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Abstract— A hierarchical key assignment scheme is a method
to assign some private information and encryption keys to a set
of classes in a partially ordered hierarchy, in such a way that
the private information of a higher class can be used to derive
the keys of all classes lower down in the hierarchy. Sometimes,
it is necessary to make dynamic updates to the hierarchy,
in order to implement an access control policy which evolves
with time. All security models for hierarchical key assignment
schemes have been designed to cope with static hierarchies and
do not consider the issue of performing dynamic updates to the
hierarchy. In this paper, we define the concept of hierarchical key
assignment schemes supporting dynamic updates, formalizing the
relative security model. In particular, we provide the notion of
security with respect to key indistinguishability, by considering
the dynamic changes to the hierarchy. Moreover, we show how
to construct a hierarchical key assignment scheme supporting
dynamic updates, by using as a building block a symmetric
encryption scheme. The proposed construction is provably secure
with respect to key indistinguishability, and provides efficient key
derivation and updating procedures, while requiring each user
to store only a single private key.

Index Terms— Access control, key assignment, provable
security, dynamic structures, adaptive adversary.

I. INTRODUCTION

THE access control problem deals with the ability
to ensure that only authorized users of a computer sys-

tem are given access to some sensitive resources. According
to their competencies and responsibilities, users are organized
in a hierarchy formed by a certain number of disjoint classes,
called security classes. A hierarchy arises from the fact
that some users have more access rights than others. In the
real world, there are several examples of hierarchies where
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access control is required. For example, within a hospital
system, doctors can access data concerning their patients
such as diagnosis, medication prescriptions, and laboratory
tests, whereas researchers can be limited to consult anony-
mous clinical information for studies. Similar cases abound
in other areas, particularly in the government and military
ones.

Sometimes, it is necessary to make dynamic updates to
the hierarchy, in order to implement an access control policy
which evolves over time. For example, within a hospital
system, whenever a new doctor is hired, it is necessary to
assign him to a certain security class. Similarly, whenever a
doctor retires, we need to remove him from the correspond-
ing security class. The above situations, concerning single
individuals, may be extended to the case where an entire
security class needs to be inserted or deleted in the hierarchy.
Moreover, the relationships between the classes could change
over time. For example, in a complex enterprise security
system, an entire class of users with a different security
profile may be added as a consequence of the acquisition
of a new company or branch, or similarly, the role and
mission of an entire company sector may change after a
fusion between enterprises, resulting in the need of redefin-
ing the structure of the access control hierarchy through
the modification of several dependencies among the existing
classes.

A hierarchical key assignment scheme is a method for
assigning an encryption key and some private information to
each class in the hierarchy. The encryption key will be used
by each class to protect its data by means of a symmetric
cryptosystem, whereas, the private information will be used
by each class to compute the keys assigned to all classes
lower down in the hierarchy. This assignment is carried out
by a central authority, the Trusted Authority (TA), which is
active only at the distribution phase. Akl and Taylor [1]
first proposed an elegant hierarchical key assignment scheme.
In their scheme each class is assigned a key that can be
used, along with some public parameters generated by the
central authority, to compute the key assigned to any class
lower down in the hierarchy. Many researchers have sub-
sequently proposed schemes that either have better perfor-
mances or allow insertion and deletion of classes in the
hierarchy (e.g., [2]–[9]).

Atallah et al. [10] first addressed the problem of
formalizing security requirements for hierarchical key
assignment schemes and proposed two different notions:
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security against key recovery and with respect to key
indistinguishability. Informally speaking, the former captures
the notion that an adversary should not be able to compute
a key to which it should not have access, while in the
latter, the adversary should not even be able to distinguish
between the real key and a random string of the same length.
Different constructions satisfying the above defined notions
of security were subsequently proposed in [11]–[15]. Freire
et al. [16] proposed new security definitions for hierarchical
key assignment schemes. Such definitions, called security
against strong key recovery and security with respect to strong
key indistinguishability, provide the adversary with additional
compromise capability. Freire et al. showed how the notions of
security against key recovery and against strong key recovery
are separated. On the other hand, in [17] it has been proven
that security with respect to strong key indistinguishability
is not stronger than the one with respect to key indistin-
guishability, thus establishing the equivalence between such
two security notions. A similar result has been shown in
the unconditionally secure setting [18]. Other works in this
setting can be found in [19]–[21]. Several proposals, e.g., [22]–
[29] extended the model proposed in [10] to schemes satis-
fying additional time-dependent constraints. A more general
scenario where the access control is not only hierarchical,
but also shared between different classes has been recently
considered for hierarchical key assignment schemes [30], [31].
Other approaches have been proposed to deal with hierarchical
access control in more specific scenarios, as for example in the
field of data outsourcing. Damiani et al. [32] introduced the
problem of access control enforcement in database outsourced
scenarios and proposed a solution based on selective encryp-
tion, which exploits hierarchical key derivation methods.
Afterwards, in order to support policy updates, di Vimercati
et al. [33] proposed a solution based on selective encryption,
for the enforcement of access control and the management
of its evolution. Finally, in the same line of related work,
Blundo et al. [34] proposed a heuristic approach minimizing
the number of keys to be stored by the system and distributed
to users. Similarly to [32] and [33], this approach is efficient
and it is based on a key derivation graph. However, in general,
all the formal security models proposed so far consider an
operational scenario which is fixed and immutable. More pre-
cisely, the adversary is not allowed to make any changes to the
hierarchy, which is fixed and chosen at the time of the attack.
We remark that this fact represents an important limitation,
since the existing models are not able to characterize several
scenarios which may arise in many operating environments.

A. Motivating Examples and Discussion

Advances in wireless communication and electronics have
enabled the development of User-Centric Networks (UCNs),
in which the highly nomadic lifestyles of end-users, along
with the strong entanglement between society and technol-
ogy, have caused the birth of community networks, where
users have very often an active role in dynamically sharing
Internet access, as well as in sharing access to resources.
Again, consider the emerging Internet of Things (IoT)

technology, which provides wearable devices, home appliances
and software with the opportunity to share and communicate
information over the Internet. Since the shared data may
be sensitive, preserving the security of such data is a main
concern. More precisely, since IoT enables a constant transfer
and sharing of data among things and users, in such a highly
dynamic sharing environment access control and authorization
are essential to ensure secure communication. We stress that
the access to resources in this context presents a dynamic
and multi-level behaviour. For example, regular membership
could change, due to new users that join the group and active
members that leave the group for membership expiration,
i.e., “pre-determined” leaves, as well as because of exceptional
active member leaves, e.g., in the case of explicit membership
revocation, i.e., “unpredictable” leaves. It is easy to observe
that ensuring access control in environments where not only
users, but also things could be authorized to interact with the
system, is a main concern. Moreover, a challenge in IoT is
the control of the information collected and shared by mobile
devices, which are increasingly small and pervasive, e.g.,
RFID or micro/nano sensors. In most cases, such devices are
wirelessly connected and accessible, thus the challenge is to
ensure that the information they collect and store are accessed
by only authorized users. For example, the information col-
lected by the body sensors applied to an elderly person should
not be accessible by other persons apart from the doctor.
Again, a user might be willing to share location information
with family and friends to make the information available in
aggregated form for improving the public transport, but such
a user might not want the information will be used by other
third-party service providers. Notice that though single pieces
of information, i.e., single measurements, might not represent
a noticeable issue for owners of IoT devices, however, since
these devices generate data continuously, it is easy to observe
that unauthorized access to such wealth of data can cause
serious problems and can be used to damage data owners and
maybe others. Therefore, it is essential to protect the access
to IoT data, as well as to enable the access to data generated
by other IoT devices, while preventing the use of data in
unauthorized or undesired ways. Finally, in the context of
smart cities, IoT hubs act as data aggregators and focal points,
where each hub supports not only access to infrastructure
data, but also participatory sensing and crowd sourced data
in which city employees and citizens contribute directly to the
data infrastructure of a city.

As it can be easily noticed from above considerations, it is
necessary to extend and improve the existing security models,
by providing the adversary with further attack capabilities.
That is, the adversary should be given the possibility of
performing a polynomial number of arbitrary changes to the
hierarchy to reflect the dynamic nature of some operational
scenarios. In particular, such changes should emulate as
closely as possible all the attacks that can be performed in the
real world. As a consequence, to deal with the aforementioned
dynamic scenarios, several schemes have been proposed in
the literature, e.g., [2], [5], [6], [10], [11], [14], [35]–[40].
However, it is important to emphasize that though each of them
has its own characteristics and scenarios of application, all the
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schemes proposed so far lack of a formal security proof. More
precisely, the security of those dynamic schemes is assessed
only by means of informal and empirical evaluations. The
reason is that all the security models proposed in the state
of the art, namely, [10], [16], [25], are not able to manage
changing and dynamic situations.

B. Contributions

In this work we consider hierarchical key assignment
schemes supporting dynamic updates. We first propose a
new security model which extends those that have been
defined in the literature. In particular, we extend the notion of
security with respect to key indistinguishability provided by
Atallah et al., to address the further challenges introduced
by the updates to the hierarchy. In this way, we provide the
adversary with the ability to emulate all operations that can
be performed in a real networking context. We remark that
regardless of the particular characteristics of a given scheme,
our model turns out to be essential to formally prove the
security of such a scheme. Afterwards, we show how to
construct a hierarchical key assignment scheme supporting
dynamic updates, by using as a building block a symmetric
encryption scheme. The proposed construction is provably
secure with respect to key indistinguishability, provides effi-
cient key derivation and updating procedures, while requiring
each user to store only a single private key.

C. Organization

The paper is organized as follows. In Section II we
formalize the concept of hierarchical key assignment scheme
supporting dynamic updates, in particular by focusing on
the types of updates as well as on the security notions.
In Section III we show how to construct a hierarchical key
assignment scheme which supports dynamic updates, by using
as a building block a symmetric encryption scheme. Finally,
in Section IV we conclude the paper.

II. HIERARCHICAL KEY ASSIGNMENT SCHEMES

WITH DYNAMIC UPDATES

Consider a set of users divided into a number of disjoint
classes, called security classes. A security class can represent
a person, a department or a user group in an organization.
A binary relation � that partially orders the set of classes V
is defined in accordance with authority, position or power of
each class in V . The poset (V ,�) is called a partially ordered
hierarchy. For any two classes u and v, the notation u � v
is used to indicate that the users in v can access u’s data.
Clearly, since v can access its own data, it holds that v � v,
for any v ∈ V . The partially ordered hierarchy (V ,�) can be
represented by the directed graph G∗ = (V , E∗), where each
class corresponds to a vertex in the graph and there is an edge
from class v to class u if and only if u � v. We denote by
G = (V , E) the minimal representation of the graph G∗,
namely, the directed acyclic graph corresponding to the tran-
sitive and reflexive reduction of the graph G∗ = (V , E∗).
The graph G has the same transitive and reflexive closure

of G∗, i.e., there is a path (of length greater than or equal
to zero) from v to u in G if and only if there is the edge
(v, u) in E∗. Aho et al. [41] showed that every directed graph
has a transitive reduction, which can be computed in poly-
nomial time and is unique for directed acyclic graphs. In the
following, we denote by � a family of graphs corresponding to
partially ordered hierarchies. For example, � could be the
family of the rooted trees [8], the family of the d-dimensional
hierarchies [42], etc.. Let � be a family of graphs correspond-
ing to partially ordered hierarchies and let G = (V , E) be a
graph in �. For any class v ∈ V , let AG

v be the accessible set
of v in G, i.e., the set {u ∈ V : there is a path from v to u
in G} of classes which can be accessed by v in G. Similarly,
let FG

v be the forbidden set of v in G, i.e., the set {u ∈ V :
there is no path from u to v in G} of classes which cannot
access v in G.

A hierarchical key assignment scheme for a family � of
graphs, corresponding to partially ordered hierarchies, support-
ing dynamic updates is defined as follows.

Definition 1: A hierarchical key assignment scheme for �
supporting dynamic updates is a triple (Gen, Der, U pd) of
algorithms satisfying the following conditions:

1) The information generation algorithm Gen, executed
by the TA, is probabilistic polynomial-time. It takes as
inputs the security parameter 1τ and a graph G = (V , E)
in �, and produces as outputs

a) a private information su , for any class u ∈ V ;
b) a key ku ∈ {0, 1}τ , for any class u ∈ V ;
c) a public information pub

We denote by (s, k, pub) the output of the algorithm
Gen on inputs 1τ and G, where s and k denote
the sequences of private information and of keys,
respectively.

2) The key derivation algorithm Der , executed by
some authorized user, is deterministic polynomial-time.
It takes as inputs the security parameter 1τ , a graph
G = (V , E) in �, two classes u ∈ V and v ∈ AG

u ,
the private information su assigned to class u and the
public information pub, and produces as output the key
kv ∈ {0, 1}τ assigned to class v.
We require that for each class u ∈ V , each class v ∈ AG

u ,
each private information su , each key kv ∈ {0, 1}τ , each
public information pub which can be computed by Gen
on inputs 1τ and G, it holds that

Der(1τ , G, u, v, su , pub) = kv .

3) The update algorithm U pd , executed by the TA, is prob-
abilistic polynomial-time. It takes as inputs the security
parameter 1τ , a graph G = (V , E) in �, the tuple
(s, k, pub) (generated either by Gen or by U pd itself),
an update type up, a sequence of additional parameters
params, and produces as outputs

a) an updated graph G′ = (V ′, E ′) in �;
b) a private information s′u , for any class u ∈ V ′;
c) a key k′u ∈ {0, 1}τ , for any class u ∈ V ′;
d) a public information pub′.

The sequence params, if not empty, is used to generate
new keys and secret information as a consequence of



the update type up. We denote by (s′, k ′, pub′) the
sequences of private information, keys, and public infor-
mation returned by U pd(1τ , G, s, k, pub, up, params).

In the above definition it is required that the updated
graph G′ still belongs to the family � of partially ordered
hierarchies, i.e., only updates which preserve the partial
order relation between the classes in the hierarchy are
allowed.

A. Types of Updates

In this section we consider different types of updates which
can be performed by using the algorithm U pd and we discuss
how such updates modify the access rights of the classes in
the hierarchy obtained after the update. The update types we
consider are the following: insertion of an edge, insertion of a
class, deletion of an edge, deletion of a class, key replacement,
and revocation of a user from a class. Notice that some types
of updates can be seen as a sequence of other types of updates.
For example, the deletion of a class u can be performed by
executing a sequence of edge deletions, one for each edge
ingoing u and outgoing from u. On the other hand, the deletion
of the edge (u, v) requires a key replacement operation for the
class v. Finally, the revocation of a user from a class u requires
a sequence of key replacement operations. In the following we
describe each type of updates.
• Insertion of an edge. Let u and v be two classes in V

such that (u, v) �∈ E . The insertion of the edge (u, v) in
the graph G ′ = (V ′, E ′) requires to update the accessible
set of any class which was able to access u in G,
in order to include the new access rights. In particular,
for any class w such that u ∈ AG

w , the updated accessible
set AG ′

w is defined to be AG ′
w = AG

w ∪ AG
v . Moreover,

the insertion of the edge (u, v) in G ′ also requires to
update the forbidden set of any class which was accessed
by v in G, in order to remove all classes which are
able to access u. In particular, for any class z such that
z ∈ AG

v , the updated forbidden set FG ′
z is defined to be

FG ′
z = FG

z \ {w : u ∈ AG
w}.

• Insertion of a class. Let u �∈ V be a class to be inserted
in the graph G′, along with new incoming and outgoing
edges. Such an update can be seen as a composition of
edge insertions, considering each edge ingoing u and
outgoing from u as a separate update. Consequently,
the accessible and forbidden sets of classes in G ′ can be
determined as explained for the case of edge insertions.

• Deletion of an edge. Let u and v be two classes in V
such that (u, v) ∈ E . The deletion of the edge (u, v)
from the graph G requires to check if any class z which
was able to access class u in G is still able to access
class v in the updated graph G ′. More precisely, we have
to investigate if there exists another path from z to v
avoiding the deleted edge (u, v). If such a path exists,
then the accessible set AG ′

z is set to be equal to AG
z .

On the other hand, if such a path does not exist, then class
v needs to be deleted from AG

z , and we continue to check
whether there exists a path from z and each class w which
can be accessed by v, in order to decide whether w has to

be deleted from AG
z [43], [44]. Moreover, the forbidden

set of each class w which can be accessed by class v
needs to be updated in order to include all classes
whose unique path to w has been broken by the deleted
edge (u, v).

• Deletion of a class. Let u ∈ V be a class to be deleted in
the graph G, along with its incoming and outgoing edges,
thus yielding to the graph G′. This update requires to
follow the above described procedure for edge deletion.
Moreover, in order to preserve the partial order relation
between the classes, such an update also requires to insert
a new edge between each predecessor and each successor
of the deleted class u.

• Key replacement. Let u be a class in G whose key ku

needs to be replaced, due either to a problem of loss,
misuse or after an edge or class deletion in the hierarchy.
Such an update does not change the structure of the
hierarchy, consequently no accessible or forbidden set
needs to be modified.

• User revocation. Let u be a class in G, containing a
certain number of users which share the same access
rights. Whenever a user in u needs to be revoked, we need
to choose a new secret information s′u , which is then
distributed to each non-revoked user in class u. This
update does not alter the composition of the accessible
set AG ′

u , which is set equal to AG
u . However, in order to

avoid the so called ex-member problem, a key replacement
update for each class v ∈ AG ′

u is needed.
Notice that the first four update types result in a struc-

tural modification of the hierarchy, whereas, the last two
do not affect its structure. In particular, the last type
of update represents a modification of the access control
policy.

The efficiency of a hierarchical key assignment scheme
supporting dynamic updates is evaluated mainly according
to the complexity of the updates due to dynamic changes
to the hierarchy. In particular, we would like to support
dynamic changes by means of only local updates to the public
information, without re-distributing private information to the
classes affected by such changes. It is important to note
that such a re-distribution cannot be avoided in the case of
user revocation from a class, which necessarily requires to
re-distribute the secret values to the non-revoked users in that
class. However, it is desirable that no other private information
must be updated.

B. Adversary Model
In the following we discuss the security issues for hierar-

chical key assignment schemes supporting dynamic updates.
According to the security reduction paradigm introduced by
Goldwasser and Micali [45], a scheme is provably-secure
under a complexity assumption if the existence of an adversary
A breaking the scheme is equivalent to the existence of
an adversary B breaking the computational assumption [45].
The security notions proposed by Atallah et al. [10] and
further extended by Ateniese et al. [25] have been designed to
cope with static hierarchies. In particular, Atallah et al. pro-
posed two different notions: security against key recovery and
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with respect to key indistinguishability. Informally speaking,
the former captures the notion that an adversary should not
be able to compute a key to which it should not have access,
while in the latter, the adversary should not even be able to
distinguish between the real key and a random string of the
same length.

The above definitions need to be extended in order to
address the additional security challenges introduced by the
algorithm U pd used for handling dynamic updates to the
hierarchy. In the following we consider two different scenarios:
in the first one there is a fixed sequence of updates, which is
known in advance to the execution of the scheme, whereas,
in the second one, the update sequence is not known in
advance and can be adaptively chosen. Moreover, for each
scenario, we consider two different kinds of adversaries.

1) First Scenario (The Sequence of Updates Is Fixed): Let
�up = (up1, . . . , upm) be a fixed sequence consisting of a poly-

nomial number of updates and let �G = (G0, . . . , Gm) be the
corresponding sequence of graphs generated, starting from the
initial graph G0 = G, by the updates sequence �up. Moreover,
let �pub = (pub0, . . . , pubm) be the sequence of public infor-
mation, where each pubi is the public information associated
to the graph Gi , and let �old_k = (old_k0, . . . , old_km−1)
be the sequence of old keys, where each old_ki denotes the
sequence of keys which have been modified as a consequence
of the update upi+1, according to the specification of the U pd
algorithm.

The first kind of adversary we consider is a static adversary
STAT �up,t,u which, given an updates sequence �up, an update
index t ∈ {1, . . . , m} and a class u in the graph Gt , is allowed
to access the private information assigned to all classes not
allowed to compute the key kt

u , as well as the sequence �pub
of all public information and the sequence �old_k of all old
keys which have been modified. The second kind of adver-
sary we consider is an adaptive adversary ADAPT �up which,
given an updates sequence �up, is first allowed to access the
sequence �pub of all public information as well as the sequence
�old_k of all old keys which have been modified. Moreover,

the adversary ADAPT �up is also allowed to access the private
information of a polynomial number of corrupted classes in �G
of its choice. Such a choice can be modeled by assuming the
existence of a corrupting oracle, which provides the adversary
with the private information held by the corrupted classes it
has chosen. Afterwards, the adversary ADAPT �up chooses the
update index t and the class u in Gt it wants to attack; such a
choice is constrained by the fact that u cannot be a descendant
of a class which has been previously corrupted by ADAPT �up .

For both types of adversaries, two experiments are consid-
ered. In the first one, the adversary is given the key kt

u , whereas
in the second one it is given a random string ρ having the same
length as kt

u . It is the adversary’s job to determine whether the
received challenge corresponds to kt

u or to a random string. For
both types of adversaries, we require that the adversary will
succeed with probability only negligibly different from 1/2.

It is easy to see the advantage of the adversary STAT �up,t,u
in distinguishing the key kt

u from a random string is poly-
nomially related to the advantage of adversary ADAPT �up ,

since ADAPT �up can make a polynomial number of differ-
ent choices for the pair (t, u). Thus, when the updates
sequence is fixed in advance, security against adaptive adver-
saries is (polynomially) equivalent to security against static
adversaries.

2) Second Scenario (The Sequence of Updates Is
Adaptively Chosen): In order to model the adaptive choice
of the updates, we assume the existence of an updating
oracle U . Such an oracle behaves as the TA when performing
the required updates on the hierarchy. At the beginning,
the state of the updating oracle is represented by the tuple
(G0, s0, k0, pub0), where (s0, k0, pub0) is the output of
algorithm Gen on inputs 1τ and the initial graph G0. For
any i ≥ 0, the (i + 1)-th adversary’s query to the updating
oracle consists of a pair (upi+1, paramsi+1), where upi+1

is an update operation on the graph Gi and paramsi+1

is sequence of parameters associated to the update, which
the oracle answers with the updated graph Gi+1, the public
information pubi+1 associated to Gi+1, and with the
sequence old_ki of keys which have been modified as a
consequence of the update. More precisely, the updating oracle
U(1τ ,Gi ,si ,ki ,pubi )(·, ·), given the query (upi+1, paramsi+1),
runs algorithm U pd(1τ , Gi , si , ki , pubi , upi+1, paramsi+1)
and returns Gi+1, pubi+1, and old_ki to the adversary,
where old_ki is a subsequence of ki . Thus, U(1τ ,Gi ,si ,ki ,pubi )

(upi+1, paramsi+1) behaves as U pd(1τ , Gi , si , ki , pubi ,
upi+1, paramsi+1). Moreover, in order to be ready to
reply to the next update query, the oracle updates its
state to be (Gi+1, si+1, ki+1, pubi+1). In the following,
for the sake of simplicity, we denote by U i (·, ·) the oracle
U(1τ ,Gi ,si ,ki ,pubi )(·, ·). Due to its adaptive nature, the adversary
may require a polynomial number m = poly(|V |, 1τ ) of
dynamic updates, where each update is decided on the basis
of the answers obtained from the updating oracle at the
previous steps.

In this scenario, we first consider a static adversary
STATt,u , which is given access to the updating oracle U for a
polynomial number of times and, given an update index t and
a class u in Gt , is allowed to access the private information
assigned to all classes not allowed to compute the key kt

u ,
as well as the sequences �pub and �old_k generated by the
responses obtained by U .

The second kind of adversary we consider is an adaptive
adversary ADAPT, which, besides to access the updating
oracle U for a polynomial number of times, can also perform
a polynomial number of class corruption operations, again in
an adaptive order. For any i ≥ 0, we assume the existence of
a corrupting oracle Ci , which provides the adversary with the
private information held by the corrupted classes in the graph
Gi . In particular, an adversary’s query to the corrupting oracle
Ci consists of a class v in the graph Gi , which the oracle
answers with the private information held by class v in all
graphs G0, G1, . . . , Gi (if v belongs to them). More precisely,
on input a class v in Gi , the corrupting oracle Ci

(s0,s1,...,si )
(·)

returns the private information s j
v , for any j = 0, . . . , i such

that v is in the hierarchy G j . In the following, for the sake
of simplicity, we denote by C i (·) the oracle C i

(s0,s1,...,si )
(·).



Finally, the adversary ADAPT can perform a class attack
operation, by choosing an update index t and a class u in Gt .

What about the relationships between the above two kinds
of adversaries? It is easy to see that, when the sequence of
updates is adaptively chosen, the advantage of the adver-
sary STATt,u in distinguishing the key kt

u from a random
string cannot be polynomially related to the advantage of the
adversary ADAPT, since there is an exponential number of
different choices for the updating sequence, which also reflects
in an exponential number of possible choices for the pair
(t, u). Thus, when the updates sequence is adaptively chosen,
security against adaptive adversaries is not (polynomially)
equivalent to security against static adversaries. Since ADAPT
represents the strongest type of adversary, in the scenario
where the sequence of updates is not fixed in advance, we will
restrict our attention to such a kind of adversary. In particular,
we consider an adversary ADAPT = (ADAPT1,ADAPT2)
running in two stages. In advance of the adversary’s execution,
the algorithm Gen is run on inputs 1τ and G and outputs the
tuple (s, k, pub), which is kept hidden from the adversary,
with the exception of the public information pub. During
the first stage, the adversary ADAPT1 is given access to both
updating and corrupting oracles for a polynomial number m of
times. The responses obtained by the oracles are saved in some
state information denoted as history. In particular, history
contains the following information: 1) the sequence of graphs
�G = (G0, . . . , Gm); 2) the sequence �up = (up1, . . . , upm)
of updating operations queried to the updating oracle; 3) the
corresponding sequence of public information �pub; 4) the cor-
responding sequence �old_k of keys which have been modified
according to each update; 5) the private information held by
all corrupted classes. After interacting with the updating and
corrupting oracles, the adversary chooses an update index t
and a class u in Gt , among all the classes in Gt which
cannot be accessed by the corrupted classes. In particular,
the chosen class u is such that, for any class v already queried
to the corrupting oracle Ci (·) and any i = 0, . . . , m, v cannot
access u in the hierarchy Gi . In the second stage, the adversary
ADAPT2 is given again access to the corrupting oracle and is
then challenged in distinguishing the key kt

u from a random
string ρ ∈ {0, 1}τ . Clearly, it is required that the key kt

u on
which the adversary will be challenged is not included in
the sequence old_kt−1 of keys that have been updated in the
graph Gt .

We use the standard notation to describe probabilistic
algorithm and experiments following [46]. If A(·, ·, . . .) is
any probabilistic algorithm then a← A(x, y, . . .) denotes the
experiment of running A on inputs x, y, . . . and letting a be the
outcome, the probability being over the coins of A. Similarly,
if X is a set, then x ← X denotes the experiment of selecting
an element uniformly from X and assigning x this value. If w
is neither an algorithm nor a set, then x ← w is a simple
assignment statement. A function ε : N → R is negligible if
for every constant c > 0 there exists an integer nc such that
ε(n) < n−c for all n ≥ nc.

The next definition formalizes the key indistinguishability
requirement for hierarchical key assignment schemes support-
ing dynamic updates.

Definition 2 (IND-DYN-AD): Let � be a family of
graphs corresponding to partially ordered hierarchies, let
G = (V , E) ∈ � be a graph, and let (Gen, Der, U pd) be
a hierarchical key assignment scheme for � supporting
dynamic updates. Let m = poly(|V |, 1τ ) and let
ADAPT = (ADAPT1,ADAPT2) be an adaptive adversary
that during the first stage of the attack is given access both
to the updating oracle U i (·, ·) and the corrupting oracle Ci (·),
for i = 1, . . . , m, and during the second stage of the attack
is given access only to the corrupting oracle. Consider the
following two experiments:

Experiment ExpIND−DYN−1ADAPT (1τ , G)
(s, k, pub)← Gen(1τ , G)

(t, u, history)← ADAPT U i (·,·),Ci (·)
1 (1τ , G, pub)

d ← ADAPTC
i (·)

2 (1τ , t, u, history, kt
u)

return d

Experiment ExpIND−DYN−0ADAPT (1τ , G)
(s, k, pub)← Gen(1τ , G)

(t, u, history)← ADAPT U i (·,·),Ci (·)
1 (1τ , G, pub)

ρ ← {0, 1}τ
d ← ADAPTC

i (·)
2 (1τ , t, u, history, ρ)

return d

It is required that the class u returned by ADAPT1 is such
that v cannot access u in the graph Gi , for any class v already
queried to the corrupting oracle Ci (·). Moreover, it is also
required that ADAPT2 never queries the corrupting oracle Ci (·)
on a class v such that v can access u in the graph Gt . The
advantage of ADAPT is defined as

AdvIND−DYNADAPT (1τ , G) = |Pr [ExpIND−DYN−1ADAPT (1τ , G) = 1]
− Pr [ExpIND−DYN−0ADAPT (1τ , G) = 1]|

The scheme is said to be secure in the sense of IND-DYN-AD
if for each graph G = (V , E) in �, the function
AdvIND−DYNADAPT (1τ , G) is negligible, for each adaptive adversary
ADAPT whose time complexity is polynomial in τ .

Notice that if the adversary ADAPT1 never queries the
updating oracle during the first stage of the attack, the above
definition reduces to that of security with respect to key indis-
tinguishability against adaptive adversaries for hierarchical
key assignment schemes with static hierarchies, referred to as
IND-AD in [25]. For such kind of schemes, it has been proven
that adaptive adversaries are polynomialy equivalent to static
adversaries, i.e., such that the class to be attacked is chosen in
advance to the execution of the scheme. Finally, the weaker
definition of security with respect to key recovery against
adaptive adversaries for hierarchical key assignment schemes
supporting dynamic hierarchies has been provided in [47],
where also the relations between all the security notions for
such schemes have been clarified.

III. A CONSTRUCTION BASED ON SYMMETRIC

ENCRYPTION SCHEMES

In this section we consider the problem of con-
structing a hierarchical key assignment scheme supporting
dynamic updates using as a building block a symmetric
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encryption scheme. In particular, we consider the Two-Level
Encryption-Based Construction (TLEBC) proposed in [25].
Such a construction belongs to the class of time-bound hier-
archical key assignment schemes, since the key derivation
depends not only on the relations between the classes, but also
on time constraints. However, since in this paper we are not
interested in time-bound schemes, we describe a simplified
version of the scheme, without time constraints. In detail,
to construct a key assignment scheme supporting dynamic
updates, the TLEBC has been properly adapted by providing
it with a third algorithm, which is in charge of dynamically
updating the access structure. Later on, we prove that the
security property of the TLEBC depends on the security
property of the underlying encryption scheme. We need to
recall the definition of a symmetric encryption scheme and its
notions of security.

A. Symmetric Encryption Schemes

We first recall the definition of a symmetric encryption
scheme.

Definition 3: A symmetric encryption scheme is a triple
� = (K, E,D) of algorithms satisfying the following con-
ditions:

1) The key-generation algorithm K is probabilistic
polynomial-time. It takes as input the security parameter
1τ and produces as output a string key.

2) The encryption algorithm E is probabilistic polynomial-
time. It takes as inputs 1τ , a string key produced by
K(1τ ), and a message m ∈ {0, 1}∗, and produces as
output the ciphertext y.

3) The decryption algorithm D is deterministic polynomial-
time. It takes as inputs 1τ , a string key produced by
K(1τ ), and a ciphertext y, and produces as output a
message m.

We require that for any string key which can be returned by
K(1τ ), for any message m ∈ {0, 1}∗, and for all y that can be
returned by E(1τ , key, m), we have that D(1τ , key, y) = m.

Now, we define what we mean by a secure symmetric
encryption scheme. We consider security with respect to
plaintext indistinguishability, which is an adaption of the
notion of polynomial security as given in [45]. We imagine an
adversary A = (A1,A2) running in two stages. In advance of
the adversary’s execution, a random key key is chosen and kept
hidden from the adversary. During the first stage, the adver-
sary A1 outputs a triple (x0, x1, state), where x0 and x1 are
two messages of the same length, and state is some state
information which could be useful later. One message between
x0 and x1 is chosen at random and encrypted to give the
challenge ciphertext y. In the second stage, the adversary
A2 is given y and state and has to determine whether y
is the encryption of x0 or x1. Informally, the encryption
scheme is said to be secure with respect to a non-adaptive
chosen plaintext attack, denoted by IND-P1-C0 in [48],
if every polynomial-time adversary A, which has access to
the encryption oracle only during the first stage of the attack
and never has access to the decryption oracle, succeeds in
determining whether y is the encryption of x0 or x1 with
probability only negligibly different from 1/2.

Fig. 1. The graph transformation used in our construction.

Definition 4 (IND-P1-C0): Let � = (K, E,D) be a sym-
metric encryption scheme and let τ be a security parameter.
Let A = (A1,A2) be an adversary that has access to the
encryption oracle only during the first stage of the attack
and never has access to the decryption oracle. Consider the
following two experiments:

Experiment ExpIND−P1−C0−1�,A (1τ ) Experiment ExpIND−P1−C0−0�,A (1τ )

key← K(1τ ) key ← K(1τ )

(x0, x1, state)←A
Ekey (·)
1 (1τ ) (x0, x1, state)←A

Ekey (·)
1 (1τ )

y←Ekey(x1) y←Ekey(x0)
d ← A2(1τ , y, state) d ← A2(1τ , y, state)
return d return d

The advantage of A is defined as

AdvIND−P1−C0�,A (1τ ) = |Pr [ExpIND−P1−C0−1�,A (1τ ) = 1]
− Pr [ExpIND−P1−C0−0�,A (1τ ) = 1]|

The scheme is said to be secure in the sense of IND-P1-C0
if the advantage function AdvIND−P1−C0�,A (1τ ) is negligible, for
any adversary A whose time complexity is polynomial in τ .

B. The Two-Level Encryption-Based Construction (TLEBC)

The construction we are going to describe uses a graph
transformation, starting from the graph G = (V , E).
The output of such a transformation is a two-level graph
GT L = (VT L , ET L), where VT L = V �∪V r and V �∩V r = ∅,
constructed as follows:
• for each class u ∈ V , we place two classes u� and ur in

VT L , where u� ∈ V � and ur ∈ V r ;
• for each class u ∈ V , we place the edge (u�, ur ) in ET L ;
• for each pair of classes u and v connected by a path in

G, we place the edge (u�, vr ) in ET L .
Thus, we consider a two-level partially ordered hierar-

chy, where each level contains the same number of classes
and there are no edges between classes at the same level.
We remark that this is not a restriction, since any directed
graph representing an access control policy can be trans-
formed into a two-level partially ordered hierarchy having the
above features, using a technique proposed in [49]. Figure 1
shows an example of the graph transformation described
above.

Let � be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V , E) ∈ �, and
let � = (K, E,D) be a symmetric encryption scheme. The
Two-Level Encryption-Based Construction (TLEBC) works as
explained in the following.

As for any hierarchical key assignment scheme, the TLEBC
is basically composed by two algorithms, namely, the key



Algorithm 1 Key Generation
1: procedure Gen(1τ , G)
2: Transform the graph G into the two-level graph GT L =

(VT L, ET L)
3: for all classes u� ∈ V � do
4: su ← K(1τ )
5: end for
6: for all classes ur ∈ V r do
7: ku ← {0, 1}τ
8: end for
9: Let s and k be the sequences of private information and

keys computed above
10: for any pair of classes u� ∈ V � and vr ∈ V r such that

(u�, vr ) ∈ ET L do
11: p(u,v)← Esu (kv )
12: end for
13: Let pub be the sequence of public information com-

puted above
14: return (s, k, pub)
15: end procedure

Algorithm 2 Key Derivation
1: procedure Der (1τ , G, u, v, su , pub)
2: Extract the public value p(u,v) from pub
3: kv ← Dsu (p(u,v))
4: return kv

5: end procedure

generation algorithm, denoted as Gen and described by means
of Algorithm 1, and the key derivation algorithm, denoted
as Der and outlined through Algorithm 2. More precisely,
Algorithm 1 starts by transforming a generic graph belonging
to the family of partially ordered hierarchy into the relative
two-level representation. Afterwards, such an algorithm is
responsible for assigning the secret information and encryption
keys to the above defined two-level graph. Instead, for what
concerns Algorithm 2, it is simply responsible, given a secret
information and a public value, of deriving the encryption key
of the class to be accessed.

The third core algorithm of the TLEBC is the one which
deals with dynamic updates to the access hierarchy, and from
now on it is referred to as U pd . For the ease of exposition, this
algorithm, outlined by Algorithm 3, is composed of several
sub-procedures, each characterizing a type of update. Such
procedures can also call each other recursively. In particular,
the U pd algorithm, given a graph, some parameters, and the
type of update, returns a new instance of the graph with
the relative secret information and encryption keys updated
according to the type of update it performed. We remark that,
similarly to what it is done by Gen, also U pd performs, before
each type of update, a transformation on the graph taken as
input, in order to obtain a two-level representation of such a
graph.

More precisely, as stated before, the update types taken into
account are: key replacement, edge insertion, edge deletion,

Algorithm 3 The Main Updating Procedure
1: procedure U pd(1τ , G, s, k, pub, up, params)
2: Transform G in the two-level graph GT L = (VT L , ET L)
3: if up == Replace(kv) then
4: replace_key(1τ , G, s, k, pub, kv , params)
5: else if up == Insert_edge((u, v)) then
6: inser t_edge(1τ , G, s, k, pub, (u, v))
7: else if up == Delete_edge((u, v)) then
8: delete_edge(1τ , G, s, k, pub, (u, v), params)
9: else if up == Insert_class(v) then

10: inser t_class(1τ , G, s, k, pub, v, params)
11: else if up == Delete_class(v) then
12: delete_class(1τ , G, s, k, pub, v)
13: else if up == Revoke(v, λ) then
14: revoke_user(1τ , G, s, k, pub, v, λ, params)
15: end if
16: return (G′, s′, k ′, pub′)
17: end procedure

Algorithm 4 Key Replacement
1: procedure replace_key(1τ , G, s, k, pub, kv , params)
2: if params is not empty then
3: parse params as k params

v

4: k ′v ← k params
v

5: else
6: k ′v ← {0, 1}τ
7: end if
8: s′ ← s
9: k ′ ← k, with k ′v instead of kv

10: for all classes u� ∈ V � such that (u�, vr ) ∈ ET L do
11: compute p′(u,v) ← Es ′u (k

′
v ) and replace it in pub,

obtaining pub′
12: end for
13: end procedure

Algorithm 5 Edge Insertion
1: procedure inser t_edge(1τ , G, s, k, pub, (u, v))
2: k ′ ← k
3: s′ ← s;
4: compute p′(u,v)← Es ′u (k

′
v ) and add it to pub, obtaining

pub′
5: end procedure

class insertion, class deletion, and user revocation. Again,
the procedures responsible for such updates are denoted
as replace_key, inser t_edge, delete_edge, inser t_class,
delete_class and revoke_user , respectively, and they are out-
lined by Algorithm 4, Algorithm 5, Algorithm 6, Algorithm 7,
Algorithm 8 and Algorithm 9, respectively.

In detail, Algorithm 4 replaces an old key, referred to as kv ,
with a new one, denoted as k ′v . We remark that such an update
does not involve any change to the structure of the hierarchy
and no accessible or forbidden set needs to be modified. As a
consequence, only the public values relative to the replaced
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Algorithm 6 Edge Deletion
1: procedure delete_edge(1τ , G, s, k, pub, (u, v), params)
2: replace_key(1τ , G, s, k, pub, kv , params)
3: Remove the public value p′(u,v) from pub′
4: end procedure

Algorithm 7 Class Insertion
1: procedure inser t_class(1τ , G, s, k, pub, v, params)
2: if params is not empty then
3: parse params as s params

v and k params
v

4: s′v ← s params
v

5: k ′v ← k params
v

6: else
7: s′v ← K(1τ )
8: k ′v ← {0, 1}τ
9: end if

10: add above values into s and k, obtaining s′ and k ′
11: compute p′(v,v)← Es ′v (k

′
v )

12: use aforementioned procedure for adding incoming and
outgoing edges from v

13: add all the public values to pub, obtaining pub′
14: end procedure

Algorithm 8 Class Deletion
1: procedure delete_class(1τ , G, s, k, pub, v)
2: Use aforementioned procedure for deleting incoming

and outgoing edges from v
3: Remove sv and kv from s and k, obtaining s′ and k ′
4: end procedure

Algorithm 9 Revoke User
1: procedure revoke_user (1τ , G, s, k, pub, v, λ, params)
2: if params is not empty then
3: parse params as s params

v

4: s′v ← s params
v

5: else
6: s′v ← K(1τ )
7: end if
8: Distribute s′v to each non-revoked user in the class v
9: s′ ← s, with s′v instead of sv

10: for all classes ur ∈ V r such that (v�, ur ) ∈ ET L do
11: replace_key(1τ , G, s, k, pub, ku, NU L L)
12: end for
13: end procedure

key need to be re-computed, by using the existing secret
information. Algorithm 5 inserts an edge, denoted as (u, v),
between two already existing classes, denoted as u and v,
respectively. Such an update simply involves the encryption
of the key ku by using the secret information sv . Algorithm 6
deletes an edge, called (u, v), by first replacing the encryption
key kv and then deleting the public value p′(u,v) from the
public parameters of the updated graph, referred to as pub′.
Algorithm 7 inserts a new class v in the considered graph.

In particular, such an algorithm, given the secret information
and the encryption key kv , computes all the public values
involving class v. We remark that Algorithm 7 makes use
of the inser t_edge procedure, for creating the public values
relative to the edges incoming in and outgoing from v.
Algorithm 8 removes a class v from the considered graph.
More precisely, such an algorithm makes use of the
delete_edge procedure for deleting edges incoming in and
outgoing from v, then it removes the secret information sv and
encryption key kv . Finally, Algorithm 9 revokes a user λ from
a given class v. In detail, such an algorithm distributes a new
secret information, referred to as s′v to each non-revoked user
in the class v; then, in order to avoid the so called ex-member
problem, Algorithm 9 calls the replace_key procedure for
each class in the accessible set of class v in the updated
graph G′.

Notice that some updates do not require the sequence of
additional parameters params, whereas, for other updates,
such a sequence might be not empty. In particular, the insertion
of an edge and the deletion of a class do not require additional
parameters, since they do not involve the choice of fresh
private information or keys. We remark that no update, with
the exception of user revocation, requires re-distribution of the
secret information to classes. Thus, in the TLEBC, dynamic
changes to the hierarchy can be accomplished by means of
only local updates to the public information only.

1) Analysis of the Scheme: In the following we show that
the security property of the TLEBC depends on the security
property of the underlying encryption scheme. We prove that if
the encryption scheme � = (K,D, E) is secure in the sense
of IND-P1-C0, then the TLEBC is secure in the sense of
IND-DYN-AD, respectively.

We first give an informal description of the ideas on which
the proof is based. The proof uses two well known tech-
niques: black-box reductions [45] and hybrid arguments [50].
In general, a black-box reduction is used to show that, given
a protocol constructed from a cryptographic primitive, if the
protocol can be broken somehow, then also the underlying
primitive can be broken. On the other hand, the hybrid argu-
ment technique is used to argue that two probability ensembles,
i.e., two sequences of probability distributions defined over the
same probability space, are computationally indistinguishable.
In this type of proof, one defines a sequence, constituted by
a polynomial number (in the security parameter) of proba-
bility ensembles, also called the hybrids, where the extreme
hybrids correspond to the two ensembles to be shown indis-
tinguishable. Since the total number of hybrids is polynomial,
a non-negligible gap between the extreme hybrids translates
into a non-negligible gap between a pair of adjacent hybrids.

In our security proof the probability ensembles are given by
the view of an adaptive adversary ADAPT which, after making
a polynomial number of updating and corrupting queries,
attacks a class vr in the two-level hierarchy obtained after
the t-th update on the initial graph G = (V , E). In particular,
such a view contains the public information pubi associated
to the graph Gi , for i = 1, . . . , t , the private information
held by the corrupted classes along with a final value, which
corresponds to the key kh assigned to the chosen class vr



after the t-th update. The two extreme hybrids we consider
are characterized in one case by the adversary’s view when
the public values are generated according to the TLEBC, thus
containing encryptions of the key kh , while in the other case
by the adversary’s view when part of the public values is
generated by encrypting a randomly chosen value ρ having
the same length as kh . More precisely, the public values
which are modified in the last hybrid correspond to those
associated to the edges, say (v�

1, v
r ), (v�

2, v
r ), . . . , (v�

m , vr ),
entering class vr in the two-level hierarchy obtained after the
t-th update. Thus, in the last hybrid, the public information
is completely independent on the last input of the adversary,
i.e., kh , since the values associated to all edges entering
class vr are computed as encryptions of a randomly chosen
value ρ. We define a sequence of m + 1 hybrids, where each
pair of adjacent ones, say the j -th and the ( j + 1)-th hybrid,
differ only in the public value associated to a certain edge
entering vr , say (v�

j+1, v
r ), which is equal to the encryption

of the key kh in the latter one and to the encryption of a
random value ρ, having the same length as kh , in the former
one. For each pair of adjacent hybrids we show, by means
of a black-box reduction, that the corresponding views are
computationally indistinguishable by the adversary ADAPT,
otherwise we could construct an adversary A = (A1,A2)
which breaks the security of the symmetric encryption scheme
� = (K,D, E) in the sense of IND-P1-C0.

The algorithm A1, on input 1τ , makes queries to its encryp-
tion oracle Ekey(·) and outputs a triple (x0, x1, state), where
x0, x1 ∈ {0, 1}τ and state is some state information. One
message between x0 and x1 is chosen at random and encrypted
to give the challenge ciphertext y. Then, algorithm A2 is given
y and state and has to determine whether y is the encryption
of x0 or x1. More precisely, the algorithm A, in order to exploit
ADAPT’s ability in distinguishing between the j -th and the
( j+1)-th hybrid, has first to prepare the inputs for it. Such an
information, with the exception of the value associated to the
( j+1)-th edge entering class vr , can be easily constructed by
A1 following the same lines as the Gen and U pd algorithms
in the TLEBC, with an important difference: whenever A1
has to construct the public information associated to the first
j edges entering class vr , it computes the encryptions, with
the appropriate private keys, of the random value x0. On the
other hand, the ( j + 1)-th edge entering class vr will be
assigned the value of the challenge ciphertext y, whereas,
all subsequent edges entering class vr will be encryptions of
the value x1, which plays the role of the key kh assigned
to vr .

It is important to notice that, due to the dynamic behavior
of ADAPT, adversary A has no control on the sequence of
updating queries asked by ADAPT, thus, it cannot decide in
advance to which class its encryption oracle Ekey(·) will be
associated. Therefore, A makes its guess at the beginning,
by randomly choosing a class whose private information will
be implicitly set equal to the unknown key, but it might fail.
Indeed, if the chosen class does not correspond to the ( j+1)-th
one having an edge entering class vr , then A cannot continue
its simulation and needs to restart itself. On the other hand,
if the simulation goes well, A outputs the same output as

ADAPT: if ADAPT states that its view corresponds to that in
the j -th experiment, then the adversary A can be sure that
the received challenge y comes from the encryption of the
message x1, otherwise by the encryption of the message x0.
Clearly, the success probability of A1 is equal to 1/q , where
q denotes the number of choices which can be made by A1,
meaning that, in the worst case, A1 will need to restart itself
q times. Thus, the next result holds.

Theorem 5: If the encryption scheme � = (K,D, E) is
secure in the sense of IND-P1-C0, then the TLEBC is secure
in the sense of IND-DYN-AD.

Proof: Let � be a family of graphs corresponding to
partially ordered hierarchies. Assume by contradiction that
the TLEBC is not secure in the sense of IND-DYN-AD.
Thus, there exists a graph G = (V , E) in � and an adap-
tive adversary ADAPT = (ADAPT1,ADAPT2) which is able
to distinguish between experiments ExpIND−DYN−1ADAPT (1τ , G)
and ExpIND−DYN−0ADAPT (1τ , G) with non-negligibile advantage.
Recall that the only difference between ExpIND−DYN−1ADAPT and
ExpIND−DYN−0ADAPT is the last input of ADAPT, which corresponds
to a real key assigned by the TLEBC in the former experiment
and to a random value chosen in {0, 1}τ in the latter. Thus,
while in ExpIND−DYN−1ADAPT the public information is related to
the last input of ADAPT, in ExpIND−DYN−0ADAPT it is completely
independent on such a value.

Without loss of generality, let V = {v1, . . . , vn} and let
k1, . . . , kn be the keys assigned to the classes in V r by algo-
rithm Gen of the TLEBC. For any i ≥ 1, denote by kn+i the
i -th key which either has been created using the insert_class
procedure (see Algorithm 7) or has been modified using the
replace_key procedure (see Algorithm 4). We restrict our
interest to the two above procedures, since those corresponding
to the other types of updates either do not require to choose
new keys (see Algorithm 5 and Algorithm 8) or invoke the
replace_key procedure (see Algorithm 6 and Algorithm 9).
Moreover, let s1, . . . , sn be the private information assigned
to the classes in V � by algorithm Gen of the TLEBC and,
for any i ≥ 1, denote by sn+i the i -th private information
which either has been created using the insert_class procedure
(see Algorithm 7) or has been modified using the revoke_user
procedure (see Algorithm 9). We restrict our interest to the
two above procedures, since those corresponding to the other
types of updates do not require to choose new private informa-
tion. For example, consider the following sequence of updates
on the two-level graph in Figure 1, yielding to the graph
depicted in Figure 2: insert class d and edge (d, c), replace key
kc, insert class e and edge (e, c), replace key k′c. According to
the above defined enumeration, the corresponding sequence of
keys is k1 = ka , k2 = kb, k3 = kc, k4 = kd , k5 = k ′c, k6 = ke,
and k7 = k ′′c . On the other hand, the corresponding sequence
of private information is s1 = sa , s2 = sb, s3 = sc, s4 = sd ,
and s5 = se.

Let q(n, 1τ ) be the running-time of ADAPT, where q is
a bivariate polynomial. For any i = 1, . . . , q(n, 1τ ), let Si

be an adversary which behaves as ADAPT1 until the choice
of the key to be attacked. If the chosen key is equal to ki ,
then Si continues to follow ADAPT2, otherwise it outputs 0.
The advantage of ADAPT can be written as shown in Eq. 1.
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Fig. 2. Two-level hierarchy obtained after a list of updates.

Since AdvIND−DYNADAPT (1τ , G) is non-negligible, then there
exists at least an index h, where 1 ≤ h ≤ q(n, 1τ ),
such that AdvIND−DYNSh

(1τ , G) is non-negligible. Thus,
there exists an adversary Sh which distinguishes between
ExpIND−DYN−1Sh

(1τ , G) and ExpIND−DYN−0Sh
(1τ , G) with non-

negligible advantage. We distinguish the two following cases:
• Case 1: h ≥ n + 1. This case corresponds to the

scenario where the key kh chosen by the adversary either
has been created using the insert_class procedure (see
Algorithm 7) or has been modified using the replace_key
procedure (see Algorithm 4).

• Case 2: 1 ≤ h ≤ n. This case corresponds to the
scenario where the key kh chosen by the adversary has
been assigned to some class in the initial graph G.
a) Analysis of case 1: Assume that the key kh chosen by

the adversary either has been created or has been modified by
the t-th update operation, which has assigned such a key to
a certain class v in the graph Gt . Thus, attacking the key kh

corresponds to attack the class vr in the two-level hierarchy
GT L = (VT L , ET L) obtained after the t-th update. Assume
that there are m classes which are able to access class vr in
GT L , without loss of generality, let v�

1, . . . , v
�
m be such classes.

We construct a sequence of m + 1 experiments

Exph,0, Exph,1, . . . , Exph,m,

all defined over the same probability space. In each
experiment we modify the way the view of adversary Sh is
computed, while maintaining the view’s distributions indistin-
guishable among any two consecutive experiments. For any
j = 1, . . . , m, experiment Exph, j is defined as follows:

Experiment Exph, j (1
τ , G)

(s, k, pub)← Gen(1τ , G)

(t, v, history)← S U i, j (·,·),Ci(·)
h (1τ , G, pub)

d ← SC
i (·)

h (1τ , t, v, history, kh)
return d

In experiment Exph, j we first use the algorithm Gen of the
TLEBC to assign private information and keys to the classes,
as well as public information to the edges of the two-level
hierarchy. Then, in the first stage of the attack, the updating
oracle queried by adversary Sh uses an algorithm U pd j , which
is a modification of the algorithm U pd used in the TLEBC.
We remark that for this reason the updating oracle is denoted
by U i, j (·, ·) in the experiment. The algorithm U pd j differs
from U pd for the way it computes the public information asso-
ciated to the first j edges, say (v�

1, v
r ), (v�

2, v
r ), . . . , (v�

j , v
r ),

Fig. 3. Two adjacent experiments. (a) Exp7,2. (b) Exp7,3.

entering class vr in the two-level hierarchy. In particular,
the public values associated to such edges are computed as
encryptions of a value ρ randomly chosen in {0, 1}τ , instead
of the encryption of the key kh assigned to vr , whereas,
the public values associated to subsquent edges entering vr

are not modified. Notice that experiment Exph,0 is the same
as ExpIND−DYN−1Sh

. Indeed, the public information is related to
the last input of Sh , since the values associated to all edges
entering class vr are computed as encryptions of kh . On the
other hand, experiment Exph,m is the same as ExpIND−DYN−0Sh

.
In fact, the public information is completely independent on
the last input of Sh , since the values associated to all edges
entering class vr are computed as encryptions of a random
value ρ chosen in {0, 1}τ . Figure 3 shows two adjacent exper-
iments in the sequence Exp7,0, Exp7,1, . . . , Exp7,4 of five
experiments obtained when attacking the key k7 in Figure 2.

b) Indistinguishability of any pair of adjacent experi-
ments: In the following we show that, for any j = 0, . . . ,
m − 1, experiments Exph, j and Exph, j+1 cannot be distin-
guished with non-negligible advantage.

Assume by contradiction that there exists a polynomial-
time distinguisher B j which is able to distinguish between the
adversary Sh’s views in experiments Exph, j and Exph, j+1
with non-negligible advantage. Notice that the views of the
distinguisher B j in such two experiments differ only for the
public value associated to the edge (v�

j+1, v
r ), which is equal

to the encryption of the real key kh in the latter experiment
and to the encryption of a random value having the same
length as the real key in the former experiment. We show
how to construct a polynomial-time adversary A = (A1,A2),



AdvIND−DYNADAPT (1τ , G) = |Pr [ExpIND−DYN−1ADAPT (1τ , G) = 1] − Pr [ExpIND−DYN−0ADAPT (1τ , G) = 1]|

≤
q(n,1τ )∑

i=1

| Pr [ADAPT1 chooses ki ] · Pr [ExpIND−DYN−1ADAPT (1τ , G) = 1|ADAPT1 chooses ki ] −

+ Pr [ADAPT1 chooses ki ] · Pr [ExpIND−DYN−0ADAPT (1τ , G) = 1|ADAPT1 chooses ki ] |

=
q(n,1τ )∑

i=1

Pr [ADAPT1 chooses ki ]· | Pr [ExpIND−DYN−1Si
(1τ , G) = 1] − Pr [ExpIND−DYN−0Si

(1τ , G) = 1] |

=
q(n,1τ )∑

i=1

Pr [ADAPT1 chooses ki ] · AdvIND−DYNSi
(1τ , G). (1)

using adversary B j , which breaks the security of the encryption
scheme � = (K, E,D) in the sense of IND-P1-C0.

Description of Algorithm A
Ekey (·)
1 (1τ ).

1) First, A1 randomly chooses an index 1 ≤ γ ≤ q(n, 1τ ),
such that the private information sγ will be implicitly
set equal to the unknown key for its encryption oracle
Ekey(·).

2) Afterwards, A1 simulates algorithm Gen(1τ , G) as fol-
lows:

a) If 1 ≤ γ ≤ n, it constructs the private information
sβ for all β ∈ {1, . . . , n} \ {γ }, as well as all
encryption keys k1, . . . , kn . On the other hand,
if γ ≥ n + 1, it constructs all private information
s1, . . . , sn as well as all encryption keys k1, . . . , kn .

b) Then, it constructs the sequence pub of public
values associated to all edges in the two-level
hierarchy obtained from G. In particular, if 1 ≤
γ ≤ n, A1 makes use of its encryption oracle
Ekey(·) for all edges outgoing class v�

γ .
3) Moreover, A1 chooses at random two messages

x0, x1 ∈ {0, 1}τ : in particular, x1 will play the role of
the key kh , assigned to class vr , in the next steps.

4) Then, A1 calls adversary B j on inputs 1τ , G and pub.
In the first stage of the attack, adversary B j can make a
polynomial number of updating and corrupting queries.
In particular, the t-th updating query of B j consists of
a pair (upt+1, paramst+1), where upt+1 is an update
operation on the graph Gt and paramst+1 is a sequence
of parameters associated to the update. On the other
hand, the t-th corrupting query consists of a class c in
the graph Gt .

a) Each updating query can be answered by adversary
A1 by means of a simulation of a modified version
of the algorithm U pd , which corresponds either to
U pd j or to U pd j+1. We recall that the algorithm
U pd j differs from U pd only for the way it com-
putes the public information associated to the first
j edges entering class vr in the two-level hierarchy.
More precisely, the algorithm used by A1 to answer
updating queries, and in particular, to compute the
public information associated to each edge (v�

i , v
r )

works as follows:
i) For each i = 1, . . . , j, A1 computes p′(vi ,v)

as the encryption, with the current private

information assigned to class v�
i , of the random

value x0.
ii) If v�

j+1 does not correspond to the γ -th class
whose private information has been either
inserted or modified, where γ is the index
chosen at step 1, then A1 restarts from the
beginning; otherwise, it leaves to A2 the task
of associating the challenge y to the edge
(v�

j+1, v
r ).

iii) For each i = j+2, . . . , m, A2 computes p′(vi ,v)

as the encryption, with the current private infor-
mation assigned to class v�

i , of the value x1.
On the other hand, the public information asso-
ciated to each other edge is computed as
follows:
i) For each edge (v�

j+1, zr ), where z �= v,
if v�

j+1 does not correspond to the γ -th class
whose private information has been either
inserted or modified, where γ is the index
chosen at step 1, then A1 restarts from the
beginning; otherwise, it uses its encryption ora-
cle Ekey(·) to compute p′(v j+1,z)

as the encryp-
tion, with the unknown key, of the current key
assigned to class zr .

ii) For each edge (w�, zr ), where w� �= v�
j+1 and

z �= v, A1 computes the public value p′(w,z) as
the encryption, with the current private infor-
mation assigned to class w�, of the current key
assigned to class zr .

b) The t-th corrupting query, corresponding to a class
c in Gt can be answered by adversary A1 with
the sequence of private information held by the
corrupted class c in all graphs up to Gt , if c belongs
to them. We remark that A1 is able to respond to
such a query since in step 1. it has generated the
sequence of all private information s1, . . . , sn , with
the exception of sγ , corresponding to the unknown
key, if 1 ≤ γ ≤ n; moreover, all subsequent private
information sn+1, . . . , sq(1τ ,n) has been generated
by A1 when answering updating queries involving
class insertions or user revocations.

c) Upon finishing its updating and corrupting queries,
adversary B j outputs the triple (vr , t, history−),
where history− contains the following
information:
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• The initial graph G along with all updated
graphs G1, . . . , Gt .

• The sequence of updating operations
up1, . . . , upt queried by B j .

• The corresponding sequences of public infor-
mation obtained by the interaction with A1 as
a response for the updating queries, with the
exception of the public value associated to the
edge (v�

j+1, v
r ).

• The corresponding sequences of keys
old_k0, . . . , old_kt−1, which have been
modified according to each update. Notice that
such sequences have also been obtained by
the interaction with A1, which has generated
k1, . . . , kn in step 2.(a), and all subsequent keys
in response to insert_class and replace_key
queries.

• The private information held by all corrupted
classes, obtained by the interaction with A1 as
a response for the corrupting queries.

5) Finally, A1 outputs the triple (x0, x1, state), where state
contains the triple (vr , t, history−) returned by B j .

Notice that, in step 4.(a), algorithm A1 needs to restart
itself from the beginning in case j + 1 �= γ , where γ is
the index chosen at step 1. This happens because A1 has
no control on the sequence of updating queries asked by
adversary B j , that is, it cannot decide in advance to which class
the encryption oracle Ekey(·) will be associated. Therefore,
A1 makes its guess at the beginning, by randomly choosing
an index γ ∈ {1, . . . , q(1τ , n)}, but it might fail. Clearly,
the success probability of A1 is equal to 1/q(1τ , n), meaning
that, in the worst case, A1 will need to restart itself q(1τ , n)
times.

Description of Algorithm A2(1τ , y, state).
1) First, A2 parses state in order to obtain the sequence

history−.
2) Then, A2 adds the missing value y in the sequence

history−, associating it to the edge (v�
j+1, v

r ). The

updated sequence of public information is denoted by
history.

3) Afterwards, A2 calls adversary B j on inputs 1τ , t , vr ,
history, and x1.

4) Finally, A2 outputs the same output as B j .
Notice that, if y corresponds to the encryption of x1, then

the random variable associated with the adversary’s view is
exactly the same as the one associated with the adversary
view in experiment Exph, j+1, whereas, if y corresponds to
the encryption of x0, it has the same distribution as the one
associated with the adversary’s view in experiment Exph, j .
Thus, if adversary B j is able to distinguish between such two
views with non-negligible advantage, it follows that adversary
A is able to break the security of the encryption scheme
� = (K, E,D) in the sense of IND-P1-C0. Contradiction.

Hence, for any j = 0, . . . , m − 1, experiments Exph, j and
Exph, j+1 cannot be distinguished with non-negligible advan-
tage. It follows that experiments Exph,0 and Exph,m cannot
be distinguished with non-negligible advantage, for any
h = n + 1, . . . , q(n, 1τ ). Therefore, no adversary Sh ,

for h = n + 1, . . . , q(n, 1τ ), distinguishes between
ExpIND−DYN−1Sh

(1τ , G) and ExpIND−DYN−0Sh
(1τ , G) with

non-negligible advantage.
c) Analysis of case 2: As done for Case 1, we can show

that no adversary Sh , where 1 ≤ h ≤ n, distinguishes between
ExpIND−DYN−1Sh

(1τ , G) and ExpIND−DYN−0Sh
(1τ , G) with non-

negligible advantage. The proof is similar to that for Case 1
and uses a sequence of m + 1 slightly different experiments

̂Exph,0,̂Exph,1, . . . ,̂Exph,m,

where m denotes the number of edges entering class vr .
More precisely, let μ < m be the number of edges enter-
ing class vr before the first updating operation; for each
j = 1, . . . , μ, experiment ̂Exph, j uses an algorithm Gen j ,
which is a modified version of the algorithm Gen used in
the TLEBC. Such an algorithm differs from Gen for the
way it computes the public information associated to the
first j edges entering class vr in the two-level hierarchy.
On the other hand, for each μ + 1 ≤ j ≤ m, experiment
̂Exph, j first uses the algorithm Genμ to compute the public
information associated to the first μ edges entering vr , then
uses the algorithm U pd j , described when analyzing Case 1,
in order to compute the public information associated to
edges from μ + 1 to j . As done before, we can show that
experiments ̂Exph,0 and ̂Exph,m cannot be distinguished with
non-negligible advantage, for any h = 1, . . . , n. Therefore,
no adversary Sh , for h = 1, . . . , n, distinguishes between
ExpIND−DYN−1Sh

(1τ , G) and ExpIND−DYN−0Sh
(1τ , G) with non-

negligible advantage.
To conclude, we have proven that no adversary Sh , for

h = 1, . . . , q(n, 1τ ), distinguishes between
ExpIND−DYN−1Sh

(1τ , G) and ExpIND−DYN−0Sh
(1τ , G) with

non-negligible advantage. Therefore, no dynamic adaptive
adversary ADAPT has non-negligible advantage in
distinguishing between experiments ExpIND−DYN−1ADAPT (1τ , G)
and ExpIND−DYN−0ADAPT (1τ , G). Thus, the TLEBC is secure in
the sense of IND-DYN-AD.

2) Performance of the Scheme: In this section we analyze
the performance of the TLEBC according to several para-
meters, such as space requirements for public and private
information, efficiency of key derivation and updating proce-
dures, and security. In detail, regarding the space requirements,
the TLEBC needs a public value for each edge in the graph
GT L used in the construction. More precisely, the number of
public values is |ET L | = O(|E∗|), where G∗ = (V , E∗) is
the directed graph that can be obtained from G = (V , E) by
adding to E all self-loops and edges which are implied by the
property of the transitive closure. On the other hand, each user
belonging to a certain class has to store a single secret value.
Moreover, users are required to perform a single decryption
in order to derive a key.

Regarding the efficiency of key derivation, we need to
specify which kind of encryption to use in our construction.
In order to obtain a hierarchical key assignment scheme that
is secure with respect to IND-DYN-AD, we can use the
IND-P1-C0 secure symmetric encryption scheme, called the
XOR construction, proposed in [51]. This construction makes



use of a function family F . Assuming that F is a pseudo-
random function family (which can be constructed from any
one-way function [52]), the XOR construction has been shown
to be secure in the sense of IND-P1-C0 (see [48], [51]).
The most efficient constructions for pseudorandom function
families were proposed by Naor and Reingold [53]. In their
proposals, the cost of evaluating a pseudo-random function is
comparable to two modular exponentiations. In practice, for
what concerns realistic applications, an efficient implemen-
tation of the resulting hierarchical key assignment scheme
could be obtained by using the HMAC [54] to realize the
function family F . We emphasize that the HMAC can be
instantiated through secure hash functions, and many of them
can be implemented efficiently directly on hardware, as for
example the SHA-3 Cryptographic Hash Standard, called
Keccak, recently released by NIST [55].

The TLEBC construction supports dynamic changes to the
hierarchy by means of local updates to the public information,
without requiring the re-distribution of private information to
classes affected by such changes (except for user revocation,
where such a re-distribution is needed). This also happens
in the Extended Construction in [10], in the TLEBC in [25]
and in the DEBC in [14]. In the following we compare our
scheme with respect to the above cited ones. In particular,
we clarify that our TLEBC construction is the same as the
one proposed in [25] when considering a single period of
time, thus no comparison between them is needed. As for
the Extended Construction in [10], our scheme is better, since
it benefits from the two-level feature of the hierarchy, after
the graph transformation performed by the Gen algorithm.
Indeed, such a feature allows to reduce the number of local
updates to the public information following dynamic updates.
For example, whenever an edge (u, v) has to be deleted from
the hierarchy, only a key replacement for the key kv , which
requires the computation of a single encryption later added
to the public information, is needed in our scheme. On the
other hand, the Extended Construction in [10] requires a
pseudorandom function evaluation and an encryption operation
for each class lower down class v. Moreover, whenever a key
replacement operation for a class v is needed, the extended
scheme in [10] also requires, besides local updates to the
public information, the update of the secret information sv ,
whereas, this does not happen in our construction. For the
same reasons already outlined before, compared to the DEBC
in [14], our construction requires a smaller number of local
updates to the public information after a dynamic update.

IV. CONCLUSIONS

In this work we have considered hierarchical key assign-
ment schemes supporting dynamic updates, such as inser-
tions and deletions of classes and relations between classes,
as well as key replacements and user revocations. We have
extended existing security notion for hierarchical key assign-
ment schemes, namely, security with respect to key indistin-
guishability, by providing the adversary with further attack
abilities. Then, we have shown how to construct a hierarchical
key assignment scheme supporting dynamic updates by using

as a building block a symmetric encryption scheme. It is
important to emphasize that this is the first available scheme
crafted for non-static environments, where the adversary is
allowed to dynamically update the hierarchy. The proposed
construction is provably secure with respect to key indistin-
guishability and requires a single computational assumption.
Moreover, it provides efficient key derivation and updating
procedures, while requiring each user to store only a single
private key. For its simplicity, effectiveness and robustness
the proposed scheme may result in a fundamental practice for
hierarchical access control applications in dynamic scenarios.
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