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Abstract

The Support Vector Machine (SVM) is one of the most powerful algorithms for

machine learning and data mining in numerous and heterogenous application

domains. However, in spite of its competitiveness, SVM suffers from scala-

bility problems which drastically worsens its performance in terms of memory

requirements and execution time. As a consequence, there is a strong emergence

of approaches for supporting SVM in efficiently addressing the aforementioned

problems without affecting its classification capabilities. In this scenario, meth-

ods for Training Set Selection (TSS) represent a suitable and consolidated pre-

processing technique to compute a reduced but representative training dataset,

and improve SVM’s scalability without deprecating its classification accuracy.

Recently, TSS has been formulated as an optimization problem characterized

by two objectives (the classification accuracy and the reduction rate) and solved

through the application of evolutionary algorithms. However, so far, all the evo-

lutionary approaches for TSS have been based on a so-called multi-objective a

priori technique, where multiple objectives are aggregated together into a single
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objective through a weighted combination. This paper proposes to apply, for

the first time, a Pareto-based multi-objective optimization approach to the TSS

problem in order to explicitly deal with both its objectives and offer a better

trade-off between SVM’s classification and reduction performance. The benefits

of the proposed approach are validated by a set of experiments involving well-

known datasets taken from the UCI Machine Learning Database Repository. As

shown by statistical tests, the application of a Pareto-based multi-objective op-

timization approach improves on state-of-the-art TSS techniques and enhances

SVM efficiency.

Keywords: Training set selection, Multi-objective optimization, Support

Vector Machine

1. Introduction

The Support Vector Machine (SVM) is a supervised learning method rooted

in the Statistical Learning Theory, developed by Vladimir Vapnik [1] and co-

workers at AT&T Bell Laboratories in 1995. SVM has demonstrated highly

competitive performance in numerous real-world applications, such as bioinfor-5

matics, text mining, face recognition, and image processing, which has estab-

lished SVM as one of the state-of-the-art tools for machine learning and data

mining [2]. However, SVM suffers from a widely recognized scalability problem

[3] because its execution time increases rapidly with the dimension of the train-

ing data. Moreover, in many real-world applications, training data can contain10

noisy or wrong information and also the performance of best classifiers could

worsen when they deal with these data [4].

Training Set Selection (TSS) [5] represents a suitable and consolidated ap-

proach to face these problems. TSS consists of a pre-processing technique that

selects only the relevant dataset instances before performing training and clas-15

sification tasks. Thanks to the creation of a reduced training dataset composed

of the most relevant instances, TSS techniques achieve a twofold benefit: on

one hand, the accuracy of SVM can be improved, while, on the other hand, the
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computation complexity is decreased.

Actually, TSS has mainly been investigated for the k-Nearest Neighbor (k-20

NN) classifier, where it is referred to as Prototype Selection (PS). Research

studies in this field have shown how PS can successfully improve the accu-

racy of the k-NN classification [6]. Hence, research efforts have been carried

out to study whether TSS techniques can improve also the SVM performance.

In particular, Verbiest et al. in [4] show that TSS strategies based on evo-25

lutionary approaches such as genetic algorithms can significantly improve the

accuracy of SVM classification. The developed evolutionary algorithms address

TSS as a combinatorial optimization problem characterized by two objectives:

1) maximize the number of the instances that are correctly classified by a SVM

classifier when using the reduced training data and 2) maximize the amount of30

reduction achieved with respect to the original training set. The evolutionary

algorithms developed so far use an a priori approach where multiple objectives

are combined into a single one through a linear aggregation based on a so-called

equilibrate factor.

However, a priori approaches suffer from some well-known drawbacks [7]: (1)35

they require to explicitly and exactly set the equilibrate factor; (2) as discussed

in a large number of studies [8][9], they fail in capturing optimal solutions in

non-convex regions due to the linear nature of the used aggregation. Moreover,

the principal reason why a problem has a multi-objective formulation is because

it is not possible to have a single solution which simultaneously optimizes all40

objectives. Therefore, an algorithm that gives a large number of alternative

solutions in a single run could be of great practical value [10].

Starting from these considerations, this paper proposes to apply, for the first

time, a multi-objective a posteriori approach (also known as Pareto-based multi-

objective optimization algorithm) to the TSS problem. Pareto-based multi-45

objective optimization algorithms can afford to multiple-objective nature of the

TSS problem by producing in each run a set of viable alternative solutions (re-

ferred to as non-dominated solutions) representing the best possible trade-offs

between the antagonistic objectives characterizing it. Ideally, each alternative
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solution produced is optimal in the sense that it will not be possible to improve50

the value of any one of the objectives without simultaneously degrading the

quality of one or more of the other objectives. Such a solution set is called

Pareto-optimal set. Over the years, several Pareto-based multi-objective opti-

mization algorithms have been developed and successfully applied to relevant

and variegated application domains such as gene expression [11], handwritten55

character recognition [12], ontology alignment [13] among others. In particular,

in this work, the TSS problem is addressed by applying one of the most popu-

lar Pareto-based multi-objective optimization algorithms, the Pareto Envelope-

based Selection Algorithm II (PESA-II) [14]. The most attractive characteristic

of PESA-II is the grid-based fitness assignment mechanisms that maintain di-60

versity in both environmental selection and mating selection [15]. However,

having a set of solutions instead of a single one does not make a TSS approach

applicable automatically in real scenarios. Therefore, the proposed TSS tech-

nique, that we call ParetoTSS, includes a decision-making mechanism based on

a sum model to select a single solution from the non-dominated set.65

The performance of ParetoTSS is investigated in a set of experiments in-

volving well-known datasets taken from the UCI Machine Learning Database

Repository [16]. The experiments are divided in three sessions: in the first one,

the performance of ParetoTSS is analyzed by means of a validation procedure

as realistic as possible; in the second one, the ability of ParetoTSS in improving70

SVM is studied in terms of classification time and accuracy; finally, in the third

experimental session, a comparison between ParetoTSS and the state-of-the-

art approaches is carried out in terms of accuracy and reduction rate. After

performing an empirical analysis and a set of non-parametric statistical tests,

the results show that ParetoTSS is characterized by a high performance and its75

application leads to the increasing of SVM classification accuracy and efficiency

and improvements on state-of-the-art TSS techniques.

The paper is organized as follows. Section 2 presents a description of the

TSS problem and a review of the state-of-the-art approaches aimed at address-

ing it. A formulation of the TSS problem as a Pareto-based multi-objective80
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optimization problem is given in Section 3. In Section 4, we give details about

the proposed algorithm, ParetoTSS. A detailed discussion of the experiments

and of the results obtained by the algorithm ParetoTSS are reported in Section

5. Section 6 concludes the paper.

2. Training set selection and State-of-the-art85

With its solid theoretical foundation and also proven effectiveness (see Ap-

pendix A), SVM has contributed to researchers’ success in many fields [17].

However, SVM suffers from a widely recognized scalability problem in both

memory requirement and computational time [3]. SVM computation and mem-

ory requirements increase rapidly with the number of instances in the data sets.90

Precisely, the computation time of SVM training is quadratic in the number of

training instances [17]. Hence, research efforts have been carried out to develop

TSS techniques with the goal of reducing the training data size without losing

classification accuracy. Training Set Selection (TSS) is a pre-processing method

used to select relevant instances in the training data before applying a classifier.95

TSS is very useful in many real-world applications, where datasets can contain

noisy or wrong information that make difficult the classification also for the best

classifiers.

Formally, let TR be the original training set composed of n instances. Each

instance Ii is a pair (xi, yi) with i = 1, . . . , n, where xi defines an input vector100

of attributes and yi defines the corresponding class label. Each input vector

contains m input attributes that are quantitative or qualitative information

that describe the corresponding instance. The goal of any TSS technique is to

produce a set of instances S ⊆ TR to be used to train a classifier capable of

classifying new instances with the same or higher classification accuracy of the105

same classifier trained with the original training data TR. The cardinality of

the set S should be smaller than the cardinality of the set TR in order to reduce

the classifier time complexity. The amount of reduction of S with respect to

TR is referred to as reduction rate. Starting from this description, it is possible

5



to state that the success of a TSS technique is assessed by using two aspects:110

(1) the classification accuracy obtained by the classifier when using the reduced

set of instances, and (2) the amount of reduction achieved with respect to the

original training set. TSS techniques that provide the best trade-off between

both measures are the best performers. Hereafter a description of the TSS

techniques implemented so far is given.115

2.1. State-of-the-art

As we have mentioned, TSS has been successfully applied to the k-NN clas-

sifier, where it is referred to as Prototype Selection (PS) [6] [18] [19] [20] [21].

However, recently researchers are investigating about the TSS-based improve-

ment of performance of other kinds of classifiers [22], such as SVM. In particular,120

in this scenario, two different research branches are arising: the former focuses

on the application of evolutionary algorithms, whereas, the latter pays particular

attention to non-evolutionary techniques such as clustering and data geometry.

As for the first category, research efforts have been mainly focused on adapt-

ing evolutionary-based approaches already developed for KNN to SVM. In par-125

ticular, in the recent work of Verbiest et al. [4], a set of systematic experiments

has been performed to compare three evolutionary-based TSS techniques, GGA

[23], CHC [24] and SSGA [24], originally created for KNN, both among them

and with no-evolutionary approaches such as ENN [25] and MCIS [26]. Ac-

cording to these experiments, GGA results to be the most suited TSS method130

for SVM, by establishing itself as the state-of-the-art for evolutionary-based

TSS approaches. Briefly, GGA is a TSS technique based on genetic algorithms.

Therefore, it manages a population, randomly initialized, that evolves through

the application of crossover and mutation operators. The main feature of this

algorithm is the exploitation of two mutation rates: 1) the probability of in-135

troducing an instance referred to as pm1 and 2) the probability of removing an

instance referred to as pm0. The probability pm1 is smaller than the probabil-

ity pm0 in order to force the algorithm to obtain higher reduction rates. The

evaluation of the reduced training set is based on two objectives: the accuracy
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obtained on the training data set and the reduction rate of the reduced training140

set with respect to the original training data. These two values are balanced

by using a so-called equilibrate factor α. The algorithm ends after a prefixed

number of fitness evaluations.

However, in spite of the application of evolutionary algorithms to TSS for

SVM, Pareto-based multi-objective optimization approaches have not been in-145

vestigated so far, even though these approaches have been applied to SVM

for other optimization goals. In particular, several research efforts have been

made to address the selection of SVM parameters through Pareto-based multi-

objective optimization algorithms such as NSGA-II [27][28] and MOPSO [29] by

obtaining good results. Some preliminary studies have been conducted to reduce150

the complexity time of SVM through Pareto-based multi-objective optimization

algorithms. In [30], a Pareto-based multi-objective optimization algorithm such

as NSGA-II is applied to reduce the classification complexity time of SVM by

selecting the best support vectors among a set of support vectors obtained by

applying a standard algorithm to train the SVM. It is worth noting that the155

selection task refers to support vectors and not training instances. Moreover, in

[31], NSGA-II has been applied to produce a sub-optimal training set to train

a SVM. To achieve this aim, NSGA-II considers as solutions single instances of

an original training set. As a consequence, the application of genetic operators

results in optimal solutions that may not belong to the original training set.160

Therefore, in [31], even if the addressed goal is the training sample selection, it

does not face TSS problem since TSS deals with selection of instances from the

original training set without producing new instances for SVM training. Finally,

in [32], an approach based on multi-objective optimization algorithms is pro-

posed for selecting a combination of instance sets and SVM hyper-parameters.165

Therefore, all developed Pareto-based multi-objective optimization algorithms

applied for SVM in literature does not address the TSS problem, and, as a

consequence, they are out of the scope of this work.

Among the approaches belonging to the second category, the most competi-

tive ones are (i) KMSVM [33] which is based on k-means clustering; (ii) Linear170
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Fuzzy Support Vector Machine (LFSVM) [34] which is a geometry-based al-

gorithm based on the idea of class centroid; (iii) Pre-Selection sample based

on Class Centroid (PSCC) [35] and Vector Projection Support Vector Machine

(VPSVM) [36] which are also geometry-based algorithms making use of the

centroid of class for cutting down the training set; (iv) Shell Extraction (SE)175

[37] which is a geometry-based method that extracts the useless instances from

the training set to preserve the maximum of support vectors. However, during

an extensive experimental session conducted in [37], SE has emerged to be the

best algorithm belonging to the second category by establishing itself as the

state-of-the-art for TSS techniques based on non-evolutionary approaches. SE180

achieves this result thanks to its capability of extracting the instances which are

not likely to be support vectors. In order to achieve this goal, SE considers a

round area, referred as Reduction Sphere (RS), whose instances will be deleted.

The number of deleted instances depends on the radius of RS controlled by two

user parameters λ and δ. Differently from our TSS technique, SE requires the185

user to adjust the reduction intensity by setting the parameter ξ.

Starting from this analysis, in our experimentation, the state-of-the-art algo-

rithms, GGA [23] (evolutionary) and SE [37] (non-evolutionary), will be com-

pared with our TSS technique based on a Pareto-based multi-objective opti-

mization approach to prove the high performance of the proposed approach.190

3. The Pareto-based evolutionary approach to Training Set Selection

Recently, TSS has been formulated as an optimization problem based on

the following objectives: 1) maximize the accuracy, i.e., the number of the

instances correctly classified by a classifier, when using the reduced training

data and 2) maximize the amount of reduction achieved with respect to the195

original training set. These two objectives are conflicting because, typically,

increasing the amount of reduction leads to a decreasing in the accuracy and

vice versa. In case of conflicting objectives, there does not exist a single solution

that simultaneously optimizes each objective. Hence, this observation has arisen
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our proposal to apply a Pareto-based multi-objective optimization algorithm200

such as PESA-II to implement the ParetoTSS algorithm. This new algorithm

is capable of producing a set of viable alternative solutions representing the

best possible trade-offs between the antagonistic objectives characterizing the

problem.

Before explaining the details of the proposed approach in the next section,205

let us introduce the Pareto-based multi-objective optimization algorithms and

our formal definition of the TSS problem as a Pareto optimization problem.

3.1. Pareto-based multi-objective optimization principles

In general, a Pareto-based multi-objective optimization problem can be de-

scribed as a vector function f that maps a tuple of m parameters (decision

variables) to a tuple of n objectives. Formally (for a maximization problem):

max y = f(x) = (f1(x), f2(x), . . . , fn(x))

subject to x = (x1, x2, . . . , xm) ∈ X

y = (y1, y2, . . . , yn) ∈ Y

where x is called the decision vector, X is the parameter space, y is the objective

vector and Y is the objective space. The set of all decision vectors for which the

corresponding objective vectors cannot be improved in any dimension without

degrading in another is known as Pareto-optimal front. Mathematically, the

concept of Pareto optimality is the following: let us consider a maximization

problem and two decision vectors a,b ∈ X. Then, a is said to dominate b (also

written as a � b [38]) iff

∀i ∈ {1, 2, . . . , n} : fi(a) ≥ fi(b) ∧

∃j ∈ {1, 2, . . . , n} : fj(a) > fj(b)

Additionally, a is said to weakly dominate b (also written as a � b) iff a � b

or f(a) = f(b). All decision vectors which are not dominated by any other210

decision vector of a given set are called non-dominated [39]. Fig. 1 graphically

shows the Pareto-based multi-objective optimization principles.
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Figure 1: Example of Pareto front for a problem with two objectives to be maximized. Green

points are feasible solutions. Blue points are non-dominated solutions that form the Pareto

front. The points in the higher right area represent solutions that are desired but not feasible

(yellow).

3.2. Training Set Selection as a Pareto optimization problem

By taking into account the two objectives characterizing the TSS problem

(accuracy and reduction) and the Pareto-based multi-objective optimization215

principles, it is possible to formulate TSS as a Pareto optimization problem as

in Definition 1.

Definition 1 (TSS problem). Let TR be the original training set and ΛTR

be the set of all possible subsets S of TR, the TSS problem can be formulated as

below:

max y = F (S) = [f1(S), f2(S)] with S ∈ ΛTR (1)

where f1 : ΛTR → R is the first objective defined as follows:

f1(S) = acc(TR, S) with S ∈ ΛTR (2)

where acc is a function that computes the classification accuracy in percentage

obtained by a SVM classifier by considering TR as testing set and S as training

set and f2 : ATR → R is the second objective defined as follows:

f2(S) = red(TR, S) =
|TR| − |S|
|TR|

· 100 with S ∈ ΛTR (3)

where red is a function that computes the reduction rate in percentage of the set

S with respect to the original set TR.
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4. The algorithm ParetoTSS220

The ParetoTSS algorithm is mainly based on PESA-II, a Pareto-based ap-

proach proposed by Corne et al. [14] in 2001. It is one of the most popular

Pareto-based approaches and it has been widely applied in many fields [40][41]

since then. Its main characteristics are: i) the use of two populations, called

internal population and external population; ii) the use of hyper-grid division of225

phenotype space which allows to maintain diversity in the algorithm; iii) the use

of a mating selection process called region-based ; iv) the use of the environmen-

tal selection process depending on the region density. In order to apply PESA-II

for solving the TSS problem, we have defined an adequate solution encoding.

Moreover, we have defined recombination and mutation operators suitable for230

TSS problem and a restarting mechanism for correcting eventual solutions which

become unfeasible during the PESA-II evolution. Like all Pareto-based multi-

objective optimization algorithms, PESA-II produces a set of non-dominated

solutions, each one representing the trade-off between the considered antago-

nistic objectives. However, in order to take advantage of PESA-II application235

in TSS, the proposed algorithm, ParetoTSS, includes a method for extracting

a single solution from the Pareto front. Hereafter, the general features of the

PESA-II algorithm are recalled in Subsection 4.1. Then, the solution encoding

for TSS problem is described in Subsection 4.2, whereas, the recombination and

mutation operators and the restarting mechanism are described in Subsection240

4.3. Subsection 4.4 presents the method to select a single solution from the pro-

duced Pareto front. Subsection 4.5 presents a description of the whole behavior

of the proposed approach, ParetoTSS. At conclusion, Subsection 4.6 discusses

the time complexity of ParetoTSS.

4.1. PESA-II algorithm245

During its evolution, PESA-II maintains two populations: an internal popu-

lation IP of fixed size, and an external population EP of non-fixed but limited

size [42]. The external population is actually the archive that stores the current
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approximation to the Pareto front, whereas, the internal population stores the

new solutions generated by variation operations and vying for incorporation into250

the archive.

The solutions in the archive are stored in hyper-boxes, obtained by means of

a hyper-grid which divides the objective space. The number of solutions within

a hyper-box is referred to as density, and it is used to choose solutions both in

the mating selection and in the environmental selection.255

The mating selection process consists of choosing the solutions to be under-

gone to evolutionary operations. In PESA-II, the mating selection process is im-

plemented in a region-based manner rather than in an individual-based manner

(i.e. the typical selection mechanism of the other Pareto-based multi-objective

evolutionary algorithms including PESA [43], the predecessor of PESA-II). Pre-260

cisely, a hyper-box is first selected and then the solution to be undergone to

evolutionary operations is randomly chosen from the selected hyper-box. Thus,

highly crowded hyper-boxes do not contribute more solutions than less crowded

ones [15]. This is useful to encourage solutions to cover the whole objective

space, rather than bunch together in one region [42].265

As for the environmental selection process, it consists into updating the

archive, that is choosing the solutions that will compose the archive set in the

next generation. In PESA-II, during the environmental selection process, the

solutions in the internal population are inserted into the archive set one by one,

thus the grid environment updated step by step [15]. A solution is inserted in270

the archive if it is non-dominated within the internal population, and it is non-

dominated by any current member of the archive. Once a solution has entered

the archive, corresponding adjustments of the archive and grid environment are

implemented. Firstly, the members in the archive which the solution dominates

are removed to ensure that only non-dominated individuals exist in the archive.275

Secondly, the grid environment is checked to see whether its boundaries have

changed with the addition or removal of solutions in the archive. Finally, if the

addition of a solution renders the archive overfull, the replacement is performed

according to the density of hyper-boxes. Indeed, an arbitrary individual in the
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most crowded hyper-box will be removed [15].280

An example of environmental selection process is given in Fig. 2. The

individuals A-E in Fig. 2(a) are the candidates to be archived contained in

IP . Fig. 2(b) shows the archiving process of Z. Z is non-dominated in IP

and non-dominated by the current members of EP , hence it deserves to enter

the archive. Initially, since no members of the archive are dominated by Z,285

no individuals are removed. With the insertion of Z, the grid environment

boundaries are updated. However, the archive size is five, so an individual must

be removed. The most crowded hyper-box is that containing B and C, so one

of these individuals is removed arbitrarily (in this case C). Fig. 2(c) shows the

archiving process of Y. Y is non-dominated in IP and non-dominated by the290

current members of EP , hence it deserves to enter the archive. Once Y has

entered the archive, E is removed as it is dominated by Y. The insertion of

Y does not require adjustments of the grid environment boundaries. Fig. 2(d)

shows the archiving process of X. X is non-dominated in IP and non-dominated

by the current members of EP , hence it deserves to enter the archive. Once X295

has entered the archive, A is removed as it is dominated by X. The removal of

A leads to adjustments of the grid environment boundaries.

4.2. The solution encoding

As described in Appendix A, given a training set TR of size n, the solution to

the TSS problem is to detect the smallest set of training instances which allows300

to predict the class label of a new instance with the same accuracy provided

by the original training set TR. Therefore, the search space associated with

the instance selection of TR is composed of all subsets of the set TR. Hence,

a solution of the TSS problem should represent a subset of TR. We encode a

solution as a vector of n bits (one for each instance in the training set TR). A305

bit is set to 1 when the corresponding training instance is included in the subset

of TR.
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Figure 2: An example of the environmental selection in PESA-II [15].
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4.3. Recombination, mutation and restarting

ParetoTSS uses recombination and mutation operators suitable for the bi-

nary encoding. In particular, it uses a modified version of the Heuristic Uniform310

Crossover (HUX) and a modified version of the bit flip mutation. In general,

the HUX crossover works as follows. Once two parents are selected, the HUX

crossover generates two sons by exchanging half of the bits that are different

in the parents. The bit position to be exchanged is randomly determined [44].

Like all the crossover operators, HUX is applied with a certain rate pc. In order315

to improve the reduction rate, we have implemented a modified version of HUX.

In detail, if the selected bit position is on, HUX switches it off, otherwise, it

switches it on according to a probability referred to as probability of inclusion

(denoted as pinclusion).

As for the mutation operator, the bit flip mutation acts independently on320

each bit in a solution and changes the value of the bit (from 0 to 1 and vice

versa) with probability pm. However, in order to improve the reduction rate,

ParetoTSS uses also a modified version of the bit flip mutation. In particular,

we consider two different mutation probabilities: 1) the probability of a 0 to 1

mutation (denoted as pm1) and 2) the probability of a 1 to 0 mutation (denoted325

as pm0). The probability pm1 will be set smaller than the probability pm0 in

order to force the algorithm to obtain higher reduction rates.

It is worth noting that this design choice may lead ParetoTSS to produce

training sets containing no instances (empty training sets), and for which no

information of accuracy and reduction rate can be obtained. In these cases, the330

proposed algorithm uses a Restart operator to randomly add instances from the

original training set to the empty training set with a probability pr, and make

this again a feasible solution for the TSS problem.

4.4. Selecting a solution from the Pareto front

PESA-II, like all Pareto-based approaches, returns a set of non-dominated

solutions found during the search, which is expected to be an approximation to

the true Pareto optimal set. In our case, each of these non-dominated solutions
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represents a set of instances to be used as a reduced data set for the SVM

classifier. Theoretically, none of these solutions is better/worse than any other.

They are equally acceptable solutions. However, having a set of solutions instead

of a single one does not make sense for the TSS problem. Therefore, ParetoTSS

includes a decision-making mechanism to select a single solution from the non-

dominated set. The decision-making mechanism which we use is based on a sum

model. It consists of choosing the solution characterized by the higher sum of

the objective values (being TSS defined as a maximization problem). Formally,

let us consider that, during its evolution, ParetoTSS produces a Pareto front

composed of m solutions, where each one represents a possible reduced training

set S; then, the best solution returned by the algorithm is the one that satisfies

the following expression:

ψ∗ = max
i

(ψi) for i = 1, 2, . . . ,m (4)

where ψ∗ is the score of the best solution and ψi is the score of the i-th reduced

training set computed by the following formula:

ψi = f1i + f2i with i ∈ {1, 2, . . . ,m} (5)

where f1i and f2i are the values, respectively, of the first and second objective335

related to the i-th reduced training set. Fig. 3 shows a plot displaying a Pareto

front composed of six solutions (A, B, C, D, E and F) and the corresponding

solution scores. In details, the Pareto front is displayed in the two-dimensional

plane (f1, f2), whereas, the scores ψi (with i = 1, ..., 6) of solutions are displayed

on the third dimension. The best solution selected by the proposed decision-340

making mechanism is E, i.e. the one with the highest score.

4.5. Pseudo-code of ParetoTSS

Algorithm 1 is the pseudo-code of ParetoTSS. The algorithm takes in inputs

the original training set TR, the size of the PESA-II populationN , the size of the

PESA-II archive N , the crossover rate pc,the probability of inclusion pinclusion,345

the mutation probabilities pm0 and pm1, the restart probability pr and the
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Algorithm 1 Pseudo-code of the proposed algorithm for TSS

1: procedure ParetoTSS(TR, N , N , pc, pinclusion, pm0, pm1, pr, t)

2: g ← 0;

3: IP ← ∅;

4: EP ← ∅;

5: while (i < N) do . Generate randomly an initial population IP of N training sets

6: si= initialize training set(i);

7: evaluate(TR, si, pr);

8: IP ← IP ∪ {si};

9: i = i+ 1;

10: end while

11: i← 0;

12: while (i < N) do . Update the archive EP with training sets contained in IP

13: update archive(EP , N , IPi);

14: i = i+ 1;

15: end while

16: while (t is not satisfied) do . The algorithm evolves until termination criteria t are

reached

17: IP ← ∅;

18: i← 0;

19: while (i < N) do . Generate a new IP by means of evolutionary operators

20: p1,p2= mating selection(EP );

21: if rand(0,1) < pc then

22: p1,p2= modified HUXcrossover(p1,p2,pinclusion);

23: end if

24: p1 = modified BitFlipMutation(p1, pm0, pm1);

25: evaluate(TR, p1, pr);

26: IP ← IP ∪ {p1};

27: i = i+ 1;

28: end while

29: i← 0;

30: while (i < N) do . Update the archive EP with training sets contained in IP

31: update archive(EP , N , IPi);

32: i = i+ 1;

33: end while

34: g ← g + 1;

35: end while

36: Sbest ← decision making procedure(EP );

37: return Sbest; . the best training set is Sbest

38: end procedure

39:

40: procedure Evaluate(TR, s, pr) . Evaluate a training set

41: if s == ∅ then . Apply restart operator if the training set s is empty

42: s← restart operator(s, pr);

43: end if

44: obj1← acc(TR, s); . The first objective is set by following Eq. 2

45: obj2← red(TR, s); . The second objective is set by following Eq. 3

46: end procedure 17



90

95

100

65

70

75

80
0

50

100

150

200
165.3  

A

165.6  

B

168.9  

f
1

C

D

170.7  
172.5  

E

171  

f
2

F

sc
or

e 
ψ

Figure 3: An example to show how ParetoTSS decision making mechanism works. The

solution E is characterized by the highest score, and, as a consequence, it is set as the best

solution to the TSS problem.

termination criteria t. The algorithm generates and evaluates each solution of

an initial internal population (IP) of the training sets randomly selected. Then,

it initializes the external population (EP) to the empty set. Successively, the

algorithm incorporates the non-dominated training sets of IP into EP. At this350

point, the algorithm evolution progresses per iterations. In each iteration, it

deletes the current content of IP, and repeats the following steps until N (the

size of IP) new training sets have been generated: 1) the algorithm selects two

training sets from EP and produces a single training set via crossover, then it

mutates this training set just built up; 2) the algorithm evaluates each training355

sets of IP and, then, it incorporates the non-dominated training sets of IP into

EP. At the end of each iteration, if the termination criteria are not reached,

the new created archive is used to continue the algorithm evolution, otherwise

the algorithm stops and returns as results the training sets contained in EP.

These training sets are undergone to the proposed decision-making mechanism360

to select a single training set to be used for the classification task.
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4.6. Time complexity of ParetoTSS

As all Pareto-based multi-objective optimization algorithms, the time com-

plexity of our approach is dominated by the complexity of the fitness function

and the complexity of the procedure aimed at selecting the non-dominated set365

of solutions. In our approach, the fitness function is represented by the function

named EVALUATE. This function takes as input a candidate solution (a re-

duced training dataset) and compute the objectives described in Section 3.2. In

particular, one of these objectives is the accuracy obtained by the SVM when it

is trained by means of the reduced dataset. As a consequence, the time complex-370

ity of the EVALUATE function is strongly depending on the time complexity

of the SVM, which is known to be O(M2) where M is the number of train-

ing instances. Hence, for each generation, the time complexity related to the

EVALUATE function is O(NM2) where N is the number of solutions (reduced

training datasets). Moreover, the procedure used by PESA-II to select the non-375

dominated set at each generation has a complexity O(mN) [45], where m is the

number of objectives. Consequently, for each generation, the time complexity

of our approach is O(NM2 +mN).

5. Experimental study

The improvements provided by ParetoTSS have been evaluated by means of380

a set of experiments.

5.1. Experimental setup

The experiments involve thirty-six well-known datasets from the UCI Ma-

chine Learning Database Repository including thirty-four datasets with a low/medium

size and two with a larger size (namely banana and phoneme). The main fea-385

tures of all datasets are summarized in Table 1. For each dataset, the name,

the number of instances, the number of attributes and the number of classes are

given. By analyzing the features of the exploited datasets, it is possible to note

that there are not big datasets used in the experiments. This is due to the fact
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that managing big data needs specialized distributed techniques for TSS that390

are beyond the scope of this paper.

In this work, we use John Platt’s Sequential Minimal Optimization (SMO)

algorithm [46] to construct the SVM classifier because it is one of the fastest and

most regularly used optimization algorithms in the context of SVMs. Precisely,

the implementation of SMO used is contained in WEKA [47]. As for the kernel395

function, we use the Radial Basis Function (RBF) kernel with the parameter

γ = 1
2σ2 equal to 0.01 and the cost parameter C set to 1. We use the pairwise

coupling setting to handle multi-class problems. These parameters represent a

default SVM configuration already used in other similar works [23]. The choice

not to tune these parameters is due to our goal of highlighting the benefits400

yielded by the proposed TSS algorithm in terms of itself and without considering

any improvements in classification accuracy due to a given configuration of the

SVM used in its fitness function.

The configuration setting of ParetoTSS is the same in all experiments and

reported in Table 2. These parameters were empirically chosen. The used imple-405

mentation is extracted by jMetal library [48]. The comparison between Pare-

toTSS and state-of-the-art approaches involves two methods: GGA [23] and

SE [37]. These methods represent the state-of-the-art: GGA is the best TSS

technique for SVM known so far among the evolutionary approaches[4] and SE

is the best TSS performer among non-evolutionary ones. The implementation410

of GGA is that provided by the KEEL Software [49] where the exploitation

of the KNN classifier has been replaced by the SMO contained in WEKA. As

for the SE approach, the code made available by its authors has been used.

The parameters of all compared TSS methods are reported in Table 2. For the

state-of-the-art approaches, the used parameter settings are those specified by415

their respective authors as we assume that their choices are optimally made.

However, it is worth noting that an optimal value for the reduction rate, con-

sidered as a parameter in SE (see Section 2), is not specified by the authors.

Therefore, SE has been executed with a range of reduction rates (from 0.01 to

0.99) and the results characterized by the best trade-off between accuracy and420
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Table 1: Datasets characteristics

Dataset Number of Number of Number of

name instances attributes classes

appendicitis 106 7 2

australian 690 14 2

automobile 159 25 6

balance 625 4 3

banana 5,300 2 2

bands 365 19 2

breast 277 9 2

bupa 345 6 2

cleveland 297 13 5

crx 653 15 2

dermatology 358 34 6

ecoli 336 7 8

german 1,000 20 2

glass 214 9 7

haberman 306 3 2

heart 270 13 2

hepatitis 80 19 2

housevotes 232 16 2

iris 150 4 3

led7digit 500 7 10

lymphography 148 18 4

mammographic 830 5 2

monk-2 432 6 2

newthyroid 215 5 3

phoneme 5,404 5 2

pima 768 8 2

saheart 462 9 2

sonar 208 60 2

spectfheart 267 44 2

tae 151 5 3

tic-tac-toe 958 9 2

vehicle 846 18 4

vowel 990 13 11

wine 178 13 3

wisconsin 683 9 2

zoo 101 16 7
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Table 2: Parameters used by all compared TSS methods

Algorithm Parameters

ParetoTSS Evaluations = 10,000, N = 50, N = 40, pc = 1.0,

pinclusion = 0.15, pm0 = 0.05, pm1=0.001, pr = 0.15

GGA Population size = 51, Evaluations = 10,000, pc = 0.6,

pm0 = 0.01, pm1=0.001, Equilibrate factor α = 0.5

SE λ = 0.8, δ = 0.01

reduction have been compared for each dataset. Besides, in order to perform a

fair comparison, ParetoTSS and GGA have been run by using the same number

of fitness evaluations as termination criterion. This value (denoted as simply

Evaluations in Table 2) is set to 10,000 since it is reasonable in terms of the

computational complexity and, at the same time, it allows achieving good per-425

formance. However, it is worth noting that the increasing of the number of the

fitness evaluations can lead to an improvement of both evolutionary algorithms,

but the study of the convergence is out of the scope of this work. All algorithms

are run on a computer HP, Intel Core i7 4.0GHz, 1 GB RAM. All datasets

and implementation codes are available to enable a full reproducibility of the430

experiments1.

5.2. Methods and Metrics for the experimental evaluation

The analysis of the performance of the proposed approach, ParetoTSS, is

carried out though a validation procedure that takes care of the interpolation

as well as the extrapolation. It consists in dividing a dataset into two parts435

with a ratio 80-20%. The first part of data represents the training set and it

is used to perform the classical tenfold cross-validation. Briefly, the tenfold

cross-validation separates data in 10 folds and, every time, a single fold is used

as test data and the remaining ones are used as training data. Due to the

non-deterministic nature of the our proposal, in each one of the ten steps of440

1http://quasar.unina.it/research/publication_extras/journals/KBS2017/

publishedKBSworkspace.zip
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the cross-validation, ParetoTSS is executed three times. Therefore, the average

result over the three trials and the ten steps are considered in the evaluation.

The second part of the dataset (the 20% of the original dataset) is used as

the validation set. Each one of the SVM models obtained by the ten steps of

the cross-validation procedure is tested on the validation set and the average445

result over the ten steps is considered. The overall validation procedure allows

us to evaluate the performance of the proposed approach doubly. Firstly, the

evaluation of the performance of ParetoTSS on the ten test-folds of the cross-

validation ensures that the proposed method works with different combinations

of the training set and takes care of the interpolation. Secondly, the evaluation450

of the performance of ParetoTSS on the validation set makes sure that even

the extrapolation is taken care of since the validation set is never seen by the

proposed model at all. This validation procedure has been chosen because it

allows to give an evaluation of performance of the proposed method as realistic

as possible.455

The performance of ParetoTSS is evaluated through two measures: the ac-

curacy (ACC ) and the reduction rate (RED). In general, the first measure

represents the number of successful hits relative to the total number of classifi-

cations performed by the SVM. As for ParetoTSS, it represents the accuracy of

the SVM trained using the reduced set computed by ParetoTSS. This measure460

has been chosen because it is the most commonly used metric for assessing the

performance of classifiers [50]. The reduction rate, instead, represents the num-

ber of instances in the training set selected by ParetoTSS to be removed relative

to the total number of instances contained in the original training set. It is a

mandatory measure to be considered during the evaluation of TSS methods.465

Apart from the evaluation of the performance of the ParetoTSS, the ex-

periments aim at comparing the proposed approach with SVM without pre-

processing and with other TSS techniques representing the state-of-the-art.

Both comparisons have been carried out by performing the ten-fold cross-validation

discussed above. This choice has been made to perform comparisons that are470

not depending on the data contained in the training set. Indeed, as described,
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the cross-validation allows to run each method with different combinations of

training and test data sets. As for the evaluation measures, the accuracy is used

during both comparisons; instead, the reduction rate is used only in the compar-

ison between ParetoTSS and the state-of-the-art approaches because it is not475

computable for the SVM without pre-processing. Apart from the accuracy and

the reduction rate, the comparison between ParetoTSS and the state-of-the-

art approaches involves also a trade-off measure denoted as Accuracy-Reduction

balance (ACC*RED). It represents the product of accuracy and reduction rate.

As described in [6], this product is a fair estimator of how good a TSS method480

is considering a trade-off of reduction and success rate of classification, and as

a consequence, it is useful for comparing TSS methods overall.

Finally, to verify the significance of the obtained results, a set of non-

parametric tests has been used as recommended in [51]. In particular, we use

the well-known Wilcoxon’s signed rank [52] test for pairwise comparisons and485

the Friedman Aligned Ranks test [53] followed by the Finner’s test [54] for the

multiple comparisons. Among the several statistical tests useful for multiple

comparisons, we have chosen the Friedman Aligned Ranks test as it is more

suitable when comparisons involve a low number of algorithms (no more than

4 or 5) [55]. As for the Finner’s test, the use is recommended in [55] for its490

good trade-off between performance and ease of understanding. Details about

the exploited statistical tests can be found in [55][56].

In the next sections, details about the results of the performed experiments

are discussed.

5.3. Experimental session I: evaluating ParetoTSS performance495

When ParetoTSS is run, it computes a sub-optimal Pareto front for each

one of the considered datasets. Figs. 4(a)-(f) shows Pareto fronts obtained by

a single run on some of the considered datasets (Pareto fronts for all datasets
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can be downloaded online2). Then, by means of the proposed decision-making

mechanism, ParetoTSS selects a single solution from the obtained Pareto front.500

This solution represents a reduced training set for the SVM. In order to evaluate

the quality of the obtained reduced training set, and, as a consequence, the per-

formance of ParetoTSS, we have performed the validation procedure described

in the previous section. Table 3 shows the results of the validation procedure

in terms of the accuracy and the reduction rate obtained by ParetoTSS. In505

particular, we denote with accuracy on training, the average of the accuracy

values obtained by the SVM trained with the reduced set computed by Pare-

toTSS and used to classify the training sets related to the performed ten-fold

cross-validation. Instead, the accuracy on testing represents the average of the

accuracy values obtained by the SVM trained with the reduced set computed by510

ParetoTSS and used to classify the testing sets related to the performed ten-fold

cross-validation. Finally, accuracy on validation represents the average of the

accuracy values obtained by the SVM trained with the reduced set computed

by ParetoTSS and used to classify the validation set.

By analyzing Table 3, it is possible to make some considerations. Firstly, our515

proposal does not lead to the overfitting since there is a low difference (about the

4% on average) between the accuracy values on training set and those on testing

data. Secondly, our approach for TSS works in a good way also on data never

seen before. Indeed, the difference between the accuracy values on testing set

and those on validation set is not significant at the 99% confidence level (after520

applying the Wilcoxon’s signed rank test). Finally, the proposed approach is

characterized by a very high reduction rate value, more than 97% on average.

2http://quasar.unina.it/research/publication_extras/journals/KBS2017/

paretoFrontPlots.zip
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Figure 4: Examples of Pareto Fronts obtained by ParetoTSS for some of the considered

datasets
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Table 3: Performance of the proposed approach. The accuracy and the reduction rate are

reported in percentage.

Accuracy on training Accuracy on testing Accuracy on validation Reduction rate

appendicitis 89.241 87.083 91.364 97.354

australian 88.298 85.811 85.29 98.235

automobile 54.999 43.077 53.125 96.035

balance 88.17 87.067 88.747 99.104

banana 62.416 61.95 62.638 99.749

bands 69.876 65.126 61.644 98.364

breast 77.728 73.814 77.917 98.576

bupa 70.746 68.311 70.097 98.43

cleveland 62.339 54.42 57.556 98.453

crx 88.023 85.379 82.901 98.07

dermatology 94.833 92.41 90.509 97.682

ecoli 78.453 72.953 78.873 97.637

german 76.069 72.292 70.417 98.657

glass 60.621 53.693 59.07 97.336

haberman 76.032 72.122 70.968 99.18

heart 87.055 84.286 80.679 97.634

hepatitis 89.515 83.175 82.292 95.434

housevotes 96.957 93.304 90.638 97.417

iris 97.006 95.556 94.111 96.389

led7digit 72.583 69.25 67.833 97.324

lymphography 84.086 75.051 85.444 95.701

mammographic 85.196 84.233 84.779 99.297

monk-2 87.912 86.675 85.594 98.594

newthyroid 95.586 94.978 93.721 98.062

phoneme 77.93 77.193 79.019 99.813

pima 78.025 75.805 73.636 99.294

saheart 73.742 69.269 71.434 98.695

sonar 80.811 73.664 74.921 95.36

spectfheart 80.299 79.098 77.654 99.339

tae 56.512 50 49.785 95.833

tic-tac-toe 73.934 70.926 68.472 97.776

vehicle 56.355 52.703 59.137 99.069

vowel 33.974 27.91 30.135 98.719

wine 96.662 92.508 95.093 96.4

wisconsin 97.741 96.819 96.569 99.566

zoo 92.685 90 90.476 91.62

Average 78.678 74.942 75.904 97.783
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5.4. Experimental session II: evaluating ParetoTSS improvements on SVM clas-

sification

In this section, we show improvements to the SVM classification provided525

by the application of ParetoTSS as TSS technique. In detail, as already de-

scribed, the benefits of our approach are: 1) the computational complexity of

SVM classification is decreased thanks to the reduction of the instances in the

training data and 2) the accuracy of SVM can be improved thanks to the re-

moval of wrong information in training data. To verify the first benefit, we530

compare the time of classification of a new instance when SVM is trained on

the reduced training set computed by ParetoTSS (denoted simply ParetoTSS

from now on) and when SVM is trained with the original dataset (denoted as

simply SVM from now on). To verify the second benefit, instead, we com-

pare the accuracy values between ParetoTSS and SVM. Table 4 presents the535

results obtained by the SVM and ParetoTSS over all the considered datasets

in terms of both time of classification and accuracy. By analysing this table,

one can to note that ParetoTSS improves the accuracy of SVM in 31 out of 36

datasets and outperforms SVM in all datasets in terms of the time of classifi-

cation. Moreover, ParetoTSS is characterized by the highest average accuracy540

with a relative improvement on SVM of about 15% and by the lowest average

time of the classification with a relative improvement on SVM of about 97%.

In order to verify the significance of these results, we performed two statistical

experimental sessions using the Wilcoxon’s signed rank test by considering as

samples, in the first one, the accuracy values and, in the second one, the times of545

the classification reported in Table 4. The p-values computed by the Wilcoxon’s

test are equal to 2.3290 · 10−6 and 8.766 · 10−8, respectively. Therefore, it is

possible to state that ParetoTSS statistically improves SVM classification time

and accuracy at the 99% confidence level.
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Table 4: Comparison between SVM trained on the reduced training data produced by Pare-

toTSS (denoted simply as ParetoTSS) and SVM trained on the original training data (denoted

simply as SVM). The accuracy is in percentage and the time of the classification is reported

in seconds.

ParetoTSS SVM

Dataset Accuracy Classification time Accuracy Classification time

appendicitis 87.083 0.00833 78.194 0.02222

australian 85.811 0.00302 85.87 0.07974

automobile 43.077 0.0265 31.731 0.35385

balance 87.067 0.00267 86.2 0.07

banana 61.95 0.00189 55.071 0.33184

bands 65.126 0.00226 65.08 0.04793

breast 73.814 0.00758 71.522 0.08142

bupa 68.311 0.00123 56.548 0.03267

cleveland 54.42 0 52.88 0.09312

crx 85.379 0.00893 86.963 0.16665

dermatology 92.41 0.01285 81.441 0.35665

ecoli 72.953 0.00494 42.536 0.09316

german 72.292 0.00917 69.75 0.37

glass 53.693 0 37.516 0.06438

haberman 72.122 0 74.533 0.0245

heart 84.286 0.00317 83.853 0.03247

hepatitis 83.175 0 84.762 0.03333

housevotes 93.304 0.00185 92.398 0.02164

iris 95.556 0.00556 56.667 0.05

led7digit 69.25 0.0125 55.75 0.4425

lymphography 75.051 0 74.621 0.04318

mammographic 84.233 0.001 80.265 0.05421

monk-2 86.675 0.00193 80.891 0.04336

newthyroid 94.978 0 70.948 0.00588

phoneme 77.193 0.0017 70.923 0.30048

pima 75.805 0.00055 65.299 0.06354

saheart 69.269 0.0027 64.767 0.04339

sonar 73.664 0.01029 66.25 0.09596

spectfheart 79.098 0.00317 79.892 0.05152

tae 50 0.00278 30 0.025

tic-tac-toe 70.926 0.00478 66.965 0.18667

vehicle 52.703 0.00693 36.396 0.48516

vowel 27.91 0.01684 7.195 1.51389

wine 92.508 0.0119 38.667 0.04238

wisconsin 96.819 0.00122 95.96 0.03667

zoo 90 0.00833 63.75 0.075

Average 74.942 0.0052 65.057 0.162129



5.5. Experimental session III: comparing ParetoTSS with state-of-the-art ap-550

proaches

In this section, we show the results of the comparison of the proposed ap-

proach with GGA and SE. The comparison is carried out in terms of accuracy,

reduction rate and accuracy-reduction balance. For sake of completeness, also

the running time, i.e, the average elapsed time in seconds to complete a run of555

a TSS method, is considered in the comparison. However, it is worth noting

that the first three measures are the most relevant to evaluate how good is a

TSS algorithm. Indeed, the training set selection is a task performed a single

time on a training set, therefore, the running time of TSS algorithms has a

limited effect. Instead, the classification task using the reduced training set is560

an operation repeated indefinitely. Hence, the accuracy, the reduction rate and

the accuracy-reduction balance are measures more relevant since they directly

affect the SVM classification in terms of quality and time complexity.

Table 5 presents the results obtained by the compared TSS methods over

the considered datasets for the first three metrics, whereas, Table 6 reports the565

running time values.

By analyzing the results reported in Table 5 related to the accuracy, Pare-

toTSS outperforms GGA in 26 out of 36 datasets and SE in 33 out of 36. As

for the average accuracy, ParetoTSS is characterized by the highest average ac-

curacy. Precisely, ParetoTSS improves the accuracy of GGA by 4.5% and the570

one of SE by 26.60%.

From this empirical analysis, ParetoTSS emerges to be the best performer

in terms of accuracy. In order to statistically verify this result, we perform a

statistical multiple comparison procedure composed of the Friedman Aligned

Rank test and the Finner’s test as described above. The samples used in the575

statistical analysis are the accuracy values obtained by all TSS techniques over

all datasets. Table 7 shows the ranking obtained by all compared TSS techniques

during the Aligned Friedman’s test. As highlighted in bold, the algorithm with

the best ranking (the lowest value) for the accuracy metric is ParetoTSS. The

computed Aligned Friedman’s statistic is 43.84. Since it is greater than the580
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Table 5: Results obtained by all TSS methods over all considered datasets. RED denotes re-

duction rate achieved, ACC denote the accuracy obtained in test data, ACC*RED correspond

to the accuracy-reduction balance.

Dataset
ParetoTSS GGA SE

ACC (%) RED (%) ACC*RED ACC (%) RED (%) ACC*RED ACC (%) RED (%) ACC*RED

appendicitis 87.083 97.354 0.847788 85.556 97.091 0.830672 78.194 94.84 0.741592

australian 85.811 98.235 0.842964 86.773 88.125 0.764687 83.133 70.028 0.582164

automobile 43.077 96.035 0.41369 48.974 91.779 0.449478 25.962 93.786 0.243487

balance 87.067 99.104 0.862869 86.2 96.467 0.831546 76.2 95.578 0.728304

banana 61.95 99.749 0.617945 55.071 93.158 0.51303 55.071 99.921 0.550275

bands 65.126 98.364 0.640605 59.264 99.277 0.588355 65.08 98.097 0.638415

breast 73.814 98.576 0.727629 71.976 98.391 0.708179 71.522 97.034 0.694007

bupa 68.311 98.43 0.672385 69.193 98.712 0.683018 56.548 92.029 0.520406

cleveland 54.42 98.453 0.535781 53.768 97.234 0.522808 52.88 97.75 0.516902

crx 85.379 98.07 0.837312 83.135 90.379 0.751366 81.789 72.073 0.589478

dermatology 92.41 97.682 0.902679 65.69 89.398 0.587255 45.505 97.708 0.44462

ecoli 72.953 97.637 0.712291 72.308 96.808 0.699999 47.365 93.615 0.443407

german 72.292 98.657 0.713211 70 95.847 0.670929 69.75 99.722 0.695561

glass 53.693 97.336 0.522626 53.627 94.738 0.508051 36.928 95.127 0.351285

haberman 72.122 99.18 0.715306 73.75 99.089 0.730781 74.533 99.135 0.738883

heart 84.286 97.634 0.822918 81.926 96.346 0.789324 60.26 94.65 0.570361

hepatitis 83.175 95.434 0.793772 84.762 98.264 0.832905 84.762 97.402 0.825599

housevotes 93.304 97.417 0.90894 91.404 96.696 0.88384 71.959 90.45 0.650869

iris 95.556 96.389 0.921055 94.167 94.167 0.886742 50 77.87 0.38935

led7digit 69.25 97.324 0.673969 46.75 93.028 0.434906 34.5 21.833 0.075324

lymphography 75.051 95.701 0.718246 72.803 95.108 0.692415 51.97 96.516 0.501594

mammographic 84.233 99.297 0.836408 82.834 90.076 0.746136 62.775 92.888 0.583104

monk-2 86.675 98.594 0.854563 77.387 97.487 0.754423 58.563 99.388 0.582046

newthyroid 94.978 98.062 0.931373 92.516 98.062 0.90723 70.948 98.256 0.697107

phoneme 77.193 99.813 0.770486 70.923 93.459 0.662839 70.923 98.913 0.701521

pima 75.805 99.294 0.752698 73.096 98.335 0.71879 65.299 98.896 0.645781

saheart 69.269 98.695 0.68365 71.539 98.555 0.705053 64.767 96.929 0.62778

sonar 73.664 95.36 0.70246 69.191 95.045 0.657626 53.566 96.52 0.517019

spectfheart 79.098 99.339 0.785752 81.169 99.008 0.803638 79.892 99.322 0.793503

tae 50 95.833 0.479165 49.167 93.426 0.459348 40.833 90.833 0.370898

tic-tac-toe 70.926 97.776 0.693486 72.312 93.328 0.674873 66.965 39.676 0.26569

vehicle 52.703 99.069 0.522123 35.823 92.735 0.332205 28.244 82.89 0.234115

vowel 27.91 98.719 0.275525 19.959 93.715 0.187046 10.079 93.35 0.094087

wine 92.508 96.4 0.891777 96.476 94.366 0.910405 48.667 88.108 0.428795

wisconsin 96.819 99.566 0.963988 97.431 93.529 0.911262 94.323 70.9 0.66875

zoo 90 91.62 0.82458 85 90 0.765 41.25 90.417 0.37297

Average 74.942 97.783 0.733 71.72 95.034 0.682 59.195 89.235 0.530
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Table 6: Running time in seconds for all considered TSS techniques over all datasets.

Dataset name ParetoTSS GGA SE

appendicitis 18.037 33.073 0.01

australian 84.324 174.12 0.109

automobile 129.407 390.209 0.055

balance 92.491 219.445 0.084

banana 909.426 4099.035 0.043

bands 40.534 47.421 0.057

breast 36.073 52.559 0.038

bupa 35.838 48.022 0.047

cleveland 95.669 247.269 0.069

crx 146.955 280.827 0.077

dermatology 291.715 814.669 0.051

ecoli 206.011 481.249 0.056

german 209.865 588.593 0.078

glass 123.59 303.14 0.022

haberman 22.768 32.446 0.038

heart 37.346 61.065 0.05

hepatitis 20.384 5.355 0.019

housevotes 36.118 53.148 0.028

iris 64.949 123.407 0.011

led7digit 575.629 2166.615 0.005

lymphography 56.192 95.136 0.031

mammographic 57.688 160.615 0.071

monk-2 45.581 71.531 0.06

newthyroid 56.785 109.613 0.038

phoneme 1364.14 6336.406 0.73

pima 57.286 110.02 0.064

saheart 43.113 65.396 0.091

sonar 50.039 71.322 0.147

spectfheart 20.54 35.271 0.126

tae 67.454 119.538 0.011

tic-tac-toe 183.271 384.517 27.563

vehicle 275.894 915.387 0.137

vowel 1346.284 4508.354 0.05

wine 73.789 131.027 0.02

wisconsin 53.366 111.057 0.075

zoo 185.7 455.924 0.009

Average 197.618 663.967 0.838
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Table 7: Friedman’s test ranking for accuracy, reduction rate and accuracy-reduction balance.

algorithm Rank for ACC Rank for RED Rank for ACC*RED

ParetoTSS 31.49 33.14 29.4

GGA 45.14 56.28 46.5

SE 86.88 74.08 87.6

Table 8: Finner’s test for accuracy metric. The control algorithm is ParetoTSS

i algorithm z value unadjusted p-value 1− (1− α)
i

k−1

2 GGA 1.8494 0.0644 0.1

1 SE 7.5028 6.2460 · 10−14 0.05132

critical value for two degrees of freedom 4.605 (to be considered being three

the number of compared algorithms), the null hypothesis is rejected and it is

possible to assess that there is a significant difference between at least two of the

compared algorithms in terms of accuracy. Attending to this result, a post-hoc

statistical analysis, the Finner’s test, is needed to conduct pairwise comparisons585

to detect concrete differences among compared algorithms. ParetoTSS is chosen

as control algorithm in the Finner’s test having obtained the best ranking in the

Aligned Friedman’s test. All data computed by the Finner’s test for the accuracy

measure are displayed in Table 8. By analyzing this table, it is possible to state

that ParetoTSS statistically outperforms GGA and SE at the 90% confidence590

level in terms of accuracy.

As for the reduction rate, from the results reported in Table 5, it emerges

that ParetoTSS outperforms GGA in 32 out of 36 datasets and SE in 28 out

of 36. As for the average, ParetoTSS is characterized by the highest average

reduction rate. Precisely, ParetoTSS improves the reduction rate of GGA by595

2.9% and of SE by 9.6%.

Therefore, from this empirical analysis, ParetoTSS is proven to be the best

performer also in terms of reduction rate. To verify this empirical result, we

performed a statistical multiple comparison procedure also for the reduction

rate metric. The samples used in the statistical analysis are the reduction rate600

values obtained by all TSS techniques over all datasets shown in the Table 5.
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Table 9: Finner’s test for reduction rate metric. The control algorithm is ParetoTSS.

i algorithm z value unadjusted p-value 1− (1− α)
i

k−1

2 GGA 3.1343 1.7225 · 10−3 0.1

1 SE 5.5462 2.9192 · 10−4 0.05132

Table 7 shows the ranking obtained by all compared TSS techniques during the

Aligned Friedman’s test. As highlighted in bold, the algorithm with the best

ranking (the lowest value) for reduction rate metric is ParetoTSS. The computed

Aligned Friedman’s statistic is 22.34. Since it is greater than the critical value605

4.605, the null hypothesis is rejected and it is possible to assess that there is a

significant difference between at least two of the compared algorithms in terms

of reduction rate. With arguments similar to the one before, we performed the

Finner’s test also for the reduction rate measure. By analyzing data in Table

9, it results that the Finner’s test rejects all the hypotheses. Hence, ParetoTSS610

statistically outperforms GGA and SE at the 90% confidence level in terms of

reduction rate.

Finally, as for the accuracy-reduction balance, ParetoTSS outperforms GGA

in 29 out of 36 datasets and SE in 33 out of 36 datasets. Moreover, ParetoTSS

improves the average accuracy-reduction balance of GGA by 7.48% and of SE615

by 38.3%.

To complete this comparison, we performed the statistical multiple compar-

ison procedure. The samples used in the statistical analysis are the accuracy-

reduction balance values obtained by all TSS techniques over all datasets. Table

7 shows the ranking obtained by all compared TSS techniques during the Aligned620

Friedman’s test. As highlighted in bold, the algorithm with the lowest ranking

for the accuracy-reduction balance is ParetoTSS. The computed Aligned Fried-

man’s statistic is 46.97. Since it is greater than the critical value 4.605, we

performed the Finner’s test. ParetoTSS is chosen as control algorithm in the

Finner’s test having obtained the best ranking in the Aligned Friedman’s test.625

Table 10 shows all data computed by the Finner’s test for the accuracy-reduction

balance measure. By analyzing this data, the Finner’s procedure rejects all the

34



Table 10: Finner’s test for the accuracy-reduction balance metric. The control algorithm is

ParetoTSS.

i algorithm z value unadjusted p-value 1− (1− α)
i

k−1

2 GGA 2.3159 0.0206 0.1

1 SE 7.8829 3.2 · 10−15 0.05132

hypotheses. Therefore, it is possible to state that ParetoTSS statistically out-

performs GGA and SE at the 90% confidence level in terms of trade-off between

accuracy and reduction rate.630

From the above analysis ParetoTSS results to be superior to all state-of-

the-art approaches with respect to the accuracy-reduction balance. Unfortu-

nately this comes with a higher computational time with respect to the not-

evolutionary algorithm. Indeed, as shown in Table 6, ParetoTSS algorithm is

remarkably slower than SE. This computational time difference is mainly due635

to the fact that SE reduces on the original training set by means of an iterative

approach whose computational time is proportional to the number of instances

multiplied by the number of attributes, whereas, ParetoTSS acts on a collection

of potential reduced training sets and, for each algorithm evolution, it performs

a computationally complex set of operations, i.e., crossover, mutation and fitness640

evaluation. However, ParetoTSS succeeds to be faster than GGA. This superior-

ity in computational time performance is mainly due to the better performance

obtained by ParetoTSS in computing fitness function evaluations than GGA.

For both algorithms, each fitness function evaluation generates an SVM model

starting from a reduced version of the original training set and, successively, it645

tests this model on the original training set. As aforementioned, the computa-

tional effort necessary to generate and test the SVM model strongly depends

upon the size of the training set. As a consequence, if an evolutionary algorithm

is able to quickly reduce the size of the training set in the solution pool, it will

be able to quickly compute its fitness function evaluations. Now, as highlighted650

by the Table, ParetoTSS yields better reduction rate performance than GGA

and, as a consequence, its fitness evaluations will be faster than those performed
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by GGA. In order to statistically validate the best performance of ParetoTSS

in running time with respect to GGA, we have performed a Wilcoxon’s signed

rank test by considering as sample data the running time values over all datasets655

held by only these algorithms. The computed p-value is 1.3361 · 10−7. Hence,

it is possible to state that ParetoTSS is statistically faster than GGA at 99%

confidence level.

6. Conclusions

This paper presents ParetoTSS, a TSS technique for the SVM mainly based,660

for the first time, on a Pareto-based multi-objective evolutionary approach such

as PESA-II. After a set of experiments, we can conclude that the proposed ap-

proach is characterized by a high reduction rate, a good capability to work with

data never seen before and the ability of not leading to the overfitting. More-

over, its application allows enhancing SVM classification accuracy and efficiency665

and improving on state-of-the-art TSS techniques.

The good performance shown by ParetoTSS opens new research activities in

the field of the application of Pareto-based approaches to the TSS problem. As

further research we are working to analyze the performance of different Pareto-

based multi-objective approaches in terms of measures such as hypervolume670

and ∆-index [57] specific for comparisons among Pareto-based approaches. Be-

sides, another interesting study will be to investigate different decision-making

mechanisms for selecting a solution in Pareto fronts obtained by the studied

multi-objective approaches.
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Appendix A. Support Vector Machine

SVM is a very effective method for classification and regression. Different680

from unsupervised techniques [58][59][60], SVM works by building a model based

on training data which predicts the class for new data (called test data). In order

to achieve this goal, SVM uses a discriminant hyperplane. The selected hyper-

plane is the one that maximizes the distance (the margin) from the so-called

support vectors, i.e., the data points closest to the hyperplane (see Fig. A.5)685

[61]. Therefore, the solution to the classification problem is based only on these

data points at the margin. An SVM classification using linear decision bound-

aries is known as linear SVM. However, the data is often not linearly separable

[4]. In order to overcome this problem, a non-linear extension of SVM can be

achieved by using the kernel trick [62]. This mechanism consists in implicitly690

mapping the data to another space, generally of much higher dimensionality,

using a kernel function K(x, y). Well-known kernels are:

• Linear kernel:

K(x, y) = x ∗ y

where x and y are vectors in the input space, i.e. vectors of features;

• Polynomial kernel:

K(x, y) = (x ∗ y + 1)p

where x and y are vectors in the input space, i.e. vectors of features, and

p is the degree of the polynomial;695

• Radial Basis Function (RBF) kernel:

K(x, y) = e−
||x−y||2

2σ2

where x and y are vectors in the input space, i.e. vectors of features, and

σ is a free parameter.

Apart from the parameters related to the kernel functions, SVM design requires

the setting of a regularization parameter, named C, used as a trade-off between
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allowing training errors and forcing rigid margins. The choice of this parameter700

is crucial because large values for C lead to few training errors, but, on the other

hand, it may create a model overfitting the training data.

Figure A.5: SVM optimal hyperplane description [61]

Natively, SVM deals with binary problems. In the literature, some method-

ologies have been introduced to allow SVM to address multi-class problems.

A traditional approach is the pairwise coupling [63][64], where the multi-class705

problem is decomposed in all possible two-class problems and the majority vot-

ing principle is applied [4].
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