arXiv:1804.08195v2 [gr-qc] 12 May 2018

Conformally-flat, non-singular static
metric in infinite derivative gravity

Luca Buoninfante,*"¢ Alexey S. Koshelev,”*/ Gaetano
Lambiase,”’ Jodo Marto,’ Anupam Mazumdar®¢

“Dipartimento di Fisica "E.R. Caianiello”, Universita di Salerno, 1-84084 Fisciano (SA),
Italy

PINFN - Sezione di Napoli, Gruppo collegato di Salerno, 1-84084 Fisciano (SA), Italy

“Van Swinderen Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
dDepartamento de Fisica and Centro de Matemética e Aplicacoes, Universidade da Beira
Interior, 6201-001 Covilha, Portugal

“Theoretische Natuurkunde, Vrije Universiteit Brussel

fThe International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium

9Kapteyn Astronomical Institute, University of Groningen, 9700 AV, Groningen, The Nether-
lands

Abstract. In Einstein’s theory of general relativity the vacuum solution yields a blackhole
with a curvature singularity, where there exists a point-like source with a Dirac delta distri-
bution which is introduced as a boundary condition in the static case. It has been known
for a while that ghost-free infinite derivative theory of gravity can ameliorate such a sin-
gularity at least at the level of linear perturbation around the Minkowski background. In
this paper, we will show that the Schwarzschild metric does not satisfy the boundary con-
dition at the origin within infinite derivative theory of gravity, since a Dirac delta source is
smeared out by non-local gravitational interaction. We will also show that the spacetime
metric becomes conformally-flat and singularity-free within the non-local region, which can
be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be
as large as that of the Schwarzschild radius, in such a way that the gravitational potential in
any metric has to be always bounded by one, implying that gravity remains weak from the
infrared all the way up to the ultraviolet regime, in concurrence with the results obtained
in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced
by a non-singular compact object, whose core is governed by the mass and the effective scale
of non-locality.
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1 Introduction

Since Einstein’s work, the theory of general relativity (GR) has been subjected to many
experimental tests, and each one of them have shown an exemplary agreement between
the observations and the theoretical predictions in the infrared (IR) regime, i.e. at large
distances and late times [1]. Even the recent detection of gravitational waves emission due
to the merging of binaries [2] have shown an excellent matching with the theory.

However, despite its great achievements, there are still open questions, which strongly
suggest that GR is incomplete in the ultraviolet (UV) regime, for example cosmological
and blackhole singularities at the classical level persist, and the non-renormalizability at the
quantum level is still a hard problem to tackle. There is also an apparently simpler question
that still needs to be answered - to what extent do we know the gravitational interaction
at short distances? Indeed, the 1/r-fall of the Newtonian potential has been tested only up
to distances of the order of 10 micrometers, in torsion balance experiments [3]. In terms of
energy, it means that our knowledge of the gravitational interaction is limited only up to
0.01eV (in Natural Units & = 1 = ¢). The extrapolation of Einstein’s gravity all the way
up to the Planck scale, M, ~ 10'9GeV, in the abyss of more than 30 order of magnitude, is
indeed a mere speculation.

Over the past years, one of the most straightforward attempts to generalize the Einstein-
Hilbert action was to introduce higher order derivatives through quadratic terms in the
curvature, like R?, RuwR™ , Ryuwpe RMP?. In Ref.[4] it was shown that such a quadratic action
turns out to be power-counting renormalizable in 4 dimensions but, unfortunately, it is also
happened to be a non-unitary theory, because of the presence of a spin-2 ghost as a dynamical
degree of freedom. Such a conflict between the renormalizability and the unitarity seemed
to be impossible to overcome, and was a crucial signal against the possibility to formulate a



consistent theory of quantum gravity at the perturbative level. Of course, the aforementioned
result is strongly based on local gravitational action, but what happens if we were to give up
locality?

Recently, it has been noticed that the diatribe between renormalizability and unitarity
can be potentially resolved by considering a non-local action, where non-locality is intro-
duced through form-factors containing infinite order covariant derivatives. The form of the
gravitational action was first conjectured in Refs. [5-10], but only in the last decade the full
infinite derivative quadratic action has been derived in a more systematic way in Refs.[11-13],
around constant curvature backgrounds.

The authors were also able to formulate a ghost-free condition in order to preserve
the tree-level unitarity, emphasizing the need of infinite covariant derivatives in order to
avoid ghost-like degrees of freedom in the physical massless, transverse and traceless graviton
spectrum for Minkowski [11] and (anti-)de Sitter backgrounds [12, 13]. In particular, they
have also shown that the presence of infinite covariant derivative form-factors can also improve
the short-distance behavior and solve problems like cosmological singularities [10, 21, 22], and
singularity of the Newtonian potential [11]. In Ref.[14] it was argued that the presence of
infinite order derivatives can resolve the singularity for astrophysical collapsing objects due to
the non-local smearing of the space-time and of the weakening of the gravitational interaction
at short distances. The dynamical avoidance of blackhole singularity (and an absence of a
trapped surface) has been studied by Frolov and co-authors in Refs. [15, 16], and Frolov has
also conjectured the possibility of a mass-gap in the context of ghost-free infinite derivative
gravity [17]. Indeed, we have been able to show that at the linear level, the Kretschmann
invariant is non-singular and the metric in the non-local regime asymptotes to a conformally-
flat in the static background [18].

Recently, a non-static, Kerr-type solution has also been constructed, but without a
ring singularity in the ghost-free infinite derivative gravity [19]. Furthermore, resolution of
curvature singularity in membranes have also been studied [20]. At a quantum level infinite
derivative form-factors can ameliorate the non-local behavior of the theory as pointed out in
Refs. [6, 7, 23-25].

Given all these exciting results in this field of research, there have been attempts to
address the full non-linear, non-local field equations for the ghost-free infinite derivative theory
of gravity [26]. Only, this year two very interesting results have been obtained by [29], and
[30]. In the former paper, the authors have argued that the metric solution like Schwarzschild
is not a vacuum solution for the infinite derivative gravity, and in the latter paper the Kasner
type anisotropic metric has been shown to be not a solution for the full vacuum field equations
of the infinite derivative gravity.

It is worth mentioning here that, strictly speaking, the Schwarzschild metric solves
Einstein’s equations in the vacuum everywhere except at the origin » = 0, where one has to
impose a boundary condition by introducing a Dirac delta source, which is governed by the
mass of the blackhole. The Birkhoff’s theorem guarantees that a unique static and spherically
symmetric metric solution can be obtained in this case. As we will show in this paper, we
have a marked difference from the Schwarzschild geometry in the context of non-local, infinite
derivative gravitational action.

The aim of this paper is to understand the space-time metric in the non-local region and
show that the full field equations admit a regular metric solution which is conformally-flat
and free from curvature singularity in the limit » — 0, as opposed to 1/r metric potential
like in Schwarzschild’s case. This matches with our earlier expectations of Refs. [14, 18].



In particular, we will show that in the infinite derivative theory, the boundary condition at
r = 0 cannot be satisfied. The infinite derivative gravity does not see a point-like source,
it effectively sees a smeared system. In this respect the usual notion of vacuum solution
which applies for the Schwarzschild metric in GR will not apply for the infinite derivative
gravity. This smearing effect allows to have metric solutions whose functional form is regular
at r = 0; however, the presence of infinite derivatives is not sufficient in order to avoid
curvature singularities. Indeed, we will show that also the ghost-free condition is crucial
to select the right form of the metric potentials, thus preventing the presence of curvature
singularities and making the spacetime conformally-flat in the non-local region.

2 Infinite derivative gravity

The most general quadratic action allowed by general covariance, parity-invariant and torsion-
free, was constructed around maximally symmetric space-times in Refs. [11, 12], and it is
given by !

S= S+ 5,

= ﬁ /d4x\/jg [R + ac (,Rfl (DS)R =+ Ruu}é(‘js)nuy + Cuupaf?:(ljs)c#ypg)} ’ (2.1)
where Sgpy is the Einstein-Hilbert action, and S; takes into account of all the quadratic
terms in the curvature which would play a crucial role in the non-local regime; O, = O0/M2,
where O = g, V#V" is the d’Alambertian operator, and we adopt the mostly positive metric
convention (—,+,+,+). G = 1/M§ is Newton’s constant, while the coupling constant a. ~
1/M? is dimensionfull and it is related to the parameter M, which represents the scale of
non-locality. The gravitational interactions become non-local in the region r < 1/Mj, and
for momenta; ptp, > M?2. Indeed in the IR, we recover the Einstein-Hilbert action, for
0/Ms — 0.

The gravitational form-factors F/s are reminiscence to any massless theory which has
derivative interaction, and they are analytic function of [y, which can be recast in terms of
an infinite series:

Fi(Oo) =) finO2. (2.2)
n=0

By analyzing the perturbative spectrum of the action in Eq.(2.1) around maximally symmet-
ric backgrounds, it turns out that in order to avoid tachyonic-like instabilities and ghost-like
degrees of freedom, and thus to preserve the tree-level unitarity, one has to demand the form-
factors F;(0s) to be expressed in terms of exponential of an entire function [9-13]. This is
due to the fact that exponential of an entire function does not have any zeroes in the finite
complex plane, therefore no new poles arise in the graviton propagator, see for details in
Ref.[11].

! The original action was derived in terms of the Riemann tensor, so that one has
1 v vpo
§= 1o /d4x\/jg R+ 0 (RFL(O)R + Ry Fo (D) R™ + Ropwpo Fs () R¥P7)]
where the new form-factor F;(Us) are related to the others F;(0s) by the following relations:

F((0:)=FA0) — %]‘—3035)7 F(O,) = 71 (0s) — 2F3(0s), F3(0O,) = F5(0s).



3 Modifying the Schwarzschild geometry

3.1 Non-local vs local action: blackhole as an Euclidean hole

We will make a simple but potent argument to show when the term S, is relevant and
dominates compared to the Einstein-Hilbert contribution, Sgz. Since, we are dealing with
a static geometry, let us introduce a characteristic length scale L, so that one has dz ~ L
and 0, ~ 1/L; in the same way all curvature tensors will scale as R ~ 1/L%. Thus, the two
contributions in Eq.(2.1) will scale as

2
P
Mz

(3.1)
Note that the quadratic curvature part of the action is scale invariant, and the only charac-
teristic length scale is determined by 1/Mjy, where My, < M,. The action in the non-local

regime virtually has no scales, which in a way suggests that any physical solution in this
regime should be also scale invariant. The full gravitational action will be roughly given by:

Spi ~ Mg/d”‘:mﬁ—gR ~ M2L?, Sy ~ Mg/d% —g e [RF(O)R+ -] ~

S M2L2+M‘3 M2L2<1+ - > (3.2)
P M2 P M2L2 )" ‘

Note that for characteristic scales larger than the scale of non-locality, L > 1/Mj,, the term
Sq is negligible, i.e. we are in the IR regime where the Einstein-Hilbert term dominates in the
gravitational action, which indeed preserves all the good properties of GR in the IR. While
in the limit L < 1/Mj,, the infinite derivative quadratic curvature term is now no longer
negligible, and dominates the full action, S, > Sgp.>

In the Einstein-Hilbert action the vacuum solution yields a Schwarzschild-like geometry
with a Dirac delta source distribution at r = 0, with a Schwarzschild horizon at rg., =
2G'm, where m is the source mass of the blackhole. For r > 2Gm, the metric potential is
2|¢(r)] = 2Gm/r < 1, and treated as a perturbative solution, while for r < 2Gm, the metric
potential increases and blows up at r = 0, where the Kretschmann invariant also shows a

Interesting point to note here that if we had form factors Fi, purely made up of finite derivatives, we
would have a local theory with extra dynamical degrees of freedom. In particular, the coefficient in front the
curvature squared, a., would be related to the masses of the new degrees of freedom, i.e. a fixed number.
In such a case there would be no analogue of the inequality in Eq.(3.6), namely that there would always be
a critical value for the mass m for which the inequality will not be satisfied, and the Einstein-Hilbert term
would come to dominate, yielding singular metric solution. As an example we can consider Stelle’s quadratic
curvature theory of gravity, for which singular metric solutions exist [4, 31]:

_L 4 — N 2
S = 167TG/d:c\/ g (R+ aRR" + BR?), (3.3)

where other than the massless transverse spin-2 graviton, we also have two extra particles in the physical
spectrum: a massive spin-0 with mass mo and a massive spin-2 ghost with mass mo. By studying the pole
structure of the propagator around the Minkowski background one can show that the two masses are related
to the coefficients a and 8 through the following relations:

mo=(a+B)"Y%  ma=—(a)2)” 2 (3.4)

It is now clear that the coefficient o and [ are fixed parameters in a local theory. The same happens for
any local theory with finite order derivatives. Note also that, in order to avoid new degrees freedom, infinite
derivatives are not sufficient, but we also need to constrain the three form-factors F; in Eq.(2.1) by demanding
the transverse massless spin-2 graviton to be the only propagating degree of freedom; see also Subsection 3.3.



singular behavior. Definitely, the gravitational potential gets modified and becomes bigger
than one for r < 2GM, in spite of the fact that the curvature remains tiny everywhere near
the horizon, for astrophysical blackholes. In the Schwarzschild metric, indeed the horizon
marks the demarcation between perturbative and non-perturbative aspects. So far there are
no experimental evidences for the presence or the absence of an event horizon in astrophysical
blackholes; the LIGO-VIRGO data cannot conclusively say the presence of an event horizon
yet, see [32].

Given all these facts, we would have to determine what should be the value of L at
which we would expect non-local interactions to dominate, i.e. S, > Sgy? From a physical
point of view, if we demand that the relevant contribution due to S; becomes dominant at
length scales of the order of the Schwarzschild radius, i.e. L ~ 2Gm, then the relation in
Eq.(3.2) becomes

4m? M}
S~ —ps |14+ 3.5
M2 < +4Ms2m2> / (3.5)
therefore, when S, dominates over the Einstein-Hilbert term, then it yields the following
relation?:* 5
2mM, < M <> ren < i (3.6)

Physically, it means that at a characteristic scale L ~ rgq, the S, part of the action in Eq.(2.1)
plays a crucial role only if the non-local region engulfs the Schwarzschild radius, i.e.

'NL ™~ 2/]\45 > Tsch - (37)

This is indeed an interesting length scale, because rxn ~ 2/My has appeared before purely
from the linear considerations. In Ref.[11], it was shown that for r > ryp ~ 2/Mj,, the
gravitational metric potential would follow strictly GR’s predictions, i.e. 1/r-fall of the
Newtonian potential, see this discussion below. Note that, in fact we can take m — oo
and M, — 0, and we would still satisfy the above bound Eq.(3.6). This means that we
can consider supermassive astrophysical blackholes with billion times solar mass, i.e. mass
m > 10% x 1033 ~ 103 grams, and we can still be bounded by Eq.(3.6) as long as My <
1078eV 5. Indeed, if the photon is probing this region with momentum greater than 10~8eV,
the photon interaction with the astrophysical object has to be dealt in the framework of non-
local quantum field theory [33]. The photon does not see a local graviton, and a conventional
space-time. The details ought to be worked out and we leave some of these calculations
for future studies. Furthermore, the above condition Eq.(3.6) also ensures that the energy
density of the non-local, non-singular compact system with ryz ~ 2/M; is always bounded
below the Planckian energy density:

p~mMS < MIM? < M,, (3.8)

3Note that the factor 2 in 2/M; is just a convention to be consistent with the factor 2 entering in the
modified gravitational potential; see Eq.(3.14).

4Note that the presence of infinite derivatives in the gravitational action is a necessary condition in order
to satisfy the inequality given by Eq.(3.6), since the scale of non-locality M; is not a fixed parameter; see also
footnote 2.

5s it possible to realize such a small M7 Is this scale M a fixed number? The answer is no! This depends
on the physical system and the interactions. In the case of blackholes, which can be seen as a bound-state made
up of N gravitons, the fundamental scale of non-locality can shift towards the IR, by Ms — MS/\/N [14, 33].



which is violated in Einstein’s GR at » = 0, as compared to infinite derivative gravity, where
locality is lost within ryp ~ 2/Mg > rgcp.

Indeed, the above analysis does not assume any linearity of the action, it merely de-
mands that at scales of the order of the Schwarzschild radius, i.e. L ~ re, = 2Gm, the
infinite derivative part of the gravitational action will only dominate over the Einstein-Hilbert
contribution, provided that the scale of non-locality is larger than that of the Schwarzschild ra-
dius, irrespective of the mass, m, of the source. Indeed, this is a non-perturbative statement,
which we would expect to hold true in all regimes, both linear and non-linear. Moreover,
within this region the energy density of the system is always bounded below the Planckian
energy density. This is indeed one of the most desirable physical expectation in 4 dimensions
that we can never ever exceed the Planckian energy density in any kind of physical experi-
ment, including the death of any star!

Now this is an excellent juncture, where we can revert the question and ask: what
non-local interactions ought to do with the weakening of the gravitational potential? In
fact, if we were to allow Sgpy > Sy, we would expect to have a region of space-time where
2|®| > 1, this is typical of the Einstein-Hilbert action, where one would expect formation of
a trapped surface, apparent horizon, and an event horizon, see for a detailed discussion in
Ref.[36]. However, one of the consequences of S, > Sgp is that it modifies the Schwarzschild
geometry, the space-time structure becomes non-local and non-locality is such that it weakens
the gravitational interaction. Inside this non-local region acausal effects may emerge such
that the very concept of ”clock” and ”measuring stick” does not make sense, the usual notion
of lightcone structure does not apply in the region r < 1/Mjy; see also Ref.[33]. Indeed,
instead of a conventional blackhole, we may now imagine a non-local object whose size is
approximatively given by ~ 2/Mg > rg.p, [14], see Fig.1 for an illustration. However, such a
non-local region can be well described with tools of Euclidean field theory: in this picture the
blackhole becomes effectively an Fuclidean hole. This also helps ameliorating the blackhole-
information loss paradox, in a very similar fashion as that of the fuzz-ball scenario, for a
review see [34] .

Another intriguing fact arises from counting the number of states confined in the non-
local region. As we have argued in Ref. [14], for astrophysical blackholes, the effective scale
of non-locality moves towards the IR, My — M,/ VN <« M,,, where N represents the number
of gravitons confined inside the radius 1/M;; see also footnote 5. Thus, as long as Eq.(3.6)
holds, the gravitational entropy goes as S ~ S, ~ N(M,/M;)?, and the number states N
will be given by

N ~ €S0 n NOMp/Mo)? 5 1 (3.9)

Note that similar feature also arises in the fuzz-ball case where the number of available
states are indeed exponentially large, and so is the Bekenstein entropy [34].

To summarize the results of this subsection: we have shown that non-locality is a nec-
essary condition in order for the inequality in Eq.(3.6) to be always satisfied, as one can
introduce a scale My, which is not fized, once infinite derivatives are taken into account. In
particular, the inequality in Eq.(3.6) is a non-perturbative statement.

5 It will be a bit premature to draw the direct comparison with the fuzz-ball scenario. We would require
some more detailed work to establish this connection. However, non-local interaction is an inherent feature
of string field theory, for a review see [35].
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Schwarzschild’s blackhole Non-local, compact object
in infinite derivative gravity

Figure 1. On the left side we have an illustration for a Schwarzschild blackhole in GR; while on the
right side we have a non-local compact object which arises in infinite derivative gravity, where the
non-local region engulfs the Schwarzschild radius, ryy, ~ 2/Ms > rscn = 2Gm. Inside the non-local
region, neither clock no ruler makes sense, although an Euclidean description can be made compatible.
Further note that in the GR the energy density would always blow up near the singularity, but in the
infinite derivative case p < M;} in the region of non-locality.

3.2 Infinite derivatives acting on Dirac delta source

In this subsection, we will argue that the presence of infinite derivatives is crucial in order to
avoid singular metric solutions. In particular, we will explain why the Schwarzschild metric
with a singularity cannot be a solution for the full non-linear field equations in infinite
derivative gravity with a boundary condition at » = 0. This has been partly answered in
Ref.[29], especially by studying the Weyl part of the equations of motion for Eq.(1), and
it was shown that the Scharzschild-like metric cannot be a vacuum solution of the field
equations, as the contribution due to the Weyl part does not vanish. In Ref.[30], it was also
shown that neither the time-dependent Kasner-type metric (anisotropic collapsing Universe)
is a solution for the infinite derivative gravity described by the action in Eq.(2.1). The full
equations of motion for the above action has been derived in Ref.[26], which contains indeed
infinite covariant derivatives.

Now, let us consider the field equations containing only the Ricci scalar and the Ricci
tensor, by setting F3(ds) = 0 for the time being, and ask whether the Schwarzschild metric
would be a solution in this case or not? In such a case one can trivially notice that a
Schwarzschild-like metric, i.e goo = —g'' = —1 + 2a/r, will solve the field equations in
the vacuum at each order in ;. However, we must note that in order to construct the
Schwarzschild metric in GR, we also require a boundary condition by introducing a Dirac
delta source at the origin - which implies a non-zero energy-momentum tensor at » = 0, and
this allows to fix @ = Gm. Thus, the right statement to make is that a Schwarzschild-like
metric would solve the field equations with F3((0s) = 0, at each order in [y, everywhere
except at r = 0. Such a boundary condition indeed plays a very crucial role in generating a
singularity at » = 0.

We can now understand why the Schwarzschild metric cannot be a solution for the
infinite derivative gravity even if F3(0Js) = 0. It has been known that a finite number of
spatial derivatives acting on a Dirac delta distribution still yields a point-source [38]. Would



one repeat the same argument mathematically for any local theory of gravity, including
quadratic curvature Stelle’s gravity [31], one would obtain in the right hand side of the
equations of motion, a schematic form of (r) 4 &' (r), which is still a point-like source, but a
bit less conventional one. Going further, more but finite number of derivatives will generate
a finite series like

8(r) +6'(r) +8"(r) + -+ + 5N (r),

for some finite N. As long as N is finite we will still have a point-like source and the singular
Schwarzschild metric is still a valid solution, even at r = 0 with the boundary condition.

However, if we continue up to the infinite order in derivatives, then one would obtain
a series with infinitely many terms. By consulting the theory of distributions in this subtle
case one can easily find out (see books by Vladimirov [39], or by Gelfand and Shilov [40] for
example) that a series of infinitely many terms with derivatives acting on the Dirac delta
distribution corresponds to a function with a non-point support. To see this explicitly, let us
consider the following distribution on a real axis:

eo‘agd(x),

where « is a constant. In order to understand this function, let us employ the Fourier
transform, indeed this yields:
a@% _ 1 a@% ikx __ L —ak? ikx __ 1 —%

e*%)(x) = me dke"™ = m/dkze et = me 1o, (3.10)
which is manifestly a regular function with a non-point support. We have seen this argument
before in Refs. [9-11] that an infinite tower of derivatives can smear the singular behavior of
a Dirac delta mass distribution. Having in mind that in Einstein’s GR we equate geometrical
quantities to stress energy momentum tensor, we immediately conclude that any attempt to
demand a singular metric potential like ®(r) ~ 1/r or 1/r%, where a > 0, i.e. a singular
geometry, in the infinite derivative gravity will yield a regular matter. Or in other terms, a
singular matter source would yield a regular gravitational potential [8-11]".

This simple observation again corroborates the fact that the infinite derivative gravity
can smoothen out the notion of space-time by imposing a fundamental length

NL ™~ 2/M57

such that one cannot probe physics classically, neither geometry nor matter at distances less
than ry or, equivalently, at energies greater than M.

The usual notion of vacuum solution, that applies for the Schwarzschild metric in GR,
does not apply in the infinite derivative gravity, where as soon as we introduce a point-like
source it smears the spacetime region by the scale of non-locality ryy ~ 2/Mj,. In this respect,
in the infinite derivative gravity a metric solution can be really called as a vacuum if and
only if Ty, = 0, everywhere in the space-time (including r» = 0.)

"For example the gravitational potential in Eq.(3.14) is a solution of the modified Poisson equation

e~ V7 /M: V2®(r) = 4rGmd® (r), which can be also rewritten as
GmM?2 Mz
= — " SeTT a4,
2y

We can notice that the presence of infinite derivative has smeared out the Dirac delta source and produced a
Gaussian-like distribution.

V2o(r) = 47TGmeVz/M§5(3)(r)



To summarize the results of this subsection: we have shown that the main feature of
non-locality is given by the fact that infinite derivatives smear out a point-like delta source,
implying that the Schwarzchild metric cannot be a solution for the infinite derivative gravity.

3.3 Linear perturbations: from IR to UV

In the linear regime for the above action in Eq.(2.1), we can determine the spherically sym-
metric static metric around the Minkowski background and analyze the structure of the grav-
itational potential. In Ref.[11] it was shown that around Minkowski background the three
form-factors can be constrained by requiring the absence of ghost-like degrees of freedom®?:

6F1(0s)+3F2(0)4+2F3(0,) =0,  a(0y) = 14+2F ()0 +4F3(0,)0s = )| (3.12)

in particular we consider the simplest choice v([Js) = —Oj; for other choices of entire func-
tions, different from e~ see Refs.[37]. By working in the weak-field regime, i.e. 2|®(r)| < 1,
the linearized metric in the isotropic coordinates is given by [11]

ds = —(1+ 20(r))di> + (1 - 20(r))[dr® + 12d02?), (3.13)

where the gravitational potential is defined as [11]

o(r) = —GTmErf <M27"> . (3.14)

In the IR regime, i.e. at large distances, the potential in Eq.(3.14) recovers the Newtonian
1/r-fall, while in the non-local regime, i.e. at short distances, the gravitational potential
approaches a finite constant value:

GmM; mM
r < 2/M, ()~ == M2 (3.15)
The linear regime, 2|®(r)| < 1, implies
mM, < M, (3.16)

which is nothing but the same inequality we have obtained in Eq.(3.6). Thus, we have shown
that the inequality in Eq.(3.6) holds always true in the linear regime. Indeed, if the entire
astrophysical blackhole geometry becomes linear for r < ryp ~ 2/Mg > rgep, such that
mM; < Mg, then there will be no horizon at all, and the metric potential throughout the
geometry remains regular, for the entire range 0 < r < oo.

8In the original paper [11] the ghost-free condition was formulated for the gravitational action with the
Riemann tensor. In such a case the ghost-free condition would read 2F1(0,) + F>(0s) + 2F5(0,) = 0, where
the form-factors Fs have been defined in the footnote 1.

9The propagator around Minkowski space-time, compatible with the condition in Eq.(3.12), reads [11]

(k) = a(lk) (% - ;J : (3.11)

0
where lIgr(k) = %; — QPT; is the GR graviton propagator, and P2, P2 are the so called spin-projector operators
[11, 27, 28]. It is now clear that by demanding the form-factor in the last equation to be exponential of an
entire function, a(k) = e?R/Ms) no extra poles would be introduced in the propagator other than the massless

transverse-traceless graviton degree of freedom, so that tree-level unitarity will be preserved.




In fact, for Eq.(3.14) all linearized curvature tensors have been computed and it was
found that R, R, # 0, meaning that the Schwarzschild vacuum solution of Einstein’s GR is
not a vacuum solution for the infinite derivative gravity; see Ref.[18]. The Ricci scalar, the
Ricci tensor and the Riemann tensor tend to constant finite values at short-distances, i.e. for
r < 2/Ms. Moreover, all curvature invariants were shown to be non-singular, in particular
the Kretshmann tensor turns out to be finite at » = 0. As for the Weyl tensor, it tends
quadratically to zero in the non-local regime, implying that the space-time metric becomes
conformally-flat in the region of non-locality; see Ref.[18].

Let us also point out that the metric in Eqs.(3.13,3.14) is expressed in terms of the
isotropic radial coordinate r. This metric can be rewritten in terms of the Schwarzschild
coordinates by making the following transformation:

R? = (1 —2®(r))r?, (3.17)

with R being the radius in the Schwarzschild coordinates. Such a transformation can be
easily inverted in the linear regime, indeed one can use the fact that up to first order in
perturbations, we have

O(r)~®(R), and dr ~ [1 + ®(R) + ®'(R)R]dR, (3.18)
such that the metric in the new coordinates assumes the following form:
ds? = —(1 — 2®(R))dt* + (1 + 2¥(R))dR? + R%d0?, (3.19)

where we have two different metric potentials:

Gm MR Gm MR GmM, _ M2Rr?
) = ——Frf U = — Erf . 2
(R) 7 B ( 5 ) , (R) 7 b ( 5 ) + NG e 14 (3.20)

We can now notice a crucial difference between the static metric in GR and in infinite
derivative gravity by looking at the form of the metric in Egs.(3.19,3.20). In GR the 00-
and 11-components are not independent, i.e. goo = —¢'', where there is only one metric
potential —Gm/R '°, while in infinite derivative gravity, as one can notice from Eq.(3.20),
the two metric components are independent, gog # —g''.

To summarize the results of this subsection: we have shown that in the linear regime,
by demanding the ghost-free condition through the introduction of form factors made of ex-
ponential of entire functions, the metric solution has no horizon, is regular and becomes
conformally-flat at the origin, with no curvature singularity, moreover the inequality in
Eq.(3.6) is always satisfied. This means that in infinite derivative gravity one would expect
the gravitational potential in the Schwarzschild coordinates or in the isotropic coordinates to
be always bounded by 2|®| < 1, in the entire spacetime.

10Tndeed, the linearized Schwarzschild metric in Schwarzschild coordinates is given by:

ds® = — (1 - 2%”) dt® + (1 + w%) dR® + R?dQ>. (3.21)
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4 Requirements for a non-singular metric solution

4.1 Classical arguments for a conformally-flat core

It is important to note the key parameters which govern the solution for the full linear and
nonlinear action in Eq. (2.1), and to understand how the infinite derivative gravitational
interaction should behave in the regime where r < 2/M;.

e The gravitational constant G =1 /MZ? : it remains the same, so neither linear nor
non-linear solutions are sensitive to M, the only constraint we have is M, > M,.

e The mass of the system m : the value of m can indeed change in the range 0 <
m < oo. The question remains what happens when we are away from the weak-
field regime, i.e. mMg > Mg. Indeed, as we have already discussed above, violating
this inequality would also demand that we have Sgy > S, within the Schwarzschild
radius. In this case, the equations of motion due to infinite derivatives do not play any
role, and therefore, singularity is inevitable. As we have seen in the previous section,
finite derivatives acting on a point source would match the boundary condition for a
Schwarzschild-like solution very well.

e The scale of non-locality M; : It has been argued that Mj is not a fixed quantity, but
it gets modified as the number of quanta in an enclosed area, or a volume, increases,
i.e. as m increases M, decreases, such that mM; < Mg is always satisfied for any
range of 0 < m < oo [14]. This physical argument in essence is similar to what we
have proposed in this paper, where S, always dominates over Sgy inside the region
rNL ~ 2/Mg > rgcp, such that 2|®(r)| < 1, and the metric potential tends to be constant
as r — 0. Indeed this case always leads to the resolution of a singularity, and also the
avoidance of an event horizon. The space-time metric becomes conformally-flat, with
a Riemann tensor still non-vanishing, therefore the space-time does feel the gradient of
the metric potential, but the force on any particle vanishes in the limit » — 0.

In the non-local region, r < 2/Mjy, we can study the full equations of motion [26], but
in full generality they are extremely challenging to solve, therefore it is wise to study them
and build the metric solution by using solid and valid physical arguments. Let us consider a
general spherically symmetric metric of the following form:

ds® = —A(r)dt* + B~ (r)dr® 4 r?dQ2. (4.1)

In our previous study, we have ruled out metric solutions of the form A(r) = B(r) =1+
20 (r),"! with ®(r) ~ 1/r* and ~ r#, for a, 8 > 0, as possible full vacuum solutions for
the infinite derivative gravity, where the energy momentum tensor is vanishing in the entire
region of spacetime [29], due to the presence of the Weyl contribution. Furthermore, as we
have already argued above, even in the absence of the Weyl term, Schwarzschild-like metrics
would not pass through the field equations as infinitely many derivatives would smear out the
delta source at r = 0. This last point is crucial. In fact, we can imagine other solutions, with
explicit r dependence in the regime r < 2/M,, with boundary condition at » = 0. However,

"Tn Ref.[29] it was considered the case A(r) = B(r) but, more generally, we can argue that the same
result also holds for static spherically symmetric metrics with A(r) # B(r), namely with the presence of two
gravitational potentials ®(r) and ¥(r) such that A(r) =1+ 2®(r) and B(r) =1+ 2¥(r).
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any physical solution which is continuous in the entire domain and infinitely differentiable
at each and every point, can be Taylor expanded in the vicinity of r < 2/Mj, except if
the function has a singularity at any point in the space-time, i.e. at r = 0. In the latter
case, for any such singular function, the leading order term in the metric potentials ought to
be of the form ®(r) ~ 1/r* (a > 0), but, again, we can argue that such a singular metric
potential will be regularized at » = 0 due to non-local gravitational interaction, preventing
singular short-distance behavior. Such a scenario perfectly agrees with our expectation from
the linearized regime.

We will now wish to build a metric solution and find conditions on how the two com-
ponents A(r) and B(r) have to look like in order for the metric to approach to a constant
value in the non-local region, i.e. for Myr — 0, such that the Weyl tensor tends to zero and
the other curvature invariants to finite constant values, therefore matching the expectations
from the linear regime [18].

In full generality, we will show that having a regular metric is not a sufficient condition
to avoid curvature singularities, but we will need further constraints on the form of the metric
components A(r) and B(r). Indeed, having a non-local action with infinite derivatives is not
a sufficient condition to have non-singular metric solutions, namely not every kind of infinite
derivative form-factors, F;([Js), would be suitable to resolve the curvature singularity. We
will notice that the ghost-free condition in Eq.(3.12) plays a crucial role to select the right
form-factors.

4.2 Conformally-flat non-local region

In this subsection, we want to study what are the conditions that a regular metric has to
satisfy in order to become conformally-flat with constant curvature invariants in the short-
distance regime, r < 2/M,. From Egs.(3.19,3.20) of the previous section, we have learnt that,
unlike in GR, in infinite derivative gravity one has A(r) # B(r) and one has to deal with
the more general case of two metric potentials ®(r) and ¥(r). It means that the Birkhoff’s
theorem is violated in infinite derivative gravity in the region of non-locality. Thus, for our
discussion we will consider the general case of two different metric components in Eq.(4.1):

A(r) =14 29(r), B(r) =1+2¥(r), (4.2)

where r now stands for the radial coordinate in the Schwarzschild coordinates. As we have
already demanded, A(r) and B(r) have to be non-singular within the non-local region, i.e.
r < 2/Mj, therefore the Taylor expansion at r = 0 yields:

1 1 1 1
B(r) = @+ rrt 5 @or® 2 Bgrieee, U(r) = Yo Uyrt S Wor® + oWy, (43)
such that for r — 0 we obtain a regular behavior, ® — &3 and ¥ — Wy. All coefficients
in the expansions in Eq.(4.3) are ought to be functions of G, m and My, in particular, by
dimensional analysis, we would expect:

O, ~ GmM W, ~ GmMIT (4.4)

A non-singular space-time metric at the origin is not a sufficient condition in order to avoid a
curvature singularity; in fact, by looking at the curvature invariants in the regime, Myr < 1,
we note that for generic values of the coefficients in Eq.(4.3), we would still have curvature
singularities. Indeed, we can compute the curvature invariants for the metric defined in terms
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of the potentials in Eq.(4.3). The Ricci scalar in the non-local region, i.e. Mgr < 1, has the
following structure:

R~ —

4¥ D;, U,
>+ ful . D4 fo@ ) + O(); (4.5)
the Ricci tensor squared:

8U2  g3(®;, Vi) g2(Ps, W) g1 (P, )
r4 + r3 + r2 + r

RuwRMW ~ + g0(®;, ¥;) + O(r); (4.6)

the Kretschmann invariant:

6403  hg(D;, V)  ho(®i, V) (P, V)
34 5 T 2 T
T T T r

K = Ry pe RMPT ~ + ho(®i, Vi) + O(r); (4.7)

and the Weyl squared:

1693 c3(®;, V) N co(®;, ) N c1(®;, ;)

CovpsCHP7 ~
nrea 3rd rd r2

0@, W) +O),  (45)
where the functions f,, gn, hn, ¢, depend only on the coefficients ®;, ¥;, with ¢ = 0,...,4.
Note that the curvature invariants can blow up at » = 0 if we do not make further assumptions
on the form of the coefficients in the metric potentials in Eq.(4.3).

Given the above analysis, we can now deduce the conditions under which the metric
inside the non-local region will be singularity free.

1. ¥y = 0: The first requirement for non-singular curvature invariants is that ¥y = 0,
which is also in agreement with the linearized metric in Eqs.(3.19,3.20), as we note
by making a direct comparison with the linearized form of the general metric in
Eqgs.(4.1,4.2), i.e. in the regime 2|®(r)],2|¥(r)| < 1.

2. ®; =0, ¥; =0: Moreover, one can also check that all the above curvature invariants
would become singularity-free by making the additional requirements ®; = 0 and
W, = 0; which are also in agreement with the linear regime, as we can see by expanding
the two metric potentials in Eqs.(3.14,3.20) around the origin. Therefore, we have:

D1 =Vg=U1=0 = fo=gh=hpn=c¢, =0, for n=1,2,3. (4.9)

3. As for the functions with n = 0, it so happens that if &; = ¥y = ¥; = 0, then
fo, 90, ho are in general non-vanishing constants, while ¢y vanishes. This means that by
assuming the metric in Eq.(4.1) with the two regular metric potentials in Eq.(4.3), the
requirement in Eq.(4.9) turns out to be a necessary and sufficient condition in order to
have a conformally-flat reqular metric with constant curvature invariants in the limit
r — 0.

In particular, in the limit » — 0 the Ricci scalar, the Ricci tensor squared and the
Kretschmann invariant tend to finite constant values, while the Weyl tensor squared

tends to zero'?:

R~ fo, RuwRM™ ~go, K~ ho, CupsC*?? ~0. (4.10)

12Tt can be explicitly checked that, given the condition in Eq.(4.9), all components of the Weyl tensor go
to zero for r — 0.
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From the above analysis, it is very clear that for the regular metric in Eqgs.(4.2,4.3), with
® £ U, conformal-flatness and avoidance of curvature singularities imply each other. Indeed,
if the metric is not conformally-flat for » — 0, then the metric will show curvature singu-
larities; while if the metric has curvature singularities at » = 0, then the metric will not be
conformally-flat 3.

From the above analysis, it is also clear that having a regular metric is not a suffi-
cient condition to avoid curvature singularities, but we would need to make the additional
requirements Uy = ¥y = &; = 0, so that we would require ®(r) # ¥(r) for r < 2/M; and
O(r) ~ U(r) for r > 2/M,. We indeed confirm that these requirements are ezactly in agree-
ment with the linearized metric of infinite derivative gravity in Eqs.(3.19,3.20); the leading
order coefficients for the linearized metric are given by:

GmM, GmM3 GmM3
T @y =0, By = e TR
6/ 3T

We can now understand that the ghost-free condition has played a crucial role in selecting
the right metric potentials ® and W. In fact, in general one can choose form-factors F; in
the action in Eq.(2.1) such that they can yield non-singular metric solutions, despite the
presence of non-locality through infinitely many derivatives. The choice of exponential of
entire functions, which is required to avoid ghost-like degrees of freedom, also constrain the
metric potentials, such that the conditions in Eq.(4.9) are satisfied. In the previous section,
we have considered the case v(d;) = —Og, but the same scenario is kept for v([Js) being a
generic polynomial of .

Ug=T; =0, U= (4.11)

Indeed, in infinite derivative gravity astrophysical blackholes can be free from singularity
and event horizon provided within the scale of non-locality the metric solution yields R ~
fo, RuwR* ~ go, K ~ hg, ClypsCHP? ~ 0, in the limit r — 0.

5 Conclusion

Typical Schwarzschild metric within Einstein-Hilbert action relies on a non-trivial vacuum
solution, which yields 1/r metric potential, and the boundary condition at r = 0, where

3Note that such a result is particularly based on the two following hypothesis; (1) goo # —g11, and (2)
® # W. The condition (1) is really fundamental in order to recover GR in the IR regime. However, for
curiosity one can ask what happens if it were violated. In fact, if goo = —g11, we can have metrics which are
conformally-flat for » — 0, but still the corresponding curvature invariants blow up at » = 0. As an example,
we can consider the following metric with

— — r :
goo = —gi1 = r+a B

and we can check that it becomes conformally-flat for » — 0, but the corresponding Kretschmann invariant
blows up. Moreover, if (1) holds but (2) is violated, we must have ¥ = & which also means goo = —g'!, and in
such a case only one implication holds: non-singular curvature invariants => conformal-flatness. Indeed, in
this case, one can check that the condition ®¢ = 0 ensures conformal-flatness, but in order to have non-singular
curvature invariants, we would need to make the additional requirement, that is ®; = 0. As an example we
can consider a metric with & = ar, where a is a constant, which turns out to be conformally-flat for » — 0,
but other curvature invariants, like the Kretschmann, blow up at » = 0, this can be easily checked. However,
we now know that in infinite derivative gravity one has to deal with two different metric potentials & # ¥
within the scale of non-locality, and in such a case, for a regular metric, conformal-flatness and non-singular
curvature invariants come hand in hand.
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there exists a central mass with the Dirac delta distribution. Except r = 0, we have a
vacuum solution. This very fact can be modified manifestly in covariant formulation of
ghost-free infinite derivative theory of gravity, which is the key concept that ameliorates the
curvature singularity and the avoidance of an event horizon for any blackhole mass. The
non-perturbative statement due to Eq.(3.6) affirms that the metric potential in the entire
region of non-locality with r ~ 2/Mg > rg.p,, for any astrophysical source mass m, is such that
the condition mM; < Mg is always satisfied. Moreover, the metric potentials ® and ¥ are
such that the spacetime metric becomes conformally-flat and free from curvature singularity
in the region r < 2/M;.

As we have already mentioned above, the ghost-free condition ensures that the require-
ments in Eq.(4.9) hold, which also imply that for two different regular metric potentials, ®
and ¥, conformal-flatness is a necessary and sufficient condition for non-singular curvature
invariants. It means that in a ghost-free, infinite derivative theory of gravity we cannot have
a spacetime metric which is conformally-flat but suffers from curvature singularity, or vice
versa; indeed, the two requirements imply each other.

We have also argued from a purely mathematical point of view that the Schwarzschild
metric, for example, will fail to solve our full equations of motion, containing infinite deriva-
tives due to boundary condition. This is due to the fact that any point-like source at » = 0 is
smeared out on a region whose size is given by the scale of non-locality. Our study sheds very
important light on infinite derivative, ghost-free, theories of gravity as proposed in Ref.[11],
with form factors determined by having no zeroes, or no extra poles in the propagator, or no
extra dynamical degrees of freedom other than the massless graviton, for maintaining the uni-
tarity constraint on such an action. This quadratic curvature action has a potential to modify
the way we view astrophysical blackholes, in particular, one of the key modifications will be
that the astrophysical blackholes are no longer classical objects. Astrophysical blackholes re-
main compact with radius roughly given by the scale of non-locality, i.e. rnp ~ 2/Mg > 7gcp.
At distances larger than this radius the metric follows exactly that of GR, in the static and
spherically symmetric coordinates. For all practical purposes, a distant observer will view it
as a Schwarzschild metric, but as we approach closer to the scale of non-locality, we would
realize that the metric approaches to be conformally-flat and the spacetime metric becomes
non-local and free from any curvature singularity.

Indeed, this opens a new avenue for future works, such as studying quasi-normal modes,
grey body factor, and put constraints on such non-singular compact objects from observa-
tional perspectives, such as gravitational wave observatories like LIGO and VIRGO in the
near future.
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A Conformally-flat, non-linear vacuum solutions in the non-local regime

In the main text we have mainly focused on the metric solution in infinite derivative gravity
which generalizes the Schwarzschild-like metric to the case of non-local gravitational inter-
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action. In this respect, we have considered a non-vacuum solution for the infinite derivative
gravity field equations where the stress-energy tensor is non-vanishing inside the region of
non-locality ryy, ~ 1/M;, due to the smearing of the Dirac delta source.

However, it can be also interesting to investigate the full field equations for the action
in Eq.(2.1) and seek purely vacuum static solutions in the region of non-locality, where the
Einstein-Hilbert contribution can be neglected, S; > Sgp, without imposing any boundary
condition at » = 0. In particular, we wish to seek vacuum solutions which are conformally-flat
in the region of non-locality:

ds® = F2(r)[—dt* + dr* + r*dQ?), for r < 1/M,. (A.1)

Of course, since we are not putting any Dirac delta source, such a scenario will not necessarily
match the expectations of the linear regime, where one approaches to both constant curvature
invariants and conformal-flatness. In order to make this study, we need to focus on the non-
local part of the field equations corresponding to the action in Eq.(2.1) and impose the ansatz
of conformally-flat solution, so that the Weyl contribution vanishes in the non-local region,
ie. CHP7 — ( in the limit r — 0.

The complete field equations for the action in Eq. (2.1) were derived in Ref.[26], but
we do not need their full expression for what follows. In fact, by focusing in the non-local
regime, S; > Sgu, the Einstein-Hilbert term can be neglected and by assuming conformally-
flat metric solutions as ansatz, the Weyl contribution can be set to zero, O(C)=0. The only
relevant part of the field equations needed to seek conformally-flat vacuum solutions in the
region r < 2/M, are given by'4

Paﬁ ~N— 7TG (4Ga6]:1( )R + gaﬁR}H (DS)R —4 (vavﬂ - gaBD) J:l(DS)R

— 209 4 g*P Q7 + D) + ARG Fo(Os)RM
g PREF(Os)RY, — AV, VP (Fo(O)RF) + 20(Fo (D) R™P)

+ 2PV, VY, (Fo (O RM) — 2057 + ¢°%(Q5 + Qo) — 4Agﬂ)
=7 =0, (A.2)

where the symmetric tensors are given by [26]:

oo n—1 0 n—1

Q17 =3 fi, D VOROVIRCTD 0 =% p ST RORCD, (A.3)
n=1 =0 n=1 =0

00 n—1

Q57 = ng ZR“’ DREBE==D 0y =37 fo, SO REDRYD o (A4)
n=1 n=1 1=0

Aaﬁ Z fa, Z Ru Z)R(BU a)(n—1-1) RVU;Q(Z)RﬁJ(n—l—l)];V . (A5)
n=1 =0

We adopt the notation R = O'R for the curvature tensors and their covariant derivatives.

“Note that we are keeping the Einstein-Hilbert term in our action, without that just the quadratic action
alone will have massive spin-2 ghost. Also, keep in mind that in the IR, we must recover the standard
predictions of GR, i.e. the Schwarzschild vacuum solution outside r > 2/M,. Here we are interested in
studying the limit where S; > Sgu, or r < 2/Ms,.
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The trace equation in the non-local regime and for conformally-flat metric ansatz can
be written as [26]:

P %83;6’ (1255: 1(Hs)R + 20(F2(05)R) + 4V, Vo (F2(Hs)RM™)
oG 30 205 4209 40L) T g 0. (a0

The next step will be to substitute the ansatz Eq.(A.1) into Eq.(A.2) in order to study the
field equations for the unknown conformal factor F'(r), and see how it would look like at each
order of the series expansion of the form-factors Fi(0s) and F2([Js). An explicit calculation
of the component P% is carried at zero (g and at one [J,. At just one [J,, we can already see
that the expression becomes very complicated, involving derivatives of the conformal factor
F™(r) = d™F(r)/dr™, originating a highly nonlinear differential equation. At the zero
order in the expansion of Fi(ds) and F2(0s), the 00-component of the field equations in
Eq.(A.2) reads:

poo _ % (3fi0 + fa)
©) 2nG rF(r)”

+ 83 F(r)2FO) (1) = 5 F(r) F" ()2 + 160 F' ()2 F" (1) (A.7)

3203 F' ()3 — 40r3 F (r)F' (r)F" (r)

+ 2P F(r)2FW (1) =10/ F(r)F' () FO (r)| =0

while at the first order, or in other words at one [,

3aef11
00 _ c Al N\ (.2 /
Py = TG R ()T [5767“ F'(r)* (r*F"(r) +2rF'(r))

—r?F(r)F'(r) (645T4F"(r)2 + 460r* ' (r)*

+4rF () (1097«3}7(3) (r) + 707T2F"(r)>>

+ 2F(r)? (33r6F”(r)3 + 33 F' (r)F" (r) (61r2F(3) (r) + 172r2F”(r))

— 683 F' ()3 + 212 F'(r)? (377«41?(4) (r) + 21973 FG) (1) + 971"2F"(r))>
— F(r) <28T2F’(r)2 + (23r6F(3) (r)? + 28 F"' (r)?

+20 (20 FO (1) + 117 PO (1) ) rQF”(r)>

+2rF'(r) (18 FO (1) + 760 FO (1) + 14r°FO) 1)) - 28r2F”(r))>

+ 2F(r)* (T‘6F(6) (r) + 6r°F©®) (r))}
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_ acf21
227G rSF(r)12 M2

[24r4F(r)F’(r)4 (53r2F" (r) + 64rF'(r)) — 32470 F'(r)"
—r?F(r)*F'(r)? (10257«417”(7«)2 + 44617 F'(r)*
+2rF'(r) (2837 FO)(r) + 17027‘2F”(r)>>
+ 2R ()3 (47r6F”(r)3 4P F (7)) F (1) (59r3F<3) (r) + 153r2F”(7')>
— T4r3F (r)3 + 2 F ()2 (797«4F<4> () + 4703 FG) (1) + 180r2F”(r)>>
r)*( 30r°F'(r <29r6F( )(r)? + 30r* " (r)?
+2r2F" () (23r4F (r) + 126r3F©®) (r))) +2rF(7) (307»2F”(r)
n (13r5F(5) (r) + 76/ F® () + 10/ F®) (T))))

+2F(r)° <r6F(6) (r) + 6r5F(5)(T)>] =0

Of course, a trivial solution inside the non-local region will be given by a constant
conformal factor!®

F(r) ~ const. for r <« 2/M,. (A.9)
Let us now investigate, if we could seek other non-trivial non-linear vacuum solutions of the
above field equations 6.
A1 Solution of type: F(r)— —
olution o e:
yp Mgr

Let us now consider the following conformally-flat metric as an ansatz:
2 2 \" 2 2, .2.102
ds® = —dt* +d ds) A.10
s < Msr> ( +dr® +r ) (A.10)

and study the consequences for the equations of motion; let us first compute the corresponding
curvature invariants.
The Ricci scalar is given by

3-27" In (Mr)"

R=—-(n—-2) 2 , (A.11)
which vanishes for n = 2; while the Ricci tensor squared reads
—2(n+1),,2 _ 2n
RIVR, — 2 n* (n(3n 7,414) +20) (M,r) 7 (A12)

5This is evident due to the fact a constant metric is always a solution provided there is no cosmological
constant term.

1None of our arguments would modify if we were to study pure Euclidean metric in the above, or later
stages of this paper.

~ 18 —



2
which becomes TS for n = 2. The Kretschmann tensor is given by:

272+ )02 (n, (3n — 16) + 28) (Mr) 2"

= T HVPO —
K=RMPRuvpe = o

(A.13)

2
which becomes —= for n = 2, being non-singular.

We have been able to explicitly evaluate the field equations for the metric ansatz in Eq.
(A.10) up to second order in boxes. The 00-component of the full field equations at zero
order in box yields:

ae (Mgr) 2n

00 _
Py ==(n=2) TGrt

[2n (3n? — 18n + 16) (3f10 + f20)] (A.14)
at one box order, yields:

ae (Mgr) 3"

00 _
Fa) =(n=2) wGroM?2

[8—”‘2n <6 (3n* + 2n® — 960> + 256n — 192) fi1+
(A.15)

+ (9n* + 6n® — 236n° + 560n — 384) f21>] :

and at two boxes order, yields:

o Qe (M) in

00 _
P(Q) =(n-2) TGré M2

[2—4n—5n <_3 (100n* — 957n® + 3356n° — 5124n + 2880) fia+

(25n° — 296n* + 1713n® — 47700 + 6044n — 2880) f22)

(A.16)
We can immediately see that for n = 2, all of them vanish, i.e., P(%%, P(OB, P(OQ% = 0. Would
this solution survive if we were to consider the expansions of the form-factors /7 and F5 at
higher orders in [;7 We certainly have indications that it will, since the relevant pieces to

compute at higher orders in Eq. (A.2) have a common factor:
OsR* ~ (n—2)..., Vo R"™ ~(n—2).. (A.17)

which is (n — 2).

It would be important to understand this special non-trivial solution which yields
conformally-flat metric solution in the non-local regime, but with vanishing scalar curva-
ture, and which turns out to be non-singular as the Kretschmann invariant is just a constant;
see Eq.(A.13) with n = 2.

A.2 Other variants of non-local action

We now wish to consider simplified version of the gravitational action in Eq.(2.1), in which we
set one of the form-factors to be zero. Note that the present study focuses on conformally-flat
metrics, and as such the Weyl squared term in the action is irrelevant for the field equations.
The contribution with the form factor F3([Js) does not play any role for this analysis; it is
however responsible for making the theory unitary at a quantum level. Other terms do show
their importance already at the background level. Below we will consider two particular
cases in which we set one of the two form-factors F;(0Os), F2(Os) to zero, and analyze the
consequences.
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o If we set Fo(Js) = 0, we would deal with the following gravitational action!”

1
— / 4 27/=G [R + e (RFL(T)R + Cpapo Fo(T,)CH77)] (A.18)

We can look for a conformally-flat solution in the non-local regime, but now for the
simpler action in Eq. (A.18). The corresponding vacuum field equations in the region
r < 2/M; reads

PoB 8% [4Gaﬂf1(DS)R + g*PRF (LR — 4(V9° — ¢’ F(O,)R

s ~ (A.19)
=208 + g2 (Qf, + )| = TP =,

where, again, the Weyl contribution is not present as we are considering conformally-

flat metric as an ansatz, O(C) = 0. Note that a non-trivial vacuum solution is given by

the vanishing of the Ricci scalar, indeed

6 2F 4 rF”
R = _ﬁn'm/aual/F = _6T =0<+=2F +rF" = 0, (A20)
whose solution for the conformal factor F'(r) is:
b
F(ry=a—-—, (A.21)
r

where a and b are two integration constants. Note that for generic values of a and b
such a solution does not solve the vacuum field equations corresponding to the general
quadratic action in Eq.(2.1), but it becomes a solution only if a = 0.

1. If a = 0, we recover the metric solution in Eq.(A.10) with n = 2.

2. If a # 0, we can always rescale the coordinates as z#* — ax*, so that the constant a
can be set equal to one without any loss of generality. In this case the conformally-
flat metric solution with vanishing Ricci scalar solves the field equations in Eq.
(A.19) and reads:

b 2
ds® = (1 — > [—dt® 4 dr® + r2dQ?). (A.22)
r
For such a metric the Kretschmann scalar is given by:

8b2(b2 — dbr + 612)
K= ;
(b—r)8

(A.23)

which seems to be singular for » = b. However, the coefficient b has to be related
to the inverse of the scale of non-locality, b ~ 2/Mj, and since we are working in
the regime Myr < 2, the metric in Eq.(A.22) is nothing but the same metric as
in Eq.(A.10), for n = 2. Moreover, the corresponding Kretschmann invariant in
Eq.(A.23) is just a constant 8/b%, which exactly coincides with the Kretschmann
invariant in Eq.(A.13) for n = 2, if we assume b = 2/Mj,.

1Tt is worth mentioning that such an action was considered in particular in Ref.[41], where the authors
have shown that it is the most general quadratic action for studying linear perturbations around maximally
symmetric backgrounds up to second order in the perturbations; i.e. the F2([s) term would be redundant in
such a case.
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e Finally if we set F;(00,) = 0, we will have

1
S = m /d4$\/jg [R + O (Ruyf2(Ds)Ruu + CMVpO'FZS(DS)CMVpO—)] . (A24)
For this action, the vacuum field equations are
(0% aC @ a v o
P ngG <4Ruf2(Ds)7€“ﬂ — g"PREF(O0)RY, — AV, VA (Fy(T)RM) (A.25)

+ 20(Fo(04)RP) 4 2g°PV W, (Fo(O)RM) — 2057 + g8 (5, + Qg) — 4Agﬁ)
=T =0, (A.26)

where O(C) = 0 if we demand conformally flat metric solutions. One reasonable possi-
bility is to investigate solutions such that R*” = 0. Under such constraint, we have to
solve the following system of differential equations,

Roo = 0 <= rF(r)F"(r) + rF'(r)? + 2F(r)F'(r) =0, (A.27)
Ri1 =0 <= 3rF'(r)> — F(r) (3rF"(r) + 2F'(r)) =0, (A.28)
Roo =0 <= rF(r)F"(r) +rF'(r)* + 4F(r)F'(r) =0, (A.29)

Rz =0 <= rF'(r)> + F(r) (rF"(r) + 4F'(r)) =0 (A.30)

Subtracting the first equation from the third one implies the simpler relation 2F (r) F'(r) =
0. At this stage, we can already restrict solutions to F(r) = 0 or F'(r) = 0. If we take
F'(r) = 0, for any r, then we are left with F(r) being a constant. We can conclude
that in order to have solutions with R*” = 0, the conformally metric ansatz Eq.(A.1)
should have F'(r) = constant.

We can also search for solutions where generically R*” = 0. In that case, we must find
non-trivial vacuum solutions for Eq.(A.26). Note that for the class of possible solutions
with R = 0, the aforementioned solution Eq.(A.22) with a = 0 is also a solution here.
The reason is straighforward, since having R = 0 is equivalent to have the form factor
F1(Os) = 0 (already discussed above), and since we are looking for conformally flat
metrics, the Weyl part of Eq.(A.2) will be zero. Therefore, solutions with R*” # 0 and
R = 0 will match those obtained in the previous section. Finally, without additional
insight, finding non trivial solutions with R # 0, will be a harder task just by noticing
the complexity of Eq.(A.26).
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