS[vi, j, τi, k] achieves the maximum on the right hand 
side of (30). Let S be a target set achieving the maximum of MIS[vi, j, τi, k]. Hence, vi ∈ Influenced[S, τi] ⊆ Influenced[S,

τ − 1], since τi ≤ τ − 1. Therefore, at time τ − 1 the influence from vi to v is w(vi, v) ≥ k. Notice that, since there 
is only one child of v , namely vi , the condition 

∑
u∈C(v)∩Influenced[S,τ−1] w(u, v) ≥ k > 0 is equivalent to requiring vi ∈

Influenced[S, τ − 1]. This implies

MIS[vi, j, τi,k] ≤ max
S ′⊆T (vi)
c(S ′)≤ j

vi∈Influenced[S ′,τ−1]

|Influenced[S ′, λ] ∩ T (vi)| = B v,τ [{i}, j,k]

which provides the desired inequality and completes the proof of (30). �
Lemma 5. For each vertex v, each b = 0, 1, . . . , β , each t ∈ {t(v), t′(v)}, and each τ = 1, . . . , λ, it is possible to compute B v,τ [d, b, t]
recursively in time O (dλb2t), where d is the number of children of v.

Proof. We can compute B v,τ [d, b, t] by recursively computing the values of B v,τ [i, j, k] for each i = 1, 2, . . . , d, each j =
0, 1, . . . , b, and each k = 0, 1, . . . , t , as follows.

Let i = 1. We split this case into three subcases according to the value of k.
For k = 0 we have B v,τ [1, j, 0] = B v,τ [{1}, j, 0], hence by Lemma 3, we have

B v,τ [1, j,0]

= max

⎧⎪⎨
⎪⎩ max

τ1∈{0,1,...,λ,∞} MIS[v1, j, τ1, t(v1)], max
τ1∈{τ+1,...,λ}

MIS[v1, j,τ1,t′(v1)]>MIS[v1, j,τ ,t′(v1)]
MIS[v1, j, τ1, t′(v1)]

⎫⎪⎬
⎪⎭ . (31)

4 Recall that when we use B v,τ [{i}, j, k], we refer to the modified tree in which F (v, d) has been replaced by T (vi). Hence v now has only one child 
which, abusing notation, we continue to refer to as vi for the sake of keeping the correspondence with the original tree.
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For 0 < k ≤ w(v1, v) we have B v,τ [1, j, k] = B v,τ [{1}, j, k], hence by Lemma 4, we have

B v,τ [1, j,k] = max
τ1∈{0,1,...,τ−1} MIS[v1, j, τ1, t(v1)]. (32)

Finally, if k > w(v1, v), then clearly B v,τ [1, j, k] = −∞.
Let i ∈ {2, . . . , d}. In order to compute B v,τ [i, j, k], proceeding as in Lemma 2, we consider all possible ways of parti-

tioning the budget j into two values a and j − a. The budget a is used in F (v, i − 1), while the remaining budget j − a is 
assigned to T (vi). Moreover, in order to ensure that∑

�∈{1,...,i}
vi∈Influenced[S,τ−1]

w(v�, v) ≥ k, (33)

there are two possibilities to consider:

I)
∑

�∈{1,...,i−1}
vi∈Influenced[S,τ−1]

w(v�, v) ≥ k, i.e., the condition on the influence brought to v from v1, . . . , vi at time τ − 1 is already 

satisfied by v1, . . . , vi−1. In this case we have no constraint on whether and when vi is influenced, and we can use a 
reduced threshold from round τ + 1;

II) Otherwise, vi has to contribute to condition (33). Hence, vi has to be influenced before round τ and cannot use the 
reduced threshold.

Therefore, for i > 1 and for each 0 ≤ j ≤ β and 0 ≤ k ≤ t , we can compute B v,τ [i, j, k] using the following formula:

B v,τ [i, j,k] = max
{

B i

v,τ [i, j,k], B ii

v,τ [i, j,k]
}
, (34)

where Bi

v,τ [i, j, k] and Bii

v,τ [i, j, k] denote the corresponding optimal values of the two restricted subproblems.
In the definition of B v,τ [i, j, k] we assumed complete independence among the influence diffusion processes in the 

different subtrees of F (v, i), so it holds that

B i

v,τ [i, j,k] = max
0≤a≤ j

{
B v,τ [i − 1,a,k] + B v,τ [{i}, j − a,0]

}
because the absence of a constraint on whether or not vi is influenced is the same as putting no constraint on the influence 
of vi towards v .

Hence, by Lemma 3 we have

B i

v,τ [i, j,k] = max
0≤a≤ j

{
B v,τ [i−1,a,k] + max

{
max

τi∈{0,1,...,λ,∞} MIS[vi, j − a, τi, t(vi)],

max
τi∈{τ+1,...,λ}

MIS[vi , j−a,τi ,t
′(vi)]>

MIS[vi , j−a,τ ,t′(vi)]

MIS[vi, j − a, τi, t′(vi)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (35)

Analogously, because of the complete independence among the influence diffusion processes in the different subtrees of 
F (v, i), assumed in the definition of B v,τ [i, j, k], it holds that

B ii

v,τ [i, j,k] = max
0≤a≤ j

{
B v,τ [i−1,a,max{k − w(vi, v),0}] + B v,τ [{i}, j − a, w(vi, v)]

}
since constraining vi to be influenced before time τ is the same as requiring that its influence towards v is at least w(vi, v)

before time τ . Hence, using Lemma 4 we have

B ii

v,τ [i, j,k] = max
0≤a≤ j

{
B v,τ [i−1,a,max{k − w(vi, v),0}] + max

τi∈{0,1,...,τ−1} MIS[vi, j − a, τi, t(vi)]
}

. (36)

From (31)–(36), it follows that the computation of B v,τ [·, ·, ·] comprises O (dbt) values and each one is computed recur-
sively in time O (λb). Hence we are able to compute it in time O (dλb2t). �

We now consider the computation of MIS[v, b, ∞, t].

Lemma 6. For each vertex v, each b = 0, 1, . . . , β , and each t ∈ {t(v), t′(v)}, it is possible to compute MIS[v, b, ∞, t] in time O (dλb2), 
where d is the number of children of v.



F. Cicalese et al. / Theoretical Computer Science 586 (2015) 40–58 53
Proof. By Proposition 3 it is enough to show that we can compute C v [d, b] in the given time bound. We will do this by 
recursively computing the values C v [i, j] for each i = 1, 2, . . . , d and for each j = 0, 1, . . . , b, as follows.

For i = 1, we have that for any budget j, it holds that

C v [1, j] = max
S⊆T (v1)
c(S)≤ j

|Influenced[S, λ] ∩ T (v1)| (37)

= max
τ1∈{0,1,...,λ,∞} max

S⊆T (v1)
c(S)≤ j

v1∈Influenced[S,τ1]

|Influenced[S, λ] ∩ T (v1)| (38)

= max
τ1∈{0,1,...,λ,∞} MIS[v1, j, τ1, t(v1)] (39)

where the first equality holds because in this case v , whose contribution to the state of v1 should be ignored, can only be 
influenced by v1 itself, hence in order to get C v [1, j] it is enough to consider only the vertices influenced in T (v1). The 
remaining equalities are obtained by standard algebraic manipulation.

Now let i > 1. For the sake of conciseness, we will abuse our definition and use weight 0 to indicate that the influence 
of v on its children is to be neglected. Then we can write

C v [i, j] = max
S⊆F (v,i)
c(S)≤ j

w(v,vk)=0,k=1,...,i

|Influenced[S, λ] ∩ F (v, i)| (40)

= max
S⊆F (v,i)
c(S)≤ j

w(v,vk)=0,k=1,...,i

{|Influenced[S ∩ F (v, i − 1), λ] ∩ F (v, i − 1)|

+ |Influenced[S ∩ T (vi), λ] ∩ T (vi)|} (41)

= max
0≤a≤ j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
S1⊆F (v,i−1)

c(S1)≤a
w(v,vk)=0,k=1,...,i−1

|Influenced[S1 ∩ F (v, i − 1), λ] ∩ F (v, i − 1)|

+ max
S2⊆T (vi)

c(S2)≤ j−a
w(v,vi)=0

|Influenced[S2 ∩ T (vi), λ] ∩ T (vi)|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(42)

= max
0≤a≤ j

{
C v [i − 1,a] + max

τi∈{0,...,λ,∞} MIS[vi, j − a, τi, ti]
}

. (43)

The last equality follows by the definition of C v [i − 1, a] and since, in perfect analogy with the proof of the case i = 1, 
we can show that

max
S2⊆T (vi)

c(S2)≤ j−a
w(v,vi)=0

|Influenced[S2 ∩ T (vi), λ] ∩ T (vi)| = max
τi∈{0,...,λ,∞} MIS[vi, j − a, τi, ti].

There are O (db) values of C v [· , ·] and each one is computed recursively in time O (λb). Hence, by (10), we are able to 
compute MIS[v, b, ∞, t] in time O (dλb2). �

Thanks to the four Lemmata 1, 2, 5, and 6 above, and recalling that for each node v ∈ V , t(v) ≤ W (v) + 1, we have 
that for each node v ∈ V , for each b = 0, 1, . . . , β , for each τ = 0, 1, . . . , λ, ∞, and for t ∈ {t′(v), t(v)}, MIS[v, b, τ , t] can be 
computed recursively in time O (λβ2d(v)W (v)). Hence, the value

max
τ∈{0,1,...,λ,∞} MIS[r, β, τ , t(r)] (44)

can be computed in time∑
v∈V

O (λβ2d(v)W (v)) × O (λβ) = O (λ2β3) ×
∑
v∈V

O (d(v)W (v)) = O (�λ2W β3),

where � is the maximum node in-degree and W = maxu∈V {W (u)} is the sum of all edge weights. Standard backtracking 
techniques can be used to compute the (optimal) target set of cost at most β that influences this maximum number of 
nodes in the same O (�λ2 W β3), time. This proves Theorem 4.
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In case the tree is unweighted, one can obtain more precise bounds on the complexity of the algorithm. Indeed, reasoning 
analogous to that performed before can be used to show that, on unweighted trees, for each node v ∈ V , for each b =
0, 1, . . . , β , for each τ = 0, 1, . . . , λ, ∞, and for t ∈ {t(v) − 1, t(v)}, the values MIS[v, b, τ , t] can be computed recursively in 
time O (λβ2d(v)t(v)). Also, on unweighted graphs, for each node v ∈ V it holds that t(v) ≤ d(v) + 1, so the value in (44)
can be computed in time∑

v∈V

O (λβ2d(v)2)×O (λβ) = O (λ2β3) ×
∑
v∈V

O (d(v)2) = O (min{n�2λ2β3,n2λ2β3}).

Hence we have the following Corollary to Theorem 4.

Corollary 1. The (λ, β)-MIS problem can be solved in time O (min{n�2λ2β3, n2λ2β3}) on an unweighted tree with n nodes and 
maximum degree �.

4. (λ, β)-MIS on weighted paths and cycles

The results of Section 3 obviously include paths. However, for paths, we are able to significantly strengthen the result 
following from Theorem 4 by developing a polynomial time solution for the (λ, β)-MIS problem on this class of graphs. Let 
Pn = (V , E) be a path on n nodes v1, v2, . . . , vn , and edges (vi, vi+1) and (vi+1, vi), for i = 1, . . . , n − 1.

Theorem 5. The (λ, β)-MIS problem can be solved in time O (n2λ) on a weighted path Pn.

Proof. For i ∈ {1, . . . , n − 1}, let us denote t′(vi) = max{t(vi) − w(vi+1, vi), 0}, and let t′(vn) = t(vn). Let V (Pi) be the set of 
vertices of a path Pi . For i ∈ {1, . . . , n}, j ∈ {0, 1, . . . , n}, τ ∈ {0, 1, . . . , λ, ∞}, and t ∈ {t(vi), t′(vi)}, let f (i, j, τ , t) denote the 
minimum cost of a subset S ⊆ V (Pi) such that if the influence diffusion process is run on Pi with target set S , where the 
threshold of each node vk with k < i is t(vk), while the threshold of vi is set to t , then vertex vi is influenced within time 
τ and at least j vertices are influenced within time λ. If such a set does not exist, we set f (i, j, τ , t) = ∞. Furthermore, let 
S(i, j, τ , t) denote any set S ⊆ V (Pi) attaining the value of f (i, j, τ , t) (whenever this value is finite).

Notice that f (n, k, ∞, t(vn)) equals the minimum cost of a subset S ⊆ V (Pn) when the influence diffusion process is 
run on the input path with target set S such that at least k nodes are influenced within λ steps. Therefore, to solve the 
(λ, β)-MIS problem on Pn , it suffices to find the maximum value of k ∈ {0, 1, . . . , n} such that f (n, k, ∞, t(vn)) ≤ β . An 
optimal solution will then be given by S(n, k, ∞, t(vn)).

We now explain how all of the values of f (i, j, τ , t) and the corresponding sets S(i, j, τ , t) can be computed in time 
O (n2λ).

First, observe that f (i, j, τ , t) = ∞ if and only if j > i. Indeed, if j > i then the condition that at least j elements out of 
i are influenced within time λ clearly cannot be fulfilled. On the other hand, if j ≤ i, then S = V (Pi) is a feasible solution 
for the problem defining f (i, j, τ , t). Hence, in what follows, we will assume that j ≤ i for every 4-tuple (i, j, τ , t) under 
consideration.

We proceed in order of increasing values of i and prove a sequence of claims.

Claim 1. For i = 1, we have

S(1, j, τ , t) =
{ ∅ if ( j = 0 AND τ = ∞) OR (τ ≥ 1 AND t = 0)

{v1} otherwise,

and f (1, j, τ , t) = c(S(i, j, τ , t)).

Proof. For j = 0 and τ = ∞, both constraints, the one specifying that v1 should be influenced within time τ , and the one 
specifying that at least j vertices become influenced within time λ, are vacuous. Therefore S = ∅ is an optimal solution in 
this case. If τ ≥ 1 and t = 0, then v1 will become influenced at time 1 (which is not more than τ ), which also implies that 
the constraint |Influenced[S, λ] ∩ {v1}| ≥ j will be satisfied for any j ∈ {0, 1} independently of S , which implies that S = ∅
is optimal. Suppose now that (τ ≤ λ or j = 1) and (τ = 0 or t > 0). It suffices to show that the empty set is not a feasible 
solution. Suppose by way of contradiction that it is. Then τ ≥ 1 and consequently t > 0, which implies that vertex v1 will 
not become influenced. Consequently, neither τ ≤ λ nor j = 1 are possible, a contradiction. �

Now let i > 1, and suppose inductively that f (i′, j, τ , t) and the corresponding target sets were already computed for all 
i′ < i and all suitable values of j, τ , and t . In the next sequence of claims, we will show how to compute S(i, j, τ , t) and 
f (i, j, τ , t) (for all suitable values of j, τ , and t). First we deal with the cases when τ = 0.

Claim 2. If i > 1 and τ = 0, then S(i, j, 0, t) = S(i − 1, max{ j − 1, 0}, ∞, t′(vi−1)) ∪ {vi} and f (i, j, 0, t) = c(S(i, j, 0, t)).
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Proof. The fact that τ = 0 implies that vi must be taken in the corresponding target set, that is, vi ∈ S(i, j, 0, t). It suffices 
to prove that

f (i, j,0, t) = f (i − 1,max{ j − 1,0},∞, t′(vi−1)) + c(vi) .

Let S ′ = S(i − 1, max{ j − 1, 0}, ∞, t′(vi−1)). To show the inequality “≤”, it suffices to argue that when running the 
influence diffusion process in Pi with target set S = S ′ ∪ {vi}, we have |Influenced[S, λ] ∩ V (Pi)| ≥ j. Indeed, assuming this 
property, we have that

f (i, j,0, t) ≤ c(S) = c(S ′) + c(vi) = f (i − 1,max{ j − 1,0},∞, t′(vi−1)) + c(vi),

where the first inequality holds by definition of f (i, j, 0, t), the first equality holds by the definition of S , and the last 
equality holds by the definition of S ′ . To justify the above claim, note that when running the influence diffusion process in 
Pi−1 with target set S ′ , at least j − 1 vertices get influenced within λ rounds. These vertices will also get influenced within 
λ rounds by the influence diffusion process in Pi with target set S; in addition, vi will be influenced since it belongs to the 
target set.

Similarly, to show the reverse inequality, “≥”, it suffices to argue that when running the influence diffusion process in 
Pi−1 with target set S ′ = S(i, j, 0, t) \{vi}, and with the threshold of vi−1 set to t′(vi−1), at least j −1 vertices get influenced 
within λ rounds. This follows from the observation that for every k with 1 ≤ k ≤ i − 1, vertex vk gets influenced within λ
rounds in Pi by the target set S(i, j, 0, t) if and only if it gets influenced within λ rounds in Pi−1 by the target set S ′ with 
the modified threshold of vi−1. �

Now, we handle the case when τ �= 0 and t = 0.

Claim 3. If i > 1, τ �= 0, and t = 0, then

S(i, j, τ ,0) = S(i − 1,max{ j − 1,0},∞, t′),
where

t′ =
{

t′(vi−1) if λ > 1
t(vi−1) otherwise,

and f (i, j, 0, t) = c(S(i, j, 0, t)).

Proof. Since t = 0, vertex vi will become influenced at time 1, no matter what the target set is. If in addition λ > 1, 
then vertex vi can help to influence vi−1 at times between 2 and λ. It suffices to prove that f (i, j, τ , 0) = f (i − 1,

max{ j − 1, 0}, ∞, t′). To show that

f (i, j, τ ,0) ≤ f (i − 1,max{ j − 1,0},∞, t′),
note that in Pi−1, the influence diffusion process with the target set S(i − 1, max{ j − 1, 0}, ∞, t′) influences at least j − 1
vertices within λ rounds. These vertices, together with vi , form a set of at least j vertices influenced within λ rounds in Pi
by the same target set. Conversely, to show that

f (i − 1,max{ j − 1,0},∞, t′) ≤ f (i, j, τ ,0),

observe that the influence diffusion process in Pi with target set S(i, j, τ , 0) influences at least j − 1 vertices within Pi−1
within λ rounds. Moreover, if vertex vi−1 is not in the target set but gets influenced within λ rounds, then this vertex 
will also get influenced when the influence diffusion process is run in Pi−1 with target set S(i, j, τ , 0) (which does not 
contain vi , by optimality and the fact that costs are positive) and the threshold of vi−1 set to t′ . This establishes the second 
inequality and proves the claim. �

The remaining case is when t > 0, which is split into two further subcases, depending on whether τ is finite on not.

Claim 4. If i > 1, τ ∈ {1, . . . , λ}, and t > 0, then

f (i, j, τ , t) =
{

min{ f (i, j,0, t), f (i − 1,max{ j − 1,0}, τ − 1, t(vi−1))} if w(vi−1, vi) ≥ t
f (i, j,0, t) otherwise,

and the set S(i, j, τ , t) is defined in the obvious way depending on where the minimum is attained.

Proof. Since t > 0, there are exactly two ways in which vertex vi can become influenced within time τ : either vi is 
placed in the target set, or it becomes influenced because w(vi−1, vi) ≥ t and its unique neighbor, vertex vi−1, becomes 
influenced within time τ − 1. This observation, together with arguments similar to those used in the proofs of previous 
claims, establishes the claim. �

Finally, for τ = ∞ and t > 0 we have the following.
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Claim 5. If i > 1, τ = ∞, and t > 0, then

f (i, j,∞, t) = min

{
min

0≤τ ′≤λ
f (i, j, τ ′, t), f (i − 1, j,∞, t(vi−1))

}
,

and the set S(i, j, ∞, t) is computed in the obvious way depending on where the minimum in the above expression is attained.

Proof. Note that by definition of f (i, j, τ , t), we have f (i, j, ∞, t) ≤ min0≤τ ′≤λ f (i, j, τ ′, t). Also, if j ≤ i − 1, then run-
ning the influence diffusion process in Pi with target set S = S(i − 1, j, ∞, t(vi−1)) results in at least j influenced 
vertices (already within V (Pi−1)), showing that f (i, j, ∞, t) ≤ f (i − 1, j, ∞, t(vi−1)). This establishes that f (i, j, ∞, t) ≤
min

{
min0≤τ ′≤λ f (i, j, τ ′, t), f (i − 1, j,∞, t(vi−1))

}
.

For the converse direction, take an optimal solution S = S(i, j, ∞, t), and consider the influence diffusion process in Pi

with target set S for λ rounds. Let τi be the time at which vi is influenced (with τi = ∞ if vi is not influenced within 
λ rounds). If τi is finite, then f (i, j, ∞, t) = f (i, j, τi, t), and hence min0≤τ ′≤λ f (i, j, τ ′, t) ≤ f (i, j, τi, t) = f (i, j, ∞, t). If 
τi = ∞, then vi is not influenced within time λ, which implies that S ⊆ V (Pi−1), j ≤ i − 1, and running the influence 
diffusion process in Pi−1 with target set S for λ rounds results in at least j influenced vertices, showing that in this case 
f (i − 1, j, ∞, t(vi−1)) ≤ f (i, j, ∞, t). This proves the claim. �

To justify the time complexity of the resulting algorithm, note that there are O (n2λ) 4-tuples (i, j, τ , t). Using the above 
formulas, the corresponding optimal values of f (i, j, τ , t) and target sets S(i, j, τ , t) (in case of feasible problems) can be 
computed in time O (n2λ). �

We conclude this section by extending our result for paths to cycles. We denote by Cn the cycle on n ≥ 3 nodes that 
consists of the path Pn augmented with the edges (v1, vn) and (vn, v1).

Theorem 6. The (λ, β)-MIS problem can be solved in time O (n3λ) on a weighted cycle Cn.

Proof. We describe how to reduce the problem to solving at most n instances of the (λ, β)-MIS problem on paths. The 
result will then follow from Theorem 5.

We compute the set I of all indices i ∈ {1, . . . , n} such that c(vi) ≤ β . We set S0 = ∅, and compute, for each i ∈ I , a target 
set Si with vi ∈ Si such that the number of nodes influenced within λ rounds when running the influence diffusion process 
on Cn with S , over all sets S containing vi and of total cost at most β , is maximized for Si . Once the sets Si for i ∈ I are 
computed, computing the number of influenced nodes within λ rounds for each target set Si , where i ∈ I ∪ {0}, can be used 
to determine an optimal solution.

For each i ∈ I , the problem of computing Si can be reduced to an instance of the (λ, β)-MIS problem on the (n −1)-vertex 
path Cn −{vi}, as follows. Since we assume that vi ∈ Si , we reset the threshold of v j for j ∈ {i − 1, i + 1} (indices modulo n) 
to t′(v j) = max{t(v j) − w(vi, v j), 0}. We delete vertex vi from the graph (thus obtaining a path), reduce the budget to 
β − c(vi), and keep the latency bound λ unchanged. This way, it can be readily seen that we obtain a weighted path 
instance of the (λ, β)-MIS problem such that if S is an optimal solution for this instance, then Si = S ∪ {vi} has the desired 
property.

Together with Theorem 5, we obtain the claimed result. �
5. Concluding remarks and open problems

We considered the problems of selecting a bounded cost subset of nodes in (classes of) networks such that the influence 
they spread in a fixed number of rounds is the highest among all subsets of the same bounded cost. It is not difficult to 
see that our techniques can also solve closely related problems in the same classes of graphs considered in this paper. For 
instance, one could fix a requirement α and ask for the minimum cost target set such that after λ rounds the number of 
influenced nodes in the network is at least α. Or, one could fix a budget β and a requirement α, and ask about the minimum
number λ such that there exists a target set of cost at most β that influences at least α nodes in the network within λ
rounds (such a minimum λ could also be equal to ∞, meaning that a target set with the desired properties does not exist).

To the best of our knowledge, there are no results for the problems we considered in this paper for “less structured” 
network models, like small world graphs or exponential random graphs and, in general, for models that better capture 
real-world properties of social networks. We plan to investigate these problems in future work.

Another interesting extension of our results would be to consider the case in which there is a numerical value p(·)
associated with each node v in the network, measuring the profit that an advertiser, say, would gain from convincing v to 
adopt a product. This numerical value could be related, for instance, to the purchasing power (or the purchasing inclination) 
of the individual. In this scenario, one would be interested in finding a target set S of bounded cost such that the sum of 
the profits associated with influenced nodes, computed as
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∑
v∈Influenced[S,λ]

p(v),

is the highest among all subsets of the same bounded costs. We leave this problem open for future investigations.
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