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Abstract
Opinion diffusion is studied on social graphs where
agents hold binary opinions and where social pres-
sure leads them to conform to the opinion mani-
fested by the majority of their neighbors. Within
this setting, questions related to whether a minor-
ity/majority can spread the opinion it supports to
all the other agents are considered. It is shown that,
no matter of the underlying graph, there is always
a group formed by a half of the agents that can an-
nihilate the opposite opinion. Instead, the influence
power of minorities depends on certain features of
the given graph, which are NP-hard to be identi-
fied. Deciding whether the two opinions can coex-
ist in some stable configuration is NP-hard, too.
The final version of this paper is avail-
able at https://www.ijcai.org/
proceedings/2018/0007.pdf.

1 Introduction
Consider the following prototypical scenario. The members
of a department are organizing a social dinner, and they have
to decide whether to go to a restaurant or to a pizzeria. Ini-
tially, each of them holds an opinion on her ideal choice.
They are neither strategic [Osborne and Rubinstein, 1994;
Gottlob et al., 2005] nor inclined to use voting rules or
other mechanisms to find an agreement [Brandt et al., 2016;
Endriss, 2017]. Rather, we know that, at a certain point, they
will exchange their viewpoints and each of them will be af-
fected by a social pressure leading to adapt her opinion to the
one manifested by the majority of her friends. So, we ask:
Would be they capable to reach a consensus for some/all pro-
files of their initial opinions? Can a minority have enough
social “power” to influence all other agents? Is it any easier
for a majority to guide convergence towards consensus?

Our goal is to analyze the above kinds of questions under
the lens of algorithm design and computational complexity,
by focusing on the setting where agents (e.g., the members
of the department) hold binary opinions (e.g., restaurant vs
pizzeria), where at each time instant precisely one agent can
change her opinion (asynchronous model), and where social
relationships are encoded as a graph. Indeed, while the study

of opinion diffusion has been attracting much attention in the
literature (e.g., [Grandi et al., 2015; Cholvy, 2016; Brill et
al., 2016; Grandi et al., 2017; Bredereck and Elkind, 2017;
Acar et al., 2017]), our knowledge about problems related to
consensus—in the setting of interest—was basically confined
so far to the results by Mossel et al. [2014] and Feldman et
al. [2014], roughly stating that, in expander graphs, a suffi-
ciently large majority will always influence all other agents.

In the paper we fill this gap. In more details, we first an-
alyze in Section 3 the question of whether there exists some
profile for which a fraction α of the agents that already agree
on some given opinion can spread that opinion to all the re-
maining agents. We show that the answer is positive on any
social graph and for any given value of α≥1/2. In particular,
a (rather elaborated) polynomial-time algorithm computing
the desired initial configurations is exhibited. The result is
not only the main technical achievement of the paper, but it
is also conceptually interesting and somehow surprising. In-
deed, one might be inclined to believe that the topology of
the social graphs (in particular, for values of α close to 1/2)
should play some role w.r.t. the possibility of reaching con-
sensus on some given opinion. To the contrary, our result
says that there always exists a majority formed by a half of
the agents that can annihilate the opposite opinion.

Moreover, we evidence in Section 4 that the value α = 1/2
defines a sharp boundary for the consensus problem. Indeed,
we show that a minority (i.e., α<1/2) that can spread its opin-
ion to all the agents exists only in certain graphs. In fact, a
result of this kind was holds for the problem of assessing the
existence of a minority that will become a majority [Auletta
et al., 2015; 2017a; 2017b]. However, in their setting the
graphs enjoying the desired property admit a (computation-
ally) simple characterization, while in our setting their char-
acterization is NP-hard. Furthermore, we show that even just
deciding whether there is a minority that can double the num-
ber of agents with its opinion is NP-hard.

Finally, we address the question of identifying those graphs
in which consensus is the only possible stable outcome. In
fact, assessing whether the two opinions can/cannot coexist
in some stable configuration has been left as an open research
issue in [Bredereck and Elkind, 2017]. Moreover, this prob-
lem has a natural graph-theoretic interpretation in terms of
the existence of non-trivial cuts that are locally stable, whose
complexity was, so far, open in the literature [Ferraioli and
Ventre, 2017]. In Section 5 we solve this problem, by show-
ing that checking whether a cut of this kind exists is NP-hard.



The exposition of the above results is self-contained,1 with
Section 2 presenting basic notions and notations.

2 Formal Framework for Opinion Diffusion
LetG = (N,E) be an undirected graph encoding the interac-
tions of a set N of agents. We assume that G is connected—
otherwise apply our results on each connected component.

A configuration for G is a function c : N → {1, 0}; its
intended meaning is that agent x ∈ N with c(x) = 1 (respec-
tively, c(x) = 0) holds opinion black 1 (respectively, white
0). For any set S ⊆ N of agents, we define S1/c (shortly S1,
if the configuration c is clearly understood) as the set of all
agents with opinion 1. The set S0/c (shortly S0) is defined
analogously. For each agent x ∈ N , the set {y | {x, y} ∈ E}
of her neighbors is denoted by δ(x). Agent x ∈ N is stable in
c if her opinion agrees with the opinion held by a (non-strict)
majority of her neighbors; that is, either |δ(x)0| ≤ |δ(x)1|
and c(x) = 1; or |δ(x)1| ≤ |δ(x)0| and c(x) = 0. A configu-
ration c is stable if all agents in N are stable.

We consider an asynchronous model where, at each time
instant, precisely one agent which is not stable changes her
opinion. Accordingly, a dynamics for G is modeled as a se-
quence of configurations c0, ..., ck such that ch+1, for each
h ∈ {0, ..., k − 1}, is obtained from ch by flipping the opin-
ion of an agent that is not stable in ch. The dynamics will
be also shortly denoted as c0  ck, whenever we are just
interested in the initial and final configurations only.

Let op ∈ {1, 0} be an opinion. Given an initial configura-
tion c, let us denote by maxop(c) the configuration resulting
from the dynamics c  maxop(c) defined as follows: First,
as long as there is an agent x ∈ N that is not stable and whose
opinion is not op, then flip her opinion. Second, as long as
there is an agent x ∈ N that is not stable and whose opin-
ion is op, then flip her opinion. It is known that maxop(c) is
stable and that |Nop/maxop(c)| ≥ |Nop/c′ | for each dynamics
c c′ with c′ 6= maxop(c) [Bredereck and Elkind, 2017].

3 From Majority to Consensus
Let op ∈ {1, 0} be an opinion. Define ∀op as the “consensus”
configuration where all agents hold opinion op, and consider
the following problem defined on graphs and parameterized
w.r.t. a fixed rational number α such that 0 < α < 1:
CONSENSUS[α]: Given an undirected graph G = (N,E),

compute a configuration c for G such that (i) |Nop/c| ≤
dα|N |e and (ii) maxop(c) = ∀op, or check that there is
no configuration enjoying (i) and (ii).

In words, CONSENSUS[α] asks whether consensus on op
can be reached in G from a configuration where the fraction
of agents that initially holds opinion op is at most α. In the
following, for simplicity, we assume that G is given and we
omit it in our notation; moreover (and w.l.o.g), we fix op = 1.

Our main result is that, for each undirected graphG, when-
ever the fraction α covers a majority of the agents, i.e., α≥1/2,
a configuration enjoying (i) and (ii) always exist and can be
computed in polynomial-time. In particular, we propose (in

1Details available at https://tinyurl.com/ycj3lh3c.
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Figure 1: Configurations leading to consensus on “nice” partitions.

Section 3.4) a polynomial time algorithm to solve CONSEN-
SUS[1/2]. The algorithm explores the space of binary parti-
tions P of the agent set N , that are pairs P = (A,B) where
A,B ⊆ N are such that A ∩ B = ∅ and A ∪ B = N . In
the following, the fact that a set X ⊆ N belongs to {A,B} is
shortly denoted byX ∈ P; moreover, we define X̄ = N \X .

Our approach is founded on the observation (see Sec-
tion 3.1) that there are certain “nice” partitions from which
solutions to CONSENSUS[1/2] can be easily computed. How-
ever, it is not obvious how to single out these partitions. In
fact, we propose an algorithm that proceeds as follows: it
starts from an arbitrary balanced partition P = (A,B), i.e.,
such that −1 ≤ |A| − |B| ≤ 1, and incrementally modifies
the current partition via update procedures (described in Sec-
tion 3.2 and Section 3.3) until a “nice” partition is found.

3.1 Nice Partitions
We next introduce three kinds of “nice” partitions from which
solutions to CONSENSUS[1/2] can be easily computed.

To this aim, letP be a partition ofN . For any agent x ∈ N ,
let Px (resp., P̄x) denote the set of P to which x belongs
(resp., does not belong), and let us define the utility of x in P
as the value u(x,P) = |δ(x)∩Px| − |δ(x)∩ P̄x|. Moreover,
for any two disjoint sets of agents A′ and B′, not necessarily
forming a partition, we define E(A′, B′) as the set of edges
e ∈ E such that e ∩A′ 6= ∅ and e ∩B′ 6= ∅.

Observe that, whenever each “side” of P consists of all the
agents that have the same specific opinion, then u(x∗,P) > 0
holds if, and only if, agent x∗ is stable (with her opinion as-
sociated) with the side Px∗ . The first kind of “nice” partition
we consider assumes the existence of a stable agent x∗ and,
in addition, it relates the utility of all pairs of agents x and y
from “opposite” sides with the cardinality of E({x}, {y}).
Definition 1. P is a P1-partition if there is a set X ∈ P such
that |X| ≤

⌈
N
2

⌉
and the following conditions hold:

• u(x,P) + u(y,P) ≤ −2|E({x}, {y})| holds for each
pair of agents x ∈ X and y ∈ X̄;
• there is x? ∈ X with u(x?,P) > 0. 2

To define the second kind of “nice” partition, for each side
X of a partition P , we denote by G[X] the subgraph of G
induced by X . Let Zc(X,P) be the set of all connected com-
ponents of G[X] such that u(y,P) = 0 for each component
C ∈ Zc(X,P) and each agent y of C. That is, Zc(X,P) is
the set of connected components of G[X] such that all agents



within these components have the same number of neighbors
within the component and on the other side of the partition.
Definition 2. P is a P2-partition if there is a set X ∈ P such
that |X| ≤

⌈
N
2

⌉
and the following hold:

• every x ∈ X̄ such that u(x,P) = k > 0 has at least
b(k + 2)/2c neighbors y ∈ X̄ with u(y,P) < 0;
• Zc(X̄,P) = ∅. 2

Let c̄(P) be the configuration that, for a P1 or a P2 partition
P , assigns opinion 1 (resp., 0) to all the agents in X (resp.,
X̄). We show that c̄(P) leads to consensus (see Figure 1).
Lemma 1. If P is a P1-partition, then max1(c̄(P)) = ∀1.
Proof. For each y ∈ X̄ , it holds that u(y,P) ≤ −u(x?,P)−
2|E({x?}, {y})| < 0, where x? and X are as in Definition 1.
Hence, in the configuration c̄(P) all agents in X̄ are not stable
and they will change their opinion. Indeed, note that, while
the dynamics is running, |δ(y)0| − |δ(y)1| ≤ u(y,P) holds,
for each y ∈ X̄ that has not yet changed her opinion.

Lemma 2. If P is a P2-partition, then max1(c̄(P)) = ∀1.
Proof Sketch. Let X ∈ P be as in Definition 2. Note that
agents in S = {y ∈ X̄ | u(y,P) < 0} are not stable in
c̄(P) and they flip their opinion. Let c∗ be the configuration
reached from c̄(P) after all agents in S flipped their opinion,
and let P? = (A?, B?), with A? = X ∪ S and B? = X̄ \ S.

Now, observe that u(x,P?) ≤ u(x,P) for each x ∈ B?.
Moreover, if u(x,P) > 0 or u(x,P) = 0, then x has neigh-
bors in S, and u(x,P?) < 0. Hence, Zc(B?,P?) = ∅ and
u(x,P?) ≤ 0 for each x ∈ B?. Thus, for each y0 ∈ B? there
is a path y0, . . . , yh in B?, with h ≥ 0, where u(yh,P?) < 0
and u(yi,P?) = 0 for i = 0, . . . , h−1. Such agents flip their
opinion if selected in the reverse order yh, . . . , y0.

We can also define a third kind of “nice” partition. For
any x ∈ N , let toZc(x,P) be the set of all components C ∈
Zc(P̄x,Px) containing an agent adjacent to x.
Definition 3. P is a P3-partition if it is balanced and there is
a set X ∈ P such that the following hold:
• u(x,P) + u(y,P) ≤ −2|E({x}, {y})| holds for each

pair of agents x ∈ X and y ∈ X̄;
• u(x,P) ≤ 0 holds for each x ∈ N ;
• |Zc(X̄,P)| ≥ |Zc(X,P)| > 0;
• for each D ∈ Zc(X̄,P) there is x ∈ X with D ∈
toZc(x,P) and u(x,P) < −2|toZc(x,P)|. 2

Assume that P is a P3-partition. In this case, we cannot
reach consensus by starting from c̄(P) but we need a more
complex construction. Let Xnz (resp., X̄nz) denote the set
of agents that do not belong to any component in Zc(X,P)
(resp., Zc(X̄,P)). Consider the configuration c̃(P) shown in
Figure 1 and built as follows. All agents in X̄nz (resp., Xnz)
hold opinion 1 (resp., 0). Moreover, for each component C ∈
Zc(X,P), precisely one arbitrarily chosen agent xC ∈ C
holds opinion 1 and all the remaining agents of C hold opin-
ion 0. For each component D ∈ Zc(X̄,P), precisely one
agent yD ∈ D holds opinion 0 and all the remaining agents
of D hold opinion 1, where yD ∈ X̄ is an agent connected
to some xD ∈ X such that u(xD,P) < −2|toZc(xD,P)|.
Note that, by definition of P3-partition, yD is well-defined.

Lemma 3. If P is a P3-partition, then max1(c̃(P)) = ∀1.
Proof Sketch. Let X ∈ P be as in Definition 3. Let x be an
agent in some C ∈ Zc(X,P). Note that all neighbors of x
are either confined in the component C or they occur in X̄nz ,
since (by Definition 3) we have u(y,P) < 0 if y is adjacent
to x. Now, in c̃(P) if x 6= xC , then x has |δ(x) ∩ X̄| + 1
neighbors with opinion 1 and |δ(x) ∩X| − 1 neighbors with
opinion 0. Since u(x,P) = 0, |δ(x)∩ X̄|+1 > |δ(x)∩X|−
1. Hence, x can flip her opinion. Moreover, for each D ∈
Zc(X̄,P), consider the agent xD ∈ X . Note that xD has in
c̃(P) at least |δ(x) ∩ X̄| − |toZc(xD,P)| neighbors having
opinion 1 and at most |δ(x)∩X)| + |toZc(xD,P)| neighbors
with opinion 0. Therefore, u(xD,P) < −2|toZc(xD,P)|
implies that |δ(x) ∩ X̄| − |toZc(xD,P)| > |δ(x) ∩ X| +
|toZc(xD,P)|, and xD can flip her opinion.

Now, let c∗ be the profile derived from c̃(P) after all agents
x 6= xC occurring in C ∈ Zc(X,P) and all agents xD
with D ∈ Zc(X̄,P) have changed their opinion. For each
D ∈ Zc(X̄,P), yD can change her opinion, because yD has
at least |δ(yD)∩ X̄|+1 neighbors with opinion 1 in c∗ and at
most |δ(yD)∩X|− 1 neighbors with opinion 0 (and we have
u(yD,P) = 0). Finally, consider the configuration derived
from c∗ after all agents yD withD ∈ Zc(X̄,P) have changed
their opinion. In this configuration, the only agents with opin-
ion 0 are agents x in Xnz with x 6= xD. For these agents, the
fact that they can change their opinion can be shown with the
arguments used in the proof of Lemma 2.

These lemmas imply that if P is a P1 or P2 (resp., P3) par-
tition, then |N1/c̄(P)|≤d1/2|N |e (resp., |N1/c̃(P)|≤d1/2|N |e)
and consensus is reached from these configurations. This is
formalized in the following corollary. Hereinafter, we say
that a partition is nice (for G) if it is a P1, P2 or P3 partition.
Corollary 1. Assume that, for any graph G, a nice partition
exists and can be computed in polynomial time. Then, CON-
SENSUS[1/2] can be solved in polynomial time, too.

3.2 Step 1: Remove Pivotal Agents
In the light of Corollary 1, our goal is to design an algorithm
that, given as input a graph G, is able to compute (in polyno-
mial time) a nice partition of G. To this end, a crucial role is
played by the identification of certain agents, called pivotal.
Definition 4. An agent x ∈ N is pivotal in the partition P
if there is an agent y ∈ P̄x, called a witness of x, such that
u(x,P) + u(y,P) > −2|E({x}, {y})|. 2

Intuitively, pivotal agents are obstructions to the current
partition P to being a P1 and P3 partitions. To remove these
obstructions we exploit the property that, if we swap a pivotal
agent with her witness, then the number of edges crossing
the two sides of the partition increases. Hence, by successive
swaps, we eventually remove all pivotal agents. To formalize
this property, if x ∈ N is pivotal and y is its witness, define
SWAP(x,P) as the function returning the partition P ′ such
that P ′x = P̄x∪{x}\{y}. When a pivotal agent has multiple
witnesses, the one to be swapped can be chosen arbitrarily.
Lemma 4. Let x be a pivotal agent in the partition P , and
let P ′ = SWAP(x,P). Then, |E(P ′x, P̄ ′x)| > |E(Px, P̄x)|.
Moreover, if P is balanced, then P ′ is balanced, too.
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Figure 2: Illustration of the function REMOVEC1.

Proof. Consider the witness y of x. Let ∆ = |E(Px \
{x}, P̄x\{y})| and note that: |E(Px, P̄x)| = ∆+ |δ(x)∩P̄x|+
|δ(y) ∩ Px| − |E({x}, {y})| and |E(P ′

x, P̄ ′
x)| = ∆ + |δ(x) ∩

Px| + |δ(y) ∩ P̄x| + |E({x}, {y})| . Hence, |E(P ′x, P̄ ′x)| −
|E(Px, P̄x)| coincides with the value u(x,P) + u(y,P) +
2|E({x}, {y})| > 0. To conclude, note that balancedness of
P ′ is immediate whenever P is balanced.

However, removing all pivotal agents (by swapping them
with their witnesses till none exists) is not yet sufficient to
end up with a nice partition. Indeed, further obstructions can
exist. In particular, the following result straightforwardly de-
rives by inspecting Definitions 1–4.

Hereinafter, let #Zc(P) = | ∪X∈P Zc(X,P)|.
Fact 1. Let P be a balanced partition with no pivotal agents
and which is not nice. Then,

(i) u(x,P) ≤ 0, for each x ∈ N ;
(ii) for each X ∈ P , it holds that |Zc(X,P)| > 0;

(iii) for each X ∈ P with |Zc(X,P)| ≥ #Zc(P)/2, there
is D ∈ Zc(X,P) such that u(x,P) ≥ −2|toZc(x,P)|,
for each x ∈ X̄ with D ∈ toZc(x,P). 2

A component D satisfying condition (iii) is termed criti-
cal, and the set of all critical components is denoted by cr(P).
Fact 1 suggests that, to obtain a nice partition, we must mod-
ify a given balanced partition by removing all critical compo-
nents while keeping it balanced and with no pivotal agents.

3.3 Step 2: Remove Critical Components
Let P be a balanced partition without pivotal agents and
which is not nice. An agent x ∈ N is critical if there is a
component in toZc(x,P) that is critical. We distinguish two
kinds of critical agents as follows.
Definition 5. A critical agent x ∈ N is of kind
C1: if |toZc(x,P)| > 1 and u(x,P) ≥ −2|toZc(x,P)|, or

if |toZc(x,P)| = 1 and u(x,P) > −2|toZc(x,P)|;
C2: if |toZc(x,P)| = 1 and u(x,P) = −2|toZc(x,P)|. 2

We remove critical components involving agents x of kind
C1 by swapping certain agents between the two sides of
P—see Figure 2. Formally, let us define REMOVEC1(x,P)
as the function returning the partition P ′ such that P ′x =
P̄x∪ base(x,P)∪{x}\dual(x,P), where dual(x,P) is the
set including an arbitrarily chosen agent y of C connected
to x, for each C ∈ toZc(x,P), and where base(x,P) is a

function REMOVEC2: (x,P) 7→ P ′

let C be the unique component in toZc(x,P)
let D be an arbitrary component in Zc(Px,P)
let x0, . . . , xn be a path s.t. x0 ∈ C, xn ∈ D, and x1 = x
P0 ← P and i← 0
repeat

if xi+1 ∈ Pi
xi

then Pi+1 ← Pi

else let Pi+1 be such that Pi+1
xi

= P̄i
xi
∪ {xi} \ {xi+1}

i← i+ 1
until either Pi is nice,

or Pi has a pivotal or critical agent of kind C1,
or #Zc(Pi) < #Zc(P0),
or |cr(Pi)| < |cr(P0)|

return Pi

end function
Figure 3: Processing a critical agent of kind C2.

set containing up to |toZc(x,P)| − 1 nodes, each one being
chosen from a distinct component of Zc(Px,P).

The crucial observation is now that the application of RE-
MOVEC1 can be related with the monotonic behavior of cer-
tain values, analogously to what we did in Lemma 4 (for piv-
otal agents and considering the number of crossing edges).
Lemma 5. Let P be a balanced partition with no pivotal
agents and which is not nice. Let x ∈ N be a critical agent in
P of kind C1. Then, either P ′ = REMOVEC1(x,P) is nice,
or it is balanced and one of the following conditions holds:
• |E(P ′x, P̄ ′x)| > |E(Px, P̄x)|;
• |E(P ′x, P̄ ′x)| = |E(Px, P̄x)| and #Zc(P ′) < #Zc(P).

Proof Sketch. For each z ∈ N , if y ∈ P̄z is connected to z,
then u(z,P) + u(y,P) ≤ −2|E({z}, {y})| = −2. Since the
utility of each agent in base(x,P) ∪ dual(x,P) equals to 0,
we getE(base(x,P), dual(x,P))=∅, u(x,P) 6= 0, agents in
base(x,P) are not connected with each other, as they belong
to different components, and, by the definition of Zc(Px,P),
x is not connected to any of the agents in base(x,P). By
these observations and by using arguments similar to those
in Lemma 4, we can state that |E(P ′

x, P̄ ′
x)| − |E(Px, P̄x)| =

u(x,P) +
∑

y∈dual(x,P) u(y,P) + 2|toZc(x,P)|. In particular,
since u(y,P) = 0 holds for each y ∈ dual(x,P), we derive
|E(P ′

x, P̄ ′
x)| − |E(Px, P̄x)| = u(x,P) + 2|toZc(x,P)|.

Assume now thatP ′ is a balanced but not nice. If u(x,P) >
−2|toZc(x,P)|, then |E(P ′x, P̄ ′x)| > |E(Px, P̄x)|. Instead,
if u(x,P) = −2|toZc(x,P)|, then |E(P ′

x, P̄ ′
x)| = |E(Px, P̄x)|

and |toZc(x,P)| > 1. For the latter case, |∪X∈P′ Zc(X,P ′)| <
|∪X∈P Zc(X,P)| holds. Indeed, moving agents in base(x,P)
to the other side destroys |base(x,P)| components in Px,
while creating at most the same number of components in the
other side. Moreover, swapping x with agents in dual(x,P)
causes replacing |dual(x,P)| = |toZc(x,P)| > 1 compo-
nents in P̄x with at most one component including x.

Suppose now that P ′ is not balanced. Then |Zc(Px,P)| <
|toZc(x,P)| − 1, so that P̄ ′x has no zero component. Then,
P ′ is a P2 partition; indeed, nodes in P̄ ′x with positive utility
must be neighbors of agents from dual(x,P).

Critical agents x of kind C2 are processed via the function
REMOVEC2(x,P) described in Figure 3. Its salient proper-
ties are formalized below—as for Lemma 4 and Lemma 5,



note the relationship we established between the application
of the function and the monotonic behavior of certain values.
Lemma 6. Let P = (A,B) be a balanced partition with no
pivotal agents, and no critical agents of kind C1, and which is
not nice. Let x ∈ N be critical of kind C2. Then, either P ′ =
REMOVEC2(x,P) is nice, or it is balanced, |E(P ′x, P̄ ′x)|
= |E(Px, P̄x)| and one of the following conditions holds:
•#Zc(P ′) < #Zc(P);
•#Zc(P ′) = #Zc(P) and |cr(P ′)| < |cr(P)|;
• #Zc(P ′) = #Zc(P), |cr(P ′)| = |cr(P)| and P ′ has

either a pivotal agent or a critical agent of kind C1.
Moreover, REMOVEC2 converges in at most |N | iterations.
Proof Sketch. W.l.o.g., assume that x0∈A and x1∈B. Note
that u(x0,P0) = 0 while u(x1,P0) = −2, since x1 is
critical of kind C2. Hence, swapping x0 with x1 does not
modify the size of the cut. Moreover, the swap produces a
balanced partition P1. Note also that moving x0 to B de-
stroys one component of Zc(A,P0) and does not add com-
ponents to the other side; to this end, in particular, observe
that u(x0,P1) = −2. Instead, moving x1 to A might create
one fresh component at most (precisely including x1). So,
| ∪X∈P1 Zc(X,P1)| ≤ | ∪X∈P′ Zc(X,P0)|. In fact, exist-
ing components are not affected by the swap and we clearly
have |cr(P1)| ≤ |cr(P0)|. Therefore, if no exit condition
is satisfied for i = 0, then the above relationships are actu-
ally equalities, and there are no pivotal agents and no critical
agents of kind C1. In fact, in this case, the fresh component
where x1 occurs, say D1, is critical. Now, observe that not in
every iteration the current partition is changed. Let i be the
first index such that Pi 6= P1. Then, xi still occurs in the
critical component D1 (as we are traversing a path) and xi+1

is therefore a critical agent of kind C2.
At this point, it is easily seen that the arguments used for

the pair x0, x1 can be used for xi, xi+1, too. And the reason-
ing can be repeated (formally by induction) till some step i∗
where one exit condition is satisfied. To conclude, we claim
that this step exists. Indeed, xn ∈ D, whereD is a component
of P0. In particular, if no exit condition were satisfied before
the n-th step, then D would be not affected by any swap, and
thus it would be a component in Pn−1. In this case, however,
xn−1 would belong to a critical component of A. But this
is impossible, since xn−1 and xn are neighbors: indeed, in
Pn−1, we have that u(xn−1,Pn−1) + u(xn,Pn−1) = 0 >
−2E(xn−1, xn), and thus xn−1 is a pivotal agent.

Concerning the complexity, note that |N | iterations are re-
quired to go through the entire path between x0 and xn.

3.4 Putting It All Together
All ingredients are now in place to illustrate Algorithm 1,
which we designed to solve CONSENSUS[1/2].

The algorithms takes in input the graph G and starts by
computing a balanced partition. At each iteration, it first
removes all pivotal agents—via the repeated application of
SWAP—and, subsequently, it removes a critical agent (if any
exists). Observe that the application of functions REMOVEC1
and REMOVEC2 is potentially creating nice distributions or
pivotal agents. This is why Algorithm 1 removes only one
critical agent in the main loop. Eventually, the main loop

Algorithm 1 Solving CONSENSUS[1/2] on inputG = (N,E)

compute a balanced partition P of N
done ← false
while not done do

while there is a pivotal agent x in P do P ← SWAP(x,P)
if there is a critical agent x of kind C1 in P then
P ← REMOVEC1(x,P)

else if there is a critical agent x of kind C2 in P then
P ← REMOVEC2(x,P)

end if
if P is nice then done ← true

end while
if P is a P1 or P2-partition then return c̄(P) else return c̃(P)

terminates when the current partition is nice, and then the al-
gorithm returns the configuration associated to that partition
as we discussed in Section 3.1.
Theorem 1. After at most poly(|N |) iterations Algorithm 1
returns a solution to CONSENSUS[1/2].

Proof. For a partition P = (A,B), let Φ1(P) = |E(A,B)|,
Φ2(P) = |∪X∈P Zc(X,P)|, and Φ3(P) = |cr(P)|. Observe
that Φ1(P) ≤ |N |2 and Φ3(P) ≤ Φ2(P) ≤ |N |/2. More-
over, by Lemma 4, Lemma 5, and Lemma 6, after every two
iterations, at least one of these functions decreases and, if Φk
decreases, k = 2, 3, then Φk′ for k′ < k does not increase.
Finally, if these functions cannot be further minimized (after
at most |N |4/2 iterations), then a nice partition is obtained.

Correctness then follows from Corollary 1.

4 From Minority to Consensus
In this section we address the question of whether a consensus
on some opinion op ∈ {1, 0} can be reached starting from a
configuration where op is supported by a minority.

We show that the answer to the question depends on the
structure of the social graph and, more interestingly, recog-
nizing such graphs is NP-hard. Inspired by similar results in
earlier literature [Kempe et al., 2005; Chen, 2008], the fol-
lowing proof exhibits a reduction from the well-known VER-
TEX COVER problem [Garey and Johnson, 1979].
Theorem 2. For every 0<α< 1

2 , CONSENSUS[α] is NP-hard.

Proof Sketch. Let G = (N,E) be a graph and k > 0 be a
natural number. Consider the problem of deciding whether
G admits a vertex cover of cardinality at most k, that is a set
S ⊆ N of nodes with |S| ≤ k and such that {i, j} ∩ S 6= ∅,
for each {i, j} ∈ E. This is NP-hard even if |{j | {i, j} ∈
E| = 3 for each i ∈ N [Greenlaw and Petreschi, 1995].

Define Ḡ = (N̄ , Ē) as the graph obtained by including
into G, for each i ∈ N , 2 fresh nodes each of them con-
nected to i only. Note that G has a vertex cover S with
|S| ≤ k if, and only if, there exists a dynamics c  ∀1
such that |N̄1/c| ≤ k. Since |N̄ | = 3|N |, this immediately
shows that consensus[α] is NP-hard, for every α such
that dα|N |e = dᾱ|N |ewhere ᾱ = k

(3|N |) ≤
1
3 . We now adapt

the reduction to show that hardness holds for each 0<α<1/2.
We distinguish two cases. If dα|N |e > dᾱ|N |e, then we

build a graph Ḡ+ = (N̄+, Ē+) as follows: arbitrarily pick



u ∈ N̄ \N , and add to Ḡ vertices u′ and u′′ both connected to
u and to each other and m ≥ 1 copies of a gadget consisting
of a four nodes clique with each gadget node connected to u′.
Note that G has a vertex cover S with |S| ≤ k iff there is a
dynamics c ∀1 s.t. |N̄+

1/c| ≤ k+2m+1. The result follows
by choosingm such that dα(3|N |+4m+2)e = k + 2m+ 1.

Assume finally that dα|N |e < dᾱ|N |e. In this case, we
build a graph Ḡ− = (N̄−, Ē−) as follows: arbitrarily pick
u ∈ N̄ \ N , and add to Ḡ vertex u′ connected to u, m +
3− (m mod 2) nodes arranged in a ring and connected with
u′ and with a new node u′′. Then, G has a vertex cover S
with |S| ≤ k iff there is a dynamics c  ∀1 with |N̄−1/c| ≤
k + 3. The result eventually follows by setting m such that
dα(3|N |+m+ 4 + (m mod 2))e = k + 3.

An interesting generalization of the above result is that it is
still NP-hard to decide whether there is a dynamics leading
to a stable configuration where the opinion initially held by
a minority of α|N | agents, with α < 1

2 , is spread over (just)
2α|N | agents. The precise formulation is given in Theorem 3.
Its proof is not an extension of Theorem 2 and, in fact, it is
inspired by the reduction in [Auletta et al., 2015, Theorem 4]
to the NP-hard problem 2P3N-3SAT [Yoshinaka, 2005].
Theorem 3. For every δ ∈ (0, 1) and for every ε ≤ 1

2 −
δ
4 , it

is NP-hard to decide whether there is a configuration c such
that |N1/c| = dεne and max1(c) ≥ (2 + δ) dεne.

5 Stable Configurations without Consensus
For any graph G, consensus configurations (∀1 and ∀0) are
clearly stable. An interesting question, addressed in this sec-
tion, is then whether G admits further stable configurations,
in which case we would say that G is plural.

Note that G is plural if it admits a non-trivial partition P ,
i.e., a partition P = (A,B) with A 6= ∅ and B 6= ∅, which
has moreover local minimum cut-size, that is, |E(A′, B′)| ≥
|E(A,B)| holds for each partition P ′ = (A′, B′) obtained by
moving one node from one side to the other (formally, either
A′ ⊆ A and |A′| = |A| − 1, or B′ ⊆ B and |B′| = |B| −
1). The complexity of recognizing whether a graph admits a
partition of this kind was, so far, an open problem [Ferraioli
and Ventre, 2017]. The result below answers that question,
by exhibiting an involved NP-hardness reduction.
Theorem 4. Deciding if a graph is plural is NP-complete.

Proof Sketch. Membership in NP is trivial. For the hardness,
let φ = c1 ∧ · · · ∧ cm be a Boolean formula such that, for
each i ∈ {1, ...,m}, the clause ci is the disjunction of 3 lit-
erals, i.e., ci = `1,i ∨ `2,i ∨ `3,i. Based on φ, we define
the graph Ĝ = (N̂ , Ê) over nodes N̂ = {p1, ..., p6m+2,
q1, q2} ∪

⋃m
i=1{σ1,i, ..., σ8,i}, where σ1,i, ..., σ8,i are the sat-

isfying truth assignments (viewed as nodes) for ci. More-
over, for each pair σj,i and σj′,i′ , there is an edge connecting
them in Ê if, and only if, the assignments are compatible;
finally, each node {p1, ..., p6m+2} is connected with all the
other nodes in N̂ but q1 and q2. Let n = m + 6m + 2 and
note that any clique in Ĝ has size n at most. In particular, a

Figure 4: Construction in the proof of Theorem 4.

maximum clique of size n exists if, and only if, φ is satisfi-
able. Moreover, note that |N̂ | = 8m+ 6m+ 2 + 2 = 2n and
that each node in Ĝ has at most 2n− 2 neighbors.

Having the graph Ĝ, we now build the social graph G =

(N,E) overN = N̂∪A∪B∪C∪Ā∪B̄∪C̄∪R∪{γ, γ̄, γ̄◦}.
Edges include those in Ê plus those illustrated, according to
an intuitive notation, in Figure 4. Note, in particular, that for
each x ∈ N̂ and each h ∈ {1, ..., 2n}, R contains the agent
rxj

which is connected to the agents āx,j,1 and āx,j,2 in Ā.
Moreover, x is connected (in addition to the edges in E) to
all agents in N \ R and to the agents rx1 , ..., rxh(x)

, where
h(x) is defined in a way that x is adjacent to 2n− 2 nodes of
N̂ ∪ R. On this graph, we claim that a stable configuration c

with N0 6= ∅ and N0 6= N exists iff Ĝ has a clique of size n.
(“only-if”). Assume, w.l.o.g., that c(γ) = 1. If |N̂1| 6= n,

then the dominant opinion in N̂ spreads to all agents outside
N̂ . From plurality of N̂ and c(γ) = 1, we derive (A∪B∪C∪
{γ})0 = ∅ and (Ā∪B̄∪C̄∪{γ̄, γ̄◦}∪R)1 = ∅. Now, let x be
a node in N̂1. Note that |δ(x)1| ≤ |A∪B ∪C|+n− 1, since
|N̂1| = n. Moreover, |δ(x)0| ≥ |Ā∪B̄∪C̄|+(2n−2)−(n−
1), since x is adjacent to 2n− 2 nodes in N̂ ∪R. By stability
of c, |δ(x)1| ≥ |δ(x)0| implies |δ(x)1| = |A∪B∪C|+n−1.
So, agents in N̂1 form a clique in Ĝ.

(“if”) Assume that Ĝ has a clique, say C, of size n. Con-
sider the configuration c such that: (A∪B ∪C ∪ {γ})0 = ∅,
(Ā∪ B̄ ∪ C̄ ∪ {γ̄, γ̄◦} ∪R)1 = ∅, N̂1 = C and N̂0 = N̂ \C.
Each agent x ∈ N \ N̂ is clearly stable. Consider x ∈ N̂1.
Since N̂1 is a clique, we have |δ(x)1| = |A∪B ∪C|+n− 1.
However, |δ(x)| = |A ∪ B ∪ C| + |Ā ∪ B̄ ∪ C̄| + 2n − 2
which means that |δ(x)0| = |Ā ∪ B̄ ∪ C̄| + n − 1. Hence,
|δ(x)1| = |δ(x)0| and x is stable. Finally, consider x ∈ N̂0.
Since N̂b is a clique with |N̂1| = n and since we know that
is no larger clique in Ĝ, we have |δ(x) ∩ N̂1| ≤ n − 1.
So, |δ(x)0| ≥ |Ā ∪ B̄ ∪ C̄| + n − 1, while |δ(x)1| ≤
|A ∪B ∪ C|+ n− 1. It follows that x is stable, too.

The following is an immediate consequence.



Corollary 2. Deciding whether ∀1 and ∀0 are the only stable
configurations is coNP-complete.

6 Discussion and Conclusion
In the paper we addressed a number of questions related to
whether consensus can be achieved in settings where opinions
of the agents are affected by social influence phenomena. We
have shown that a configuration always exists (and can be
computed in polynomial-time) for which the opinion of the
majority diffuse to all the agents. Moreover, we exhibited
hardness results for spreading the opinion of the minority and
for checking the existence of “plural” configurations.

An interesting avenue for further research is to identify spe-
cial classes of graphs where it is easy to answer similar ques-
tions, by looking at structural and topological restrictions.
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