
Hierarchical and Shared Access Control
Arcangelo Castiglione, Alfredo De Santis, Member, IEEE, Barbara Masucci, Francesco Palmieri,

Aniello Castiglione, Member, IEEE, Jin Li, and Xinyi Huang

Abstract— Access control ensures that only the authorized
users of a system are allowed to access certain resources or
tasks. Usually, according to their roles and responsibilities, users
are organized in hierarchies formed by a certain number of
disjoint classes. Such hierarchies are implemented by assigning
a key to each class, so that the keys for descendant classes
can be efficiently derived from classes higher in the hierarchy.
However, pure hierarchical access may represent a limitation
in many real-world cases. In fact, sometimes it is necessary
to ensure access to a resource or task by considering both
its directly responsible user and a group of users possessing
certain credentials. In this paper, we first propose a novel model
that generalizes the conventional hierarchical access control
paradigm, by extending it to certain additional sets of qualified
users. Afterward, we propose two constructions for hierarchical
key assignment schemes in this new model, which are provably
secure with respect to key indistinguishability. In particular, the
former construction relies on both symmetric encryption and
perfect secret sharing, whereas, the latter is based on public-key
threshold broadcast encryption.

Index Terms— Generalized access control, generalized access
model, key assignment, provable security, shared key reconstruc-
tion, multiple access structures.

I. INTRODUCTION

NOWADAYS the current network-centric world has given
rise to several security concerns regarding access

control management, which ensures that only authorized users

A. Castiglione, A. De Santis, B. Masucci, F. Palmieri, and A. Castiglione
are with the Department of Computer Science, University of Salerno,
Salerno 84084, Italy (e-mail: arcastiglione@unisa.it; ads@unisa.i;
bmasucci@unisa.it; fpalmieri@unisa.it; castiglione@ieee.org).

J. Li is with the School of Computer Science, Guangzhou University,
Guangzhou 510006, China (e-mail: lijin@gzhu.edu.cn).

X. Huang is with the Fujian Provincial Key Laboratory of Network Security
and Cryptology, School of Mathematics and Computer Science, Fujian Normal
University, Fuzhou 350117, China (e-mail: xyhuang81@gmail.com).

are given access to certain resources or tasks. In particular,
according to their respective roles and responsibilities, users
are typically organized into hierarchies composed of several
disjoint classes (security classes). A hierarchy is characterized
by the fact that some users may have more access rights than
others, according to a top-down inclusion paradigm following
specific hierarchical dependencies. A user with access rights
for a given class is granted access to objects stored in that
class, as well as to all the descendant ones in the hierarchy.
The problem of key management for such hierarchies consists
of assigning a key to each class of the hierarchy, so that
the keys for descendant classes can be efficiently obtained
from users belonging to classes at a higher level in the
hierarchy.

A. Hierarchical Key Assignment Schemes

A hierarchical key assignment scheme (HKAS) is a method
for assigning an encryption key and some private information
to each class in the system. The encryption key will be used
by each class to protect its data by means of a symmetric
cryptosystem, whereas, the private information will be used by
each class to compute the keys assigned to all classes lower
down in the hierarchy. The use of cryptographic techniques to
address the key management problem in hierarchical structures
was first considered by Akl and Taylor [1], who proposed
a hierarchical key assignment scheme where each class is
assigned a key that can be used, along with some public
information generated by a trusted authority, to compute
the key assigned to any class lower down in the hierarchy.
Atallah et al. [2] first addressed the problem of formalizing
security requirements for HKASs and proposed two different
notions of security for such schemes: security against key
recovery and with respect to key indistinguishability. In the
former, an adversary is not able to compute a key which
cannot be derived by the users he has corrupted; whereas,
in the latter, the adversary is not able to distinguish the
key from a random string of the same length. Atallah et al.
also proposed the first provably-secure constructions based on
pseudorandom functions and symmetric encryption schemes.
Different constructions satisfying the above defined notions of
security were subsequently proposed in [3]–[12]. In particular,
De Santis et al. [4], [8] proposed two different constructions
satisfying security with respect to key indistinguishability: the
first one, which is based on symmetric encryption schemes,
is simpler than the one proposed in [2], with it requiring a
single computational assumption, and offering more efficient
procedures for key derivation and key updates; the second one,

• Published in: IEEE Transactions on Information Forensics and Security journal.
• © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

• The Version of Record is available online at: https://doi.org/10.1109/TIFS.2015.2512533

which is based on a public-key broadcast encryption scheme,
allows to obtain a hierarchical key assignment scheme offering
constant private information and public information that is
linear in the number of classes. D’Arco et al. [6], [7] analyzed
the Akl-Taylor scheme according to the definitions proposed
in [2] and showed how to choose the public parameters in order
to obtain instances of the scheme which are secure against key
recovery under the RSA assumption. Moreover, they showed
how to turn the Akl-Taylor scheme into a construction offering
security with respect to key indistinguishability; however, such
a scheme, is less efficient than the constructions proposed
in [2], [4], and [8]. Freire et al. [13] proposed new security
definitions for hierarchical key assignment schemes. Such
definitions, called security against strong key recovery and
security with respect to strong key indistinguishability, provide
the adversary with additional compromise capability. Freire et
al. showed how the notions of security against key recovery
and against strong key recovery are separated. On the other
hand, in [14] it has been proven that security with respect to
strong key indistinguishability is not stronger than the one with
respect to key indistinguishability, thus establishing the equiv-
alence between such two security notions. A similar result has
been shown in the unconditionally secure setting [15]. Finally,
Ateniese et al. [3], [10] extended the model proposed in [2]
to schemes satisfying additional time-dependent constraints
and proposed two different constructions offering security
with respect to key indistinguishability. Other constructions
for time-dependent schemes, offering different trade-offs with
respect to the amount of public and private information, as
well as to the complexity of key derivation, were shown
in [5], [9], [16], and [17].

B. Limitations of Hierarchical Key Assignment Schemes

In addition to conventional hierarchical access, sometimes
it is necessary to provide some particular sets of users, having
specific access credentials, with access to the key of a certain
security class. This novel access control model finds a natural
field of application even when there is the need to manage
unusual, exceptional or emergency situations, which in general
require special permissions. In particular, consider the case
in which the trust is based on a single entity, let it be a
person or an organization. Obviously, this may lead to abuses
or violations by such entity, as in the Snowden event [18],
where a great deal of confidential information held by the
U.S. National Security Agency (NSA) was stolen. However,
the NSA itself has defined in the past some strict guidelines
for limiting such abuses, namely, the Orange Book [19] and
Two-Person Authorization [20], [21], whose main goal was
to prevent a single user from viewing top-secret documents.
The concept upon which the guidelines are based is that, in
general, somebody is less inclined to do something dishonest
if someone else is watching. In addition, the two guidelines
clearly state that the information within a system must be
organized in a “compartmental manner”, providing different
levels of access and security to each compartment. In this
case, a simple protection may be to use two or more “locks”
to protect a given resource or activity, where each lock needs a

different key, owned by a different person. Thus, two or more
people are needed in order to grant the access to that resource
or activity.

The Snowden event highlights the fact that the collaboration
among several users and organizations is preferable for gaining
the permission to carry out a given task or to access sensitive
information. Such collaboration is needed so as to ensure
that the requested permission has been granted through the
acceptance and agreement among all the involved entities,
thus preventing users from any kind of abuse. In general,
the collaboration characterizes scenarios where more than one
entity is required to achieve a specific authorization. More
precisely, there are many real-world scenarios in which such a
collaborative access is necessary, i.e., where a user might have
a sort of “pre-authorization” for the access, but he may need
to get the approval from someone else. For example, consider
the healthcare environment, which typically consists of several
professional profiles, such as doctors, nurses, etc.. In this
environment, nurses may access a subset of stored patient’s
clinical data, while a doctor can usually access all the data.
However, it is important to emphasize that the doctor and nurse
must have the patient’s consent to access clinical information.
In addition, a nurse should not access all the information
concerning a patient, unless she does not gain the permission
from both patient and doctor. Moreover, if a doctor wants to
access some clinical data without the explicit consent of the
patient, he should be granted permission from several entities,
e.g., hospital administration, medical committee, government
authority, etc..

Again, the access to the workspace of a specific project
branch could be granted either directly to the project manager
or to a set of project team members. The same arguments apply
to distributed cryptographic file systems [22]. A further real
field of application lies in the collaborative access to logs con-
cerning accesses and events, where the access can be achieved
either by a single entity (e.g., a communications authority)
or by more of them, which cooperate with each other. For
example, the access might be allowed only if the judicial
authority cooperates with a given service provider. Another
concrete example arises from the military field, in which a
decision can be taken by a single person with a specific rank,
by a certain number of his subordinates or more generally, by
a given number of people with certain credentials, which do
not have the authority to decide on their own. Furthermore,
consider a committee board composed of several members and
a general chair. In this context, the chair might be away for
personal reasons or could be in a situation which prevents
him from making any decisions for a given action. Only one
member of the board cannot independently take such a deci-
sion on behalf of the chair. However, the board members can
collectively take such a decision on behalf of the chair, as long
as their number is greater than or equal to a certain threshold.

All the aforementioned considerations and examples bring
to light the fact that hierarchical and shared key assignment
schemes are required in many cases. A hierarchical and shared
key assignment scheme (HSKAS) should assign an encryption
key and some private information to each class in the system in
such a way that the private information of a group of qualified

TABLE I

FUNCTION φ OF THE DIRECTED MULTIGRAPH SHOWN IN FIGURE 1

users is jointly required in order to compute the key assigned
to a class lower down in the hierarchy.

C. Contributions

In this paper we first propose and formalize a novel access
control model which prevents the abuse of permissions, defines
alternative methods for gaining such permissions and allows
the separation of duties. The model also enables collaboration
among a set of users to gain specific permissions, defining
the way in which such collaboration takes place. Furthermore,
we formalize the notion of key indistinguishability regarding a
new access model. Again, we propose two constructions which
implement such a novel access control model. In particular,
our first proposal, denoted as the Shared Encryption Based
Construction (SEBC), uses as its basic building blocks a
symmetric encryption scheme and a perfect secret sharing
scheme, and offers security with respect to key indistin-
guishability. Our second proposal, denoted as the Threshold
Broadcast Encryption Based Construction (TBEBC), is based
on a public-key threshold broadcast encryption scheme and
provides security against key indistinguishability.

D. Organization

This paper is organized as follows. In Section II we formally
define the model we propose, by focusing on its specific
security properties. In Section III we provide our constructions
for hierarchical and shared key assignment, along with the
relative security proofs. Finally, in Section IV we draw some
conclusions.

II. THE MODEL

Consider a set of users divided into a number of disjoint
classes, called security classes. A security class can represent
a person, a department, or a user group within an organization.
According to their roles, competencies and responsibilities,
security classes are often organized as a hierarchy.

There are several practical situations in which collaboration
from users belonging to different security classes is needed, in
order to access sensitive data belonging to a certain class lower
down in the hierarchy. For example, a user could be part of
multiple groups at the same time, and each of them could be
associated to different access permissions. On the other hand,
even the resource being accessed may require different access
policies, according to those who access it. This problem can
be solved by using a hierarchical and shared access control,
where collaboration between classes is required to make sure
that the access right to the private data held by a class v has
been granted with the agreement of some particular users.

Fig. 1. Example of a directed multigraph characterizing our novel access
control model.

All of these situations and usage scenarios can be modeled
by means of a directed multigraph, namely, a directed graph
that can have more than one edge between the same pair of
vertices. The presence of an edge e connecting a class u to
a class v means that class u is involved in a shared access
control for class v’s data. Moreover, since each class can
obviously access the resources held by itself, the multigraph
also contains “self-loops”. However, from now on, for the
sake of simplicity, we will not mention of such type of loops.
Formally, a directed multigraph is a triple G = (V , E, φ),
where V is a set of vertices, E is a set of edges, and φ is
a function which associates each edge in E to its endpoints,
that is: φ : E → V × V . The edges e1 and e2 are said to
be multiple or parallel if it holds that φ(e1) = φ(e2). For
example, consider the directed multigraph G = (V , E, φ)
depicted in Figure 1, where V = {a, b, c, d, e, f, g, h, i, l},
E = {e1, e2, · · · , e18} and φ is the function defined in Table I.
Multiple edges are represented by dashed lines. In general, a
subgraph H = (V ′, E ′, φ′) of a multigraph G = (V , E, φ) is a
multigraph whose underlying graph is a subgraph of that of G
and its function φ′ is dominated by φ, that is, the multiplicity
of an edge in H does not exceed its multiplicity in G.

Why do we need multiple edges to model hierarchical and
shared access control? The reason is that, in our new model,
each class might be associated to different access structures,
corresponding to different access rights/permissions. Given a
directed multigraph G = (V , E, φ), for each class v ∈ V ,
let Iv ⊂ E be the set of edges ending in v. In this paper
we consider the general situation where more than one access
structure can be associated to each class in the multigraph.
More precisely, for any v ∈ V , let mv ≥ 1 be an integer,

let P1
v , . . . ,Pmv

v be mv subsets of Iv , and let A1
v , . . . ,Amv

v

be mv access structures for class v on the sets P1
v , . . . ,Pmv

v ,
respectively. For each v ∈ V , let Av = {A1

v , . . . ,Amv
v } be the

family of all access structures associated to class v and let
AG = {Av }v∈V . Notice that, if a hierarchical, but not shared,
access control for a class v is required, we can simply associate
to the class v a single access structure containing all the edges
in Iv , thus requiring no collaboration among classes in order
to access v’s data. In this case, two parallel edges make no
difference, since they represent the same access right.

The proposed access model finds natural application espe-
cially in the so-called “multi-domain environments”, namely, in
all those environments in which there are different cooperating
entities, each of them with different interests, responsibilities
and tasks to perform. It is important to emphasize that a
particular entity, depending on the context and the role which it
assumes, may have different roles towards another given entity
to which it intends to be granted access. Informally speaking,
an entity can take on several tasks, and according to the
assumed role it may have different access rights. On the other
hand, a certain security class can provide the same entity with
different access rights, according to the tasks performed by the
latter in that particular context at that particular time. Clearly,
at a given time an entity may need to take simultaneously all
of its different tasks. In detail, an entity may assume one or
more roles, each belonging to the characterization of a specific
access structure, for a certain security class.

A. A Motivating Example

One of the most popular examples of multi-domain environ-
ments is obviously the one concerning healthcare. In particular,
consider the multigraph shown in Figure 1, let f be the
security class characterizing all the data related to a specific
patient. It is easy to note that the set I f is composed of seven
elements, namely, I f = {e1, e2, e3, e13, e14, e15, e16}. Without
loss of generality, one of the possible characterizations for
such set may be the following:

• Enti tya
f (Health director) = {e1, e13}, where Rolee1

f =
{Scientific Manager} and Rolee13

f ={Administrative
Manager};

• Enti tyb
f = {e2}, where Rolee2

f = {Insurance Company};
• Enti tyc

f (Doctor) = {e3, e15}, where Rolee3
f = {Special-

ist} and Rolee15
f = {Common Practitioner};

• Enti tyd
f = {e16}, where Rolee16

f = {Patient’s Family};
• Enti tye

f = {e14}, where Rolee14
f = {Administrative

Office}.

Therefore, starting from the I f set, the following three
access structures for the class f , that is to say, A1

f ={{e1,
e2, e3}, {e13, e14},{e15, e16}}, A2

f ={{e13, e16}, {e2, e14},
{e1, e3, e15}} and A3

f ={{e2, e13}, {e15, e16}, {e1, e3, e14}},
might be characterized. For example, the first access structure,
denoted as A1

f , could model the scenario in which the patient

belonging to the class f is involved in a legal dispute for insur-
ance issues. Instead, the access structure denoted as A2

f can
model the situation in which the patient intends to participate
in the experimentation of a particular drug, therefore he needs

to be subjected to some specific investigations and clinical
evaluations. Finally, the access structure denoted as A3

f can
model the case in which the patient finds out to have a specific
congenital disease, and for this reason needs to take out a new
insurance policy on his health, consequently canceling the old
one. Obviously, the three examples of access structure we pro-
vide for the class f , along with their relative characterizations,
although concrete are extremely trivial. However, as it is easy
to observe, the proposed model, because of its generality, is
virtually able to represent any set of scenarios which may
potentially occur in real life.

B. Hierarchical and Shared Key Assignment Schemes

Let G = (V , E, φ) be a directed multigraph and let AG =
{Av}v∈V be the family of all access structures associated to
the classes in V . For any X ⊆ V , we are going to define the
set of classes AX which can be accessed when classes in X
collaborate together. Such a set will be constructed by using
a Breadth-First-Search (BFS) on G, starting from the set X .

More precisely, starting from X , we will explore the multi-
graph G outgoing from X in all possible directions, adding
classes one layer at a time, according to the access structures
associated to the classes. First, notice that X ∈ AX , since
each class in X is authorized to access itself, with no need of
cooperation. In particular, we denote by A0

X = X the set of
classes added at this step, also called zero level of cooperation.
Then, we start from X and include all the classes u ∈ V for
which there exists a subset Y ⊆ X such that the set EY of
edges whose source classes are in Y belongs to at least one
of the access structures associated to u. This is the first layer
of cooperation, and the corresponding set of classes is denoted
by A1

X . We then include all the additional classes u ∈ V for
which there exists a subset Y ⊆ A1

X such that the set EY of
edges whose source classes are in Y belongs to at least one
of the access structures associated to u. This is the second
layer of cooperation, and the corresponding set of classes is
denoted by A2

X . We continue in this way until there are no
more layers to be explored, i.e., until the set Adiam(G)

X has
been constructed, where diam(G) denotes the diameter of G.
The set of classes AX which can be accessed when classes in
X collaborate together is naturally defined to be the union of
the sets constructed in the different layers.

Formally, for each set of classes X ⊆ V and for each level
j = 0, . . . , diam(G), we define the set A j

X corresponding to
the set of classes which can be accessed by X at the j -th level
of cooperation, as follows:
• A0

X = X ;

• A j
X = {v ∈ V : ∃Y ⊆ A j−1

X s. t. EY ∈ Ai
v , for some

i ∈ {1, . . . , mv}}.
The set of classes AX which can be accessed when classes
in X collaborate together is defined to be

AX = ∪diam(G)
j=0 A j

X .

Consider the multigraph depicted in Figure 1 and let
A1

f ={{e1, e2, e3}, {e13, e14},{e15, e16}}, A2
f ={{e13, e16},

{e2, e14}, {e1, e3, e15}} and A3
f ={{e2, e13}, {e15, e16},

{e1, e3, e14}} be three access structures associated to class f .

Moreover, let Ag = {{e4, e5, e7}}, Ah = {{e6, e7}, {e17, e18}},
Ai = {{e10, e11}}, and Al = {{e9, e12}} be the access
structures associated to classes g, h, i , and l, respectively. Let
X = {b, c, d, e}. It is easy to see that AX = {b, c, d,
e, f, g, h, i, l}. Indeed, A0

X = {b, c, d, e}, A1
X = { f, g, h},

and A2
X = {i, l}.

We are now ready to give a formal definition for hierarchical
and shared key assignment schemes.

Notation: If B(·, ·, . . .) is any probabilistic algorithm then
b ← B(x, y, . . .) denotes the experiment of running B on
inputs x, y, . . . and letting b be the outcome, the probability
being over the coins of B . Similarly, if X is a set then x ← X
denotes the experiment of uniformly selecting an element from
X and assigning x this value. If w is neither an algorithm nor a
set then x ← w is a simple assignment statement. A function
ε : N → R is negligible if, for every constant c > 0, there
exists an integer nc such that ε(n) < n−c for all n ≥ nc.

Definition 1: A hierarchical and shared key assignment
scheme for (G,AG) is a pair (Gen, Der) of algorithms
satisfying the following conditions:

1) The information generation algorithm Gen is probabilis-
tic polynomial-time. It takes as inputs the security para-
meter 1τ , a directed multigraph G = (V , E, φ) and the
corresponding set of families of access structures AG ,
and produces as outputs:

a) a private information su , for any class u ∈ V ;
b) a key ku ∈ {0, 1}τ , for any class u ∈ V ;
c) a public information pub.

We denote by (s, k, pub) the output of the algorithm
Gen on inputs 1τ , G and AG , where s and k denote the
sequences of private information and of keys, respec-
tively. Moreover, for any X ⊆ V , we denote by sX the
sequence of private information associated to the classes
in X .

2) The key derivation algorithm Der is deterministic
polynomial-time. It takes as inputs the security para-
meter 1τ , a directed multigraph G = (V , E, φ) and the
corresponding set of families of access structures AG , a
set of classes X ⊆ V , the private information sX held by
classes in X , a class u ∈ AX , and the public information
pub, and produces as output the key ku assigned to a
class u.
We require that for each class u ∈ V , each set of
classes X ⊆ V , each sequence of private information sX

associated to classes in X , each class u ∈ AX , each
key ku , each public information pub which can be
computed by Gen on inputs 1τ , G and AG , it holds
that Der(1τ , G,AG , X, sX , u, pub) = ku .

C. Evaluation Criteria and Notions of Security

The efficiency of a hierarchical and shared key assignment
scheme is evaluated according to several parameters, such as
the amount of secret data that needs to be distributed to and
stored by users, the amount of public data, the complexity
of key derivation, and the resistance to collusive attacks.
More precisely, for each class u ∈ V , the key ku should be
protected against any coalition of users which are not allowed

to access such class, even when pooling together their private
information.

Atallah et al. [2] first introduced two different security
notions for hierarchical key assignment schemes where no
cooperation between users is required: security with respect
to key indistinguishability and security against key recovery.
Security with respect to key indistinguishability formalizes
the requirement that the adversary is not able to learn any
information (even a single bit) about a key that it should
not have access to, i.e., it is not able to distinguish it
from a random string having the same length. On the other
hand, security against key recovery corresponds to the weaker
requirement that an adversary is not able to compute a
key that it should not have access to. Examples of hierar-
chical key assignment schemes requiring no shared access
control and satisfying the above requirements can be found
in [3], [4], and [6]–[10]. In this paper we only consider
security with respect to key indistinguishability and against
polynomially bounded adversaries. Instead, two efficient con-
structions for the unconditionally secure setting may be found
in [15], [23], and [24].

We consider a static adversary STATu,X that wants to attack
a class u ∈ V and which is able to corrupt a set of classes X
such that u �∈ AX . We define an algorithm Corruptu(s, X)
which, starting from the private information s generated by the
algorithm Gen, and a coalition of classes X such that u �∈ AX ,
extracts the sequence of private information sX associated to
the classes in X . Two experiments are considered. In the first
one, the adversary is given the key ku , whereas, in the second
one, it is given a random string ρ having the same length as ku .
It is the adversary’s job to determine whether the received
challenge corresponds to ku or to a random string. We require
that the adversary will succeed with probability only negligibly
different from 1/2.

Definition 2 [IND-ST]: Let G = (V , E, φ) be a directed
multigraph and let AG be the corresponding set of families of
access structures, let (Gen, Der) be a hierarchical and shared
key assignment scheme, and let STATu,X be a static adversary
which attacks a class u ∈ V and corrupts a set of classes X
such that u �∈ AX . Consider the following two experiments:

Experiment ExpIND−1STATu,X
(1τ , G,AG)

(s, k, pub)← Gen(1τ , G,AG)
sX ← Corruptu (s, X)
d ← STATu,X (1τ , G,AG , pub, sX , ku)
return d

Experiment ExpIND−0STATu,X
(1τ , G,AG)

(s, k, pub)← Gen(1τ , G,AG)
sX ← Corruptu (s, X)
ρ ← {0, 1}τ
d ← STATu,X (1τ , G,AG , pub, sX , ρ)
return d

The advantage of STATu,X is defined as

AdvINDSTATu,X
(1τ , G,AG)= |Pr [ExpIND−1STATu,X

(1τ , G,AG)=1]
−Pr [ExpIND−0STATu,X

(1τ , G,AG)=1]|
The scheme is said to be secure in the sense of IND-ST

if, for each directed multigraph G = (V , E, φ), each
family of access structures AG , each class u ∈ V and

each set of classes X such that u �∈ AX , the function
AdvINDSTATu,X (1

τ , G, AG) is negligible, for each static adversary
STATu,X whose time complexity is polynomial in τ .

In Definition 2 we have considered a static adversary attack-
ing a class. A different kind of adversary, the adaptive one,
could also be considered. Such an adversary is first allowed to
access all public information as well as all private information
of a number of classes of its choice; afterwards, it chooses the
class it wants to attack. However, following the lines of [10],
it can be shown that security against adaptive adversaries is
(polynomially) equivalent to security against static adversaries.
Hence, in this paper we will only consider static adversaries.

III. CONSTRUCTIONS

In this section we propose two different constructions for
hierarchical and shared key assignment schemes. The former,
denoted as the Shared Encryption Based Construction (SEBC),
is based on symmetric encryption and perfect secret sharing
schemes, whereas, the latter, denoted as the Threshold Broad-
cast Encryption Based Construction (TBEBC), is based on
threshold broadcast encryption schemes. Both the proposed
constructions are provably secure with respect to key indistin-
guishability.

A. A Construction Based on Symmetric Encryption

In the following we consider the problem of constructing a
hierarchical and shared key assignment scheme by using as its
basic building blocks a symmetric encryption scheme and a
perfect secret sharing scheme. Before describing our construc-
tion, we first recall the definitions of symmetric encryption
schemes and perfect secret sharing schemes.

1) Symmetric Encryption Schemes: A symmetric encryption
scheme is a triple � = (K, E,D) of algorithms satisfying the
following conditions:

1) The key-generation algorithm K is probabilistic
polynomial-time. It takes as input the security parameter
1τ and produces as output a string key.

2) The encryption algorithm E is probabilistic polynomial-
time. It takes as inputs 1τ , a string key produced
by K(1τ), and a message m ∈ {0, 1}∗, and produces
as output the ciphertext y.

3) The decryption algorithm D is deterministic polynomial-
time. It takes as inputs 1τ , a string key produced by
K(1τ), and a ciphertext y, and produces as output a
message m. We require that for any string key which
can be output by K(1τ), for any message m ∈ {0, 1}∗,
and for all y that can be output by E(1τ , key, m), we
have that D(1τ , key, y) = m.

In the following we define what we mean by a secure
symmetric encryption scheme. We formalize security with
respect to plaintext indistinguishability, which is an adap-
tion of the notion of polynomial security as given in [25].
We consider an adversary A = (A1, A2) running in two stages.
In advance of the adversary’s execution, a random key (key)
is chosen and kept hidden from the adversary. During the
first stage, the adversary A1 outputs a triple (x0, x1, state),
where x0 and x1 are two messages of the same length, and
state is some state information which could be useful later.

One message between x0 and x1 is chosen at random and
encrypted to give the challenge ciphertext y. In the second
stage, the adversary A2 is given y and state and has to
determine whether y is the encryption of x0 or x1. Informally,
the encryption scheme is said to be secure with respect to a
non-adaptive chosen plaintext attack, denoted by IND-P1-C0
in [26], if every polynomial-time adversary A, which has
access to the encryption oracle only during the first stage of the
attack and has never access to the decryption oracle, succeeds
in determining whether y is the encryption of x0 or x1 with
probability only negligibly different from 1/2 (random guess).

In an adaptive chosen plaintext attack the adversary is also
allowed to access the encryption oracle during the second stage
of the attack. Notice that security with respect to such attack
has been shown to be equivalent to the one with respect to a
non-adaptive chosen plaintext attack in [26], thus in this paper
we will only consider security with respect to IND-P1-C0.

Definition 3 [IND-P1-C0]: Let � = (K, E,D) be a sym-
metric encryption scheme and let τ be a security parameter.
Let A = (A1, A2) be an adversary which has access to the
encryption oracle only during the first stage of the attack
and has never access to the decryption oracle. Consider the
following two experiments:

Experiment ExpIND−P1−C0−1�,A (1τ)Experiment ExpIND−P1−C0−0�,A (1τ)

key← K(1τ) key← K(1τ)

(x0, x1, state)←A
Ekey (·)
1 (1τ) (x0, x1, state)←A

Ekey (·)
1 (1τ)

y←Ekey(x1) y←Ekey(x0)
d ← A2(1τ , y, state) d ← A2(1τ , y, state)
return d return d

The advantage of A is defined as

AdvIND−P1−C0�,A (1τ) = |Pr [ExpIND−P1−C0−1�,A (1τ) = 1]
−Pr [ExpIND−P1−C0−0�,A (1τ) = 1]|.

The scheme is said to be secure in the sense of IND-P1-C0
if the advantage function AdvIND−P1−C0�,A (1τ) is negligible, for
any adversary A whose time complexity is polynomial in τ .

The XOR Construction for Symmetric Encryption Schemes:
In order to construct an encryption scheme secure in the
sense of IND-P1-C0 we could use a pseudorandom function
family, an important cryptographic primitive originally defined
by Goldreich et al. [27]. Loosely speaking, a distribution
of functions is pseudorandom if it satisfies the following
requirements: 1) It is easy to sample a function accord-
ing to the distribution and to evaluate it at a given point;
2) It is hard to tell apart a function sampled according to
the distribution from a uniformly distributed function, given
access to the function as a block-box. A first construction,
based on pseudorandom generators, was proposed in [27]. It is
well known that pseudorandom generators can be constructed
from one-way functions [28], [29]. The two most efficient
constructions were proposed by Naor and Reingold [30].
In particular, they showed a first construction, based on the
hardness of factoring Blum integers, and a second one, based
on the decisional version of the Diffie-Hellman assumption.
In their constructions, the cost of evaluating such functions is
comparable to two modular exponentiations.

Consider the following construction, called the XOR con-
struction [31], of a symmetric encryption scheme �X O R,F =
(KX O R, EX O R ,DX O R) which is based on a pseudorandom
function family F : {0, 1}τ × {0, 1}τ → {0, 1}τ :
• The key generation algorithm KX O R outputs a random

τ -bit key ρ for the pseudorandom function family F ,
thus specifying a function Fρ of the family.

• The encryption algorithm EX O R considers the message
x to be encrypted as a sequence of τ -bits blocks
x = x1 · · · xn (padding is done on the last block, if
necessary), chooses a random string r of τ bits and
computes, for i = 1, . . . , n the value yi = Fρ(r + i)⊕ xi .
The ciphertext is r ||y1 · · · yn , where || denotes string
concatenation.

• The decryption algorithm DX O R , on input a ciphertext z,
parses it as r ||y1 · · · yn and computes, for i = 1, . . . , n
the value xi = Fρ(r+i)⊕yi . The corresponding plaintext
is x = x1 · · · xn .

The encryption scheme �X O R,F has been shown to be
secure in the sense of IND-P1-C0 (see [26], [31]), assuming
that F is a pseudorandom function family. An efficient imple-
mentation of such a scheme could be obtained by using the
HMAC [32] to realize the pseudorandom function family F .

2) Perfect Secret Sharing Schemes: A secret sharing scheme
� = (Share, Recover) is a pair of algorithms run by a
dealer and a set P of n participants. The Share algorithm
is executed by the dealer who, given a secret s, computes
some shares s1, . . . , sn of such secret and gives each par-
ticipant one share. The shares are computed in such a way
that only qualified subsets of participants can reconstruct
the value of s, by using the Recover algorithm on input
their shares, whereas any other subset of participants, non-
qualified to know s, cannot determine anything about the
value of the secret. Secret sharing schemes were introduced by
Shamir [33] and Blakley [34] and have found applications in
several areas of Data Security. Shamir and Blakley analyzed
the case in which only subsets of participants of cardinality
at least h, for a fixed integer h ≤ n, can reconstruct the
secret. These schemes are called (h, n)-threshold schemes.
Subsequently, Ito et al. [35] and Benaloh and Leichter [36]
described a more general method of secret sharing. They
showed how to realize a secret sharing scheme for any access
structure, where the access structure is the family of all the
subsets of participants that are able to reconstruct the secret.
The survey by Stinson [37] contains an unified description of
results in the area of secret sharing schemes.

In this paper with a boldface capital letter, say Y, we denote
a random variable taking values on a set, denoted by the
corresponding capital letter Y , according to some probability
distribution {PrY(y)}y∈Y . The values such a random variable
can take are denoted by the corresponding lower case letter.
Let S be the set of secrets, {PrS(s)}s∈S be a probability distri-
bution on S and let a secret sharing scheme for secrets in S be
fixed. Assume for the rest of the paper that Pr(S = s) > 0 for
all s ∈ S. Let P be the set of participants, and for any P ∈ P ,
let us denote by Sh(P) the set of all possible shares given to
participant P . Given a set of participants X = {Pi1 , . . . , Pir },
where i1 < i2 < · · · < ir , let Sh(X) = Sh(Pi1)×· · ·×Sh(Pir).

Any secret sharing scheme for secrets in S and a probability
distribution {PrS(s)}s∈S naturally induce a probability distri-
bution on Sh(X), for any X ⊆ P . We denote such probability
distribution by {PrX(x)}x∈Sh(X).

In terms of the probability distribution on the secret and
on shares given to participants, we say that a secret sharing
scheme � = (Share, Recover) for the access structure A is
perfect if the following two conditions hold:

1) Any subset X ⊆ P of participants enabled to recover
the secret can compute the secret. Formally, if X ∈ A,
then, for all x ∈ Sh(X) with Pr(X = x) > 0, a unique
secret s ∈ S exists such that Pr(S = s|X = x) = 1.

2) Any subset X ⊆ P of participants not enabled to recover
the secret has no information about the secret. Formally,
if X �∈ A, then, for all s ∈ S and for all x ∈ Sh(X) with
Pr(X = x) > 0, it holds that Pr(S = s|X = x) =
Pr(S = s).

In detail, Condition 1) means that the value of the shares
held by participants in the qualified set X completely deter-
mines the secret s ∈ S. Instead, Condition 2) means that the
probability that the secret is equal to s given that the shares
held by participants in the non-qualified set X correspond
to the sequence x , is equal to the a priori probability that
the secret is s. Therefore, no amount of knowledge of shares
of participants not qualified to reconstruct the secret enables
a Bayesian opponent to modify an a priori guess regarding
which the secret is.

It is well known that, in any perfect secret sharing scheme,
the size of the share given to any participant is at least the
size of the secret [38]. The sample space of shares given to
any group of participants in a perfect secret sharing scheme,
as a function of the size of the set of secrets has also been
considered [39]. In particular, Blundo et al. [39] proved the
following result, which will be useful later.

Remark 4: Let A be an access structure on the set of
participants P . In any perfect secret sharing scheme for A
for any X �∈ A, it holds that Pr(X = x) = 1/|S|, for any
x ∈ Sh(X).

Shamir’s Threshold Schemes: In the following we recall
the (h, n)-threshold scheme proposed by Shamir [33]. Let
q > n be a prime number, let s ∈ Zq be the secret to
be shared among the n participants and let h ≤ n be a
fixed threshold. Let x1, . . . , xn be n distinct non-zero elements
in Zq known to all the parties (since q is a prime, then
we can take x j = j). To set up the scheme, the dealer
constructs a random polynomial a(x) of degree at most h−1,
having coefficients in Zq , in which the constant term is the
secret s. The share for participant Pi is the point (xi , yi) of the
polynomial a(x).

The correctness and privacy of Shamir’s scheme derive from
the Lagrange’s interpolation theorem, which states that for any
h distinct values xi1 , . . . , xih and any h values yi1 , . . . , yih ,
there exists a unique polynomial a′(x) of degree at most
h − 1 over Zq such that a′(xi j) = yi j , for j = 1, . . . , h.
To see that Shamir’s scheme is correct, notice that every set
of participants {Pi1 , . . . , Pih } holds h points si1 , . . . , sih of
the polynomial a(x), hence each set can reconstruct it using
Lagrange’s interpolation and compute s = a(0). The set of

participants computes

a′(x) =
h∑

�=1

si�

∏

1≤ j≤h, j �=�

xi j − x

xi j − xi�
.

Notice that a′(xi�) = si� = a(xi�), for � = 1, . . . , h. That
is to say, a′(x) and a(x) are polynomial of degree at most
h − 1 which agree on h points, thus, by the uniqueness in
the interpolation theorem, they are equal, and, in particular,
a′(0) = a(0) = s.

In fact, they know that yi j = a(xi j), for 1 ≤ j ≤ h.
Since a(x) has degree at most h − 1, a(x) can be written
as a(x) = a0 + a1x + · · · + ah−1xh−1, where a0, . . . , ah−1
are unknown elements in Zq and a0 = s is the secret. Thus,
the participants obtain a system of h linear equations in the h
unknowns a0 . . . , ah−1. Such a system can be represented in
matrix form as Aa = y, where the coefficient matrix A is a
Vandermonde matrix, whose determinant can be computed as
det (A) = ∏

1≤ j<t≤h(xih − xi j) mod q . Since the xi ’s are all
distinct, then det (A) �= 0 and it follows that the system has a
unique solution over the field Zq . Therefore, the h participants
can reconstruct the whole polynomial a(x) and compute the
secret s = a(0).

On the other hand, any h − 1 participants have no infor-
mation about the secret s. Proceeding as above, the group of
participants obtain a system of h−1 equations in h unknowns.
Suppose they hypothesize a value s′ for the secret. Since the
secret is a(0) = a0, this will yield a further equation, and the
coefficient matrix of the resulting system of h equations in h
unknowns will again be a Vandermonde matrix. As before,
there will be a unique solution. Hence, for every hypothesized
value s′ of the secret, there is a unique polynomial a′(x) such
that yi j = a′(xi j) for any j = 1, . . . , h − 1 and such that
s′ = a′(0). Hence, no value of the secret can be ruled out,
and thus a group of h − 1 participants obtain no information
about the secret.

3) The Shared Encryption Based Construction: In the fol-
lowing we consider the problem of constructing a hierarchical
and shared key assignment scheme by using as building blocks
a symmetric encryption scheme and a perfect secret sharing
scheme.

Rationale Behind the Construction: The idea behind our
construction is similar to the one used in the EBC (Encrypted
Based Construction) [8]. In the proposed construction, each
class v ∈ V is assigned a private information sv , an encryption
key kv , and a public information πv , which is the encryption
of kv using the private information sv as a key. Moreover,
for each class v ∈ V and for each edge e ∈ Iv , there is a
public value pe. If no shared access control for class v’s data
is needed (recall that in this case we can consider the trivial
access structure Av = Iv), the value pe is computed as the
encryption of the secret sv , using the private information su

as a key, where u and v are the endpoints of the edge e,
i.e., φ(e) = (u, v). On the other hand, if a shared access
control on class v’s data is needed, we have to consider
the mv access structures A1

v , . . . ,Amv
v associated to class v.

The idea is to use a perfect secret sharing scheme for each
j = 1, . . . , mv , in order to compute the shares of the private

Fig. 2. Gen algorithm of the Shared Encryption Based Construction.

information sv according to the access structure A j
v on the

set of edges P j
v . More precisely, let e ∈ P j

v such that

φ(e) = (u, v), and let s j,u
v be the share for the secret sv

associated to the edge e, according to the access structure A j
v .

Such a share is encrypted with the private information su as a
key and corresponds to the public value pe associated to the
edge e.

Given a class v ∈ V , any set of classes X such that
v ∈ AX can obtain a set of shares for the secret sv , decrypting
some public values. Such shares allow for the computation of
the secret sv , which can then be used to decrypt the public
value πv , in order to get the key kv . We will show that a static
adversary attacking a class u and corrupting a set of classes X
such that u �∈ AX , is not able to distinguish the key ku from
a random string of the same length unless it is able to break
the underlying encryption scheme.

Let G = (V , E, φ) be a directed multigraph and let
AG be a family of access structures associated to classes
in V . Let � = (K, E,D) be a symmetric encryption scheme,
and, for any v ∈ V and any j = 1, . . . , mv , let
�

j
v = (Share j

v , Recover j
v) be a perfect secret sharing

scheme for the access structure A j
v . The information gen-

eration algorithm Gen of the SEBC is shown in Figure 2,
whereas, the relative key derivation algorithm Der is shown
in Figure 3.

The SEBC associates a public value pe to each edge e ∈ E ,
as well as a public value πu to each class u ∈ V .

4) Analysis of the Scheme: In this section we show that
the security property of the SEBC depends on the security
properties of the underlying encryption scheme and of the
perfect secret sharing scheme.

In particular, we show that if there exists an adversary
able to break the security of the SECB in the sense of
IND-ST, that is to say, which it is able to distinguish a value
assigned by the SEBC from a randomly chosen one, then such
an adversary can be used as a “black-box” to construct an

Fig. 3. Der algorithm of the Shared Encryption Based Construction.

adversary which breaks the underlying symmetric encryption
scheme with respect of IND-P1-C0.

Our proof is essentially based on two well known concepts,
referred to as black-box reductions and hybrid arguments.
A black-box reduction is used to show that, given a crypto-
graphic protocol P f constructed from a cryptographic primi-
tive f , if the protocol P f can be broken somehow, then also
the primitive f can be broken. Conversely, if f is believed
to be secure, then also P f must be secure. In general, all
the security proofs for a protocol that do not use the internal
structure of the primitives are called black-box reductions.
On the other hand, the hybrid argument technique is used
to argue that two probability ensembles, i.e., two sequences
of probability distributions defined over the same probability
space, are computationally indistinguishable. In this type of
proof, one defines a sequence, constituted by a polynomial
number (in the security parameter) of probability ensembles,
also called the hybrids, where the extreme hybrids correspond
to the two ensembles to be shown indistinguishable. In such a
sequence, two adjacent hybrids differ only for a single value,
corresponding to the application of a cryptographic primitive.
Due to the total number of hybrids being polynomial, a non-
negligible gap between the extreme hybrids translates into a
non-negligible gap between a pair of adjacent hybrids and
thus corresponds to breaking the security of the cryptographic
primitive.

Theorem 5: If the encryption scheme � = (K,D, E) is
secure in the sense of IND-P1-C0 and � is a perfect secret
sharing scheme, then the SEBC is secure in the sense of
IND-ST.

Proof: Let G = (V , E, φ) be a directed multi-
graph, let u ∈ V and let STATu,X be a static adver-
sary which attacks class u and corrupts a set of classes
X ⊂ V such that u �∈ AX . Let Gu = (Vu, Eu, φu)
be the subgraph of G induced by the set of vertices
Vu = {v ∈ V : there is a path from v to u in G} and let

Gu,X = (Vu,X , Eu,X , φu,X) be the subgraph of Gu induced by
the set of vertices Vu,X = Vu \ X , containing the classes in Vu

which have not been corrupted by STATu,X . Without loss of
generality, let (u1, . . . , um), where um ≡ u, be any topological
ordering of the vertices in Vu,X and let (e1, . . . , eh−1) be the
sequence of edges in Eu,X such that φu,X (ei) = (ua, ub)
precedes φu,X (e j) = (uc, ud) if and only if either a < c
or a = c and b < d . Moreover, let φu,X (eh) = (u, u′).

In order to prove the theorem, we need to show that the
adversary’s views in experiments ExpIND−1STATu,X

and ExpIND−0STATu,X

are indistinguishable. Notice that the only difference between
ExpIND−1STATu,X

and ExpIND−0STATu,X
is the last input of STATu,X ,

which corresponds to the real key ku in the former experiment
and to a random value chosen in {0, 1}τ in the latter. Thus,
while in ExpIND−1STATu,X

the public information is related to
the last input of STATu,X , in ExpIND−0STATu,X

it is completely
independent on such a value. For ease of exposition, we define
the following experiment:

Experiment Expu,X (1τ , G,AG)
(s, k, pub)← Gen(1τ , G,AG)
sX ← Corruptu (s, X)
d ← STATu,X (1τ , G,AG , pub, sX , αu)
return d

which corresponds either to ExpIND−1STATu,X
, if αu is the real

key ku , or to ExpIND−0STATu,X
, if αu is a random value in {0, 1}τ .

We will show that the adversary’s view in the experiment
Expu,X is indistinguishable from the adversary’s view in an
experiment Exp∗u,X , where the public information, at the same
time, does not carry any information about the key ku and is
independent on the last input of STATu,X . More formally, the
experiment Exp∗u,X is defined as follows:

Experiment Exp∗u,X (1τ , G,AG)

(s, k, pub∗)← Gen∗(1τ , G,AG)
sX ← Corruptu (s, X)
d ← STATu,X (1τ , G,AG , pub∗, sX , αu)
return d

In the algorithm Gen∗ the public value πu associated to
class u is computed as the encryption Esu (ρ) of a random value
ρ ∈ {0, 1}τ , rather than the encryption of the key ku . Moreover,
the public value associated to each edge ei , where φu,X (ei) =
(ua, ub) ∈ Eu,X is computed as the encryption Esua

(ri) of a
random value ri ∈ {0, 1}τ , rather than the encryption Esua

(sua
ub)

of the share sua
ub for the private information sub . Therefore,

in such an experiment, all public information is independent
on the value of the key ku . Moreover, the distributions of
the experiment Exp∗u,X when STATu,X is given as last input
either the real key ku or a random value in {0, 1}τ are the
same. In such an experiment, the key ku is just a random
value independent on the public and private information in
the adversary’s view.

Now, in order to show that ExpIND−1STATu,X
and ExpIND−0STATu,X

are indistinguishable, we only need to show that the adver-
sary’s views in experiments Expu,X and Exp∗u,X are indis-
tinguishable. This implies that ExpIND−1STATu,X

and ExpIND−0STATu,X

are both indistinguishable from the same experiment Exp∗u,X ,
which also means that they are indistinguishable from each
other.

We construct a sequence of h + 1 experiments
Exp1

u,X , . . . , Exph+1
u,X , all defined over the same probability

space, where the first and the last experiments of the
sequence correspond to Expu,X and Exp∗u,X . In each
experiment, we modify the way in which the view of
STATu,X is computed, while maintaining the view’s
distributions indistinguishable among any two consecutive
experiments. For any q = 2, . . . , h, experiment Expq

u,X is
defined as follows:

Experiment Expq
u,X (1τ , G,AG)

(s, k, pubq)← Genq (1τ , G,AG)
sX ← Corruptu (s, X)
d ← STATu,X (1τ , G,AG , pubq , sX , αu)
return d

The algorithm Genq used in Expq
u,X differs from Gen by the

way in which part of the public information pubq is computed.
For any i = 1, . . . , q − 1, the public values associated to the
edge ei such that φu,X (ei) = (ua, ub) ∈ Eu,X is computed as
the encryption Esua

(ri) of a random value ri ∈ {0, 1}τ , instead
of the encryption Esua

(sua
ub) of the share sua

ub .
In the following we show that, for any q = 1, . . . , h, the

adversary’s view in the q-th experiment is indistinguishable
from the adversary’s view in the (q + 1)-th one.

Assume by contradiction that there exists a polynomial-
time distinguisher Bq , which is able to distinguish between
the adversary STATu,X ’s views in experiments Expq

u,X and

Expq+1
u,X with non-negligible advantage. Notice that such views

differ only for the way the public information associated to the
edge eq , such that φu,X (eq) = (a, b), is computed. We show
how to construct a polynomial-time adversary A = (A1, A2)
that uses Bq to break the security of the encryption scheme
� = (K, E,D) in the sense of IND-P1-C0.

In particular, algorithm A1, on input 1τ , randomly chooses
the key kv for any class v ∈ V , as well as the private
information for any class v ∈ V \ {a}.

If Ia �= ∅, for any class v ∈ Ia , A1 considers the ma

access structures A1
a, · · · ,Ama

a associated to the secret sa and,
for each of them, the set of edges characterizing that access
structure. Then, A1 computes the public value associated to
each edge e such that φu,X (e) = (v, a) as the encryption of
a random value chosen in {0, 1}τ , using the private informa-
tion sv as a secret key. Afterwards, for any class v ∈ V \ {a}
such that Iv �= ∅, A1 considers the mv access structures
A1

v , · · · ,Amv
v associated to the secret sv and, for each of

them, it considers the set of edges characterizing such access
structure. Subsequently, A1 uses the algorithm Share, on input
the secret information sv , to compute the sequence of shares
according to each access structure defined for the node v,
which is characterized by the relative set of edges. Such
shares will be used to compute part of the public information.
More precisely, A1 computes the public values associated to
each edge er such that φu,X (er) = (v, z) �∈ {e1, . . . , eq}
as the encryption of a random share relative to the secret
information sz by using sv as a secret key. Notice that, in
order to compute all public values associated to the outgoing
edges of class a, except for the edge eq such that φu,X (eq) =
(a, b), A1 can make queries to the encryption oracle Esa(·).

Afterwards, A1 computes the public values associated to each
edge ek such that φu,X (ek) = (v, z) ∈ {e1, . . . , eq−1} as the
encryption of a random value chosen in {0, 1}τ , using as a
secret key the private information sv . Again, A1 computes the
public values associated to all edges ev such that φu,X (ev) =
(v, v ′), where ev �= eq , as the encryption of the key kv with the
private information sv . Finally, A1 sets x1 to be equal either
to the key ku , if eq = eu , where φu,X (eu) = (u, u′), or to a
random share relative to the secret sb, otherwise. Notice that,
since � is a perfect secret sharing scheme, by Remark 4, such
a share has the same distribution of a random value in {0, 1}τ .
The sequences s′, k and pub′ of all private information, keys,
and public values constructed by A1, along with the values x0
and x1, are saved in the state information state. Recall that the
sequence s′ contains the private information sv assigned to all
classes v ∈ V \ {a}. Similarly, the sequence pub′ contains the
public information associated to all edges in E\{eq}. Formally,
the algorithm A1 is defined as shown in Figure 4.

Let y be the challenge for the algorithm A, corresponding
to the encryption of either x0 or x1 with the unknown key sa .
The algorithm A2, on input 1τ , y, and state, constructs the
view for the distinguisher Bq as follows: it first extracts
from s′ the private information sX held by corrupted users,
through the algorithm Corruptu(s′, X). Then, it computes the
public value associated to the edge eq , not included in pub′,
in order to obtain the sequence pub. In particular, such a pub-
lic value is set equal to the challenge y. Finally, A2 outputs the
same output as Bq(1τ , G,AG , pub, sX , x1). More formally,
A2 works as shown in Figure 5.

Notice that if y corresponds to the encryption of x1, then the
random variable associated to the adversary’s view is exactly
the same as the one associated to the adversary view in exper-
iment Expq

u,X , whereas, if y corresponds to the encryption
of x0, it has the same distribution as the one associated to
the adversary’s view in experiment Expq+1

u,X . Therefore, if the
algorithm Bq is able to distinguish between such views with
non negligible advantage, it follows that algorithm A is able
to break the security of the encryption scheme � = (K, E,D)
in the sense of IND-P1-C0. Contradiction.

Hence, for any q = 1, . . . , h, the adversary’s view in the
q-th experiment is indistinguishable from the adversary’s view
in the (q + 1)-th one. Therefore, the adversary’s views in
experiments Expu,X and Exp∗u,X are indistinguishable. This
concludes the proof.

B. A Construction Based on Threshold Broadcast Encryption

In this section we propose a construction for hierarchical
and shared key assignment which uses as building block a
threshold broadcast encryption scheme. We denote such a
construction as the Threshold Broadcast Encryption Based
Construction (TBEBC). The TBEBC can be instantiated using
the construction proposed by Daza et al. [40], which is
secure under the Decisional Bilinear Diffie-Hellman (DBDH)
assumption.

1) Threshold Broadcast Encryption: A broadcast encryption
scheme allows a sender to broadcast an encrypted message to
a set of users in such a way that only legitimate users can

Fig. 4. First stage of the adversary A attacking the S E BC .

decrypt it. Broadcast encryption schemes can be either public-
key or symmetric-key based. In the symmetric-key setting,
only a trusted authority can broadcast data to the receivers.
Conversely, in the public-key setting, a public key published
by a trusted authority allows anybody to broadcast a message.

In a threshold public key broadcast encryption
scheme (TBE) a message is encrypted and sent to a
group of receivers, in such a way that the cooperation of
at least t of them (where t is the threshold) is necessary in
order to recover the original message. Such schemes have
many applications in situations where one wants to avoid

Fig. 5. Second stage of the adversary A attacking the S E BC .

that a single party has all the power/responsibility to protect
or obtain some critical information. In those schemes, the
sender of the message who wants to protect some information
may want to decide who will be the designated receivers in
an ad-hoc way, just before encrypting the message, and also
decide the threshold of receivers which will be necessary to
recover the information. More precisely, a TBE scheme has
the following properties:
• There is no setup phase or predefined groups. Each

potential receiver has his own pair of secret/public keys.
• The sender chooses the set of receivers P and the thresh-

old t for the decryption. Then he encrypts the message
by using the public keys of all the receivers in P .

• A ciphertext corresponding to the pair (P , t) can be
decrypted only if at least t members of P cooperate by
using their secret keys. Otherwise, it is computationally
infeasible to obtain any information about the plaintext.

The next definition was proposed in [40].
Definition 6: A threshold broadcast encryption (T B E)

scheme consists of five algorithms:
1) The randomized setup algorithm T B E .Setup takes as

input a security parameter 1τ and outputs some pub-
lic parameters params, which will be common to
all the users of the system. We write params ←
T B E .Setup(1τ).

2) The randomized key generation algorithm T B E .K G is
run by each user i . It takes as input some public para-
meters params and returns a pair (P Ki ,SKi) consisting
of a public key and a matching secret key. We write
(P Ki , SKi)← T B E .K G(params).

3) The randomized encryption algorithm T B E .Enc takes
as input a set of public keys {P Ki }i∈P corresponding to
a set P of receivers, a threshold t satisfying 1 ≤ i ≤ n,
and a message m. The output is a ciphertext C . We write
C ← T B E .Enc(1τ , {P Ki }i∈P , t, m).

4) The (possibly randomized) partial decryption algorithm
T B E .Part Dec takes as input a ciphertext C for the
pair (P ,t) and a secret key SKi of a receiver i ∈ P .
The output is a partial decryption value ki or a special
symbol ⊥. We write ki ← T B E .Part Dec(C, SKi).

5) The deterministic final decryption algorithm T B E .Dec
takes as input a ciphertext C for the pair (P ,t)
and t partial decryptions {ki }i∈A, corresponding to
receivers in some subset A ⊂ P . The output is a

message m or a special symbol ⊥. We write
m̃ ← T B E .Dec(C, {ki}i∈A, A).

2) The Threshold Broadcast Encryption Based Construc-
tion: In the following we consider the problem of constructing
a hierarchical and shared key assignment scheme by using as
the building block a threshold broadcast encryption scheme.

Rationale Behind the Construction: The idea behind our
construction, referred to in the following as the Threshold
Broadcast Encryption Based Construction (TBEBC), is to
compute the private and public information by using the
threshold broadcast encryption scheme. More precisely, the
public information associated to each security class v will
contain a public key generated by a TBE, let P Kv be
such a key. Given a class v with its relative access struc-
tures A1

v , . . . ,Amv
v and a qualified set X ∈ A j

v , for some
j ∈ {1 . . . mv}, we denote with Qv

X the set of classes having an
outgoing edge in X . Furthermore, the public information will
contain for each set Qv

X a value given by the encryption of the
secret key kv , through the public keys of all the classes in Qv

X .
Subsequently, the public value relative to the set Qv

X can be
decrypted through the collaboration among all the classes that
constitute this set; that is to say, through their private keys, the
classes belonging to Qv

X are allowed to compute the key kv .
In detail, the generation algorithm of our TBEBC takes

as inputs a security parameter 1τ , a multigraph G, and the
corresponding set of families of access structures AG . This
algorithm generates a pair of public/private keys (P Kv , SKv),
for each class v ∈ V . Subsequently, for each class v, we assign
secret information sv , corresponding to the private key SKv .
Moreover, for each class v, the public key P Kv corresponds
to the public information pubv . In addition, for each class v, a
secret key kv is generated. Again, for each class v and for each
set Qv

X , kv is encrypted through the public keys of the classes
belonging to such a set. Finally, this encryption is assigned to
the public information associated with the class v.

On the other hand, derivation algorithm of the TBEBC
takes as inputs a security parameter 1τ , a multigraph G, the
corresponding set of families of access structures AG , the
class u to be accessed, a set Qu

X , the private information su
X

associated to classes in Qu
X and finally, all public information

pub. This algorithm first extracts from pub the value Cu
X ,

relative to Qu
X . Subsequently, it extracts from su

X the secret
values associated to each class belonging to Qu

X . Finally,
through these values, the partial decryptions related to Cu

X are
computed, for being used later in order to obtain the secret
key ku .

Formally, let G = (V , E, φ) be a directed multigraph and
let AG be a family of access structures associated to classes
in V . Let T B E = (T B E .Setup, T B E .K G, T B E .Enc,
T B E .Part Dec, T B E .Dec) a threshold broadcast encryption
scheme. The information generation algorithm Gen of the
TBEBC is shown in Figure 6, whereas, the relative key
derivation algorithm Der is shown in Figure 7.

3) Analysis of the Scheme: In the following we show that
the security property of the TBEBC depends on the security
property of the underlying threshold broadcast encryption
scheme. Before analyzing the security of the TBEBC, we
first need to define what we mean by a secure public-key

Fig. 6. Gen algorithm of the Threshold Broadcast Encryption Based
Construction.

Fig. 7. Der algorithm of the Threshold Broadcast Encryption Based
Construction.

Fig. 8. Game played by an adversary Aatk .

threshold broadcast encryption scheme. In general, in such
schemes an adversary can corrupt different users in two
possible ways: registering new public keys for such users,
or obtaining the secret key matching with the public key of
some previously honest users. The final goal of the adversary
is to obtain some information about a message which has been
encrypted for a pair (P∗, t∗), such that the number of corrupted
players in P∗ is less than t∗. For the ease of exposition, we
consider the second kind of user corruption. More precisely,
indistinguishability for TBE schemes is defined by considering
the game shown in Figure 8, played by an adversary Aatk

against a challenger [41].
In both phases of the attack, Aatk can access a corruption

oracle Corr . In particular, Aatk submits to the oracle a user
i ∈ U and receives as answer the relative secret key SKi .
Let U ′ ⊂ U be the subset of users that Aatk has corrupted
during the attack. Notice that |P∗ ∩ U ′ | < t∗ must hold,

otherwise, Aatk knows the secret key of at least t∗ players
in P∗ and can decrypt C∗ autonomously, obtaining mβ .
In detail, depending on the considered type of attack, Aatk

can also access a decryption oracle for ciphertexts of his
choice. As an answer, Aatk receives all the information that
would be broadcasted in a complete decryption process, that
is, all the partial decryption values and the resulting plaintext.
More precisely, if atk is a Chosen Plaintext Attack (CPA),
then the adversary cannot access the decryption oracle at all,
i.e., O1 = O2 = ε. If atk is a partial Chosen Ciphertext
Attack (CCA1), then O1 = TBE.PartDec(·) ∪ TBE.Dec(·) and
O2 = ε. Finally, if atk is a full Chosen Ciphertext Attack
(CCA2), then O1 = O2 = TBE.PartDec(·) ∪ TBE.Dec(·).
Obviously, in the last case, ACC A2 is not allowed to query
the oracle O2 with the challenge ciphertext C∗.
The advantage of Aatk is defined as:

Adv(Aatk) = Pr [β ′ = β] − 1

2
.

A threshold broadcast encryption scheme is said to be
ε-indistinguishable under atk attacks if Adv(Aatk) < ε for any
adversary Aatk running in polynomial time. Daza et al. [40]
proposed a construction for threshold broadcast encryption
schemes and showed it to be ε-indistinguishable under dif-
ferent kinds of attacks. Now we are ready to prove the next
theorem.

Theorem 7: If the public-key threshold broadcast encryp-
tion scheme T B E = (T B E .Setup, T B E .K G, T B E .Enc,
T B E .Part Dec, T B E .Dec) is ε-indistinguishable under atk
attacks, then the T B E BC is secure in the sense of IND-ST.

Proof: Assume by contradiction that the T B E BC is not
secure in the sense of IND-ST. Thus, there exists a multigraph
G = (V , E, φ) in � and a class u ∈ V for which there
exists a polynomial-time adversary STATu,X , whose advantage
AdvINDSTATu,X

(1τ , G,AG) is non-negligible. We show how to
construct a polynomial-time adversary Aatk that, by using
STATu,X , is able to break the ε-indistinguishability of the TBE
scheme used as a building block in the T B E BC .

In particular, let a be the target class, let Qa be a qualified
set for a and finally, let carda = |Qa|. The first operation
performed by the challenger is the generation of some parame-
ters which will be used later on. The adversary Aatk chooses
two messages, m0 and m1, both having the same length. For
each node v ∈ V , Aatk asks the challenger for the creation
of a new user v, along with the relative pair of public/private
keys, denoted by P Kv and SKv , respectively. It is important
to remark that only public keys will be in the adversary’s view.
For each class v ∈ V , Aatk assigns the public key P Kv to the
public information pubv , besides assigning a secret key kv to
such a class. Again, the secret key ka regarding the target
class a is made to correspond to the message m1. Subse-
quently, Aatk through its corruption oracle, corrupts a set X of
users, such that a is not in AX . Let sX be the output of such
a corruption, constituted by private keys associated to users
in X . This output is then stored in the state variable St . After
those steps, Aatk outputs some information through which it
intends to be challenged. Later, the challenger computes an
encryption C∗ of a message chosen at random between

Fig. 9. Functioning of the adversary A
Corr,O1 ,O2
atk attacking the T B E BC .

m0 and m1, relative to the qualified set Qa ; let mβ be such a
message. The encryption C∗, which represents the challenge
for Aatk, is assigned to the public information for the node a,
denoted by puba . By means of the aforementioned steps, Aatk

simulated the full view for the distinguisher Ba, which is able
to attack the security of T B E BC in the sense of IND-ST
with non-negligible advantage. More precisely, Ba is able to
distinguish between the encryption of ka from that of a random
value. Finally, Aatk returns the same output as Ba , denoted
by d . Formally, the adversary Aatk is defined as shown in
Figure 9.

Note that if the last input for STATu,X is equal to the key
hidden into the public value C∗, then the random variable
associated to STATu,X ’s view is exactly the same as in
experiment ExpIND−1STATu,X

, whereas, if it is a random string, such
a variable has the same distribution as the one associated
to STATu,X ’s view in experiment ExpIND−0STATu,X

. Finally, Aatk

outputs the same output as STATu,X (1τ , G,AG , pub, sX , αu).
Therefore, it holds that

Adv(Aatk) = AdvINDSTATu,X
(1τ , G,AG).

Since AdvINDSTATu,X
(1τ , G,AG) is non-negligible, it

follows that the adversary Aatk is able to break the
ε-indistinguishability of the threshold broadcast encryption
scheme. Contradiction.

C. Performance Evaluation

The SEBC provides constant private information and public
information linear in the number of the edges in the multigraph
G. More precisely, the public information can be at most
(|E | + |V |)ck, where k corresponds to the size of the secret
key in this construction and c is a constant depending on the
underlying symmetric encryption scheme. For instance, c is
equal to 2 for the so called XOR construction in [31].

On the other hand, in the SEBC, for any X ⊆ V ,
the complexity of key derivation depends on the set AX

of classes that can be accessed when classes in X col-
laborate together. Such a set is constructed by using a

Breadth-First-Search (BFS) on G, starting from the set X .
In detail, starting from X , we visit the multigraph G outgoing
from X in all possible directions, adding classes one layer at
a time, according to the access structures associated to the
classes. Thus, besides the computational effort required by
the BFS visit, the key derivation complexity in the SEBC is
characterized by a number of decryptions which is equal to the
number of classes corresponding to each layer of cooperation
necessary to obtain the encryption key. Finally, in addition
to the above number of decryptions, it is also necessary to
employ the Recover algorithm of the perfect secret sharing
scheme for reconstructing the secret key sv .

Regarding the TBEBC, the number of public information
associated to a security class v is given by 1 + z, where z
is the number of qualified sets that can access the class v.
On the other hand, the only secret information assigned to
each class v is given by the private key generated by the TBE
scheme. Instead, concerning the complexity of key derivation,
in the case of TBEBC the number of decryptions is equal to
the number of classes belonging to a given qualified set for a
class v.

IV. CONCLUSIONS

In this paper we have proposed an access control model
with some innovative features. In particular, starting from the
consideration that in some cases, besides the conventional
hierarchical access, access should be granted to some qualified
sets of users, the above model provides the user with the
ability to prevent abuse of permissions, to define alternative
access methods and to allow the separation of duties. Such
a novel access model finds a natural field of application
in several contexts. In general, our model characterizes any
scenario where more than one entity is required to gain a
specific authorization. In addition, such a model is useful
in environments where it is necessary to address situations
requiring special permissions.

Moreover, in this paper we provided the first formal def-
inition of hierarchical and shared key assignment schemes.
Again, we proposed an efficient construction for those
schemes, denoted as Shared Encryption Based Construc-
tion (SEBC), which assigns to each class a single private
information, whereas, the public information depends on the
number of classes, as well as on the number of edges in
the hierarchy. The security of the proposed construction relies
on the ones of the underlying encryption and secret sharing
schemes.

Finally, we proposed a construction based on public-key
threshold broadcast encryption, denoted as Threshold Broad-
cast Encryption Based Construction (TBEBC), which assigns
to each class a single private information, whereas, the public
information depends on the number of qualified sets which can
access such a class. The security of the proposed construction
relies on the one of the underlying threshold broadcast encryp-
tion scheme.

REFERENCES

[1] S. G. Akl and P. D. Taylor, “Cryptographic solution to a problem of
access control in a hierarchy,” ACM Trans. Comput. Syst.,
vol. 1, no. 3, pp. 239–248, 1983. [Online]. Available: http://
doi.acm.org/10.1145/357369.357372

[2] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and
efficient key management for access hierarchies,” ACM Trans. Inf. Syst.
Secur., vol. 12, no. 3, 2009, Art. ID 18.

[3] A. De Santis, A. L. Ferrara, and B. Masucci, “Provably-secure time-
bound hierarchical key assignment schemes,” in Proc. ACM CCS, 2006,
pp. 288–297.

[4] A. De Santis, A. L. Ferrara, and B. Masucci, “Efficient provably-secure
hierarchical key assignment schemes,” in Proc. 32nd MFCS, vol. 4708.
2007, pp. 371–382.

[5] M. J. Atallah, M. Blanton, and K. B. Frikken, “Incorporating temporal
capabilities in existing key management schemes,” in Proc. 12th Eur.
Symp. Res. Comput. Secur. (ESORICS), Dresden, Germany, Sep. 2007,
pp. 515–530. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
74835-9_34

[6] P. D’Arco, A. De Santis, A. L. Ferrara, and B. Masucci, “Security
and tradeoffs of the Akl–Taylor scheme and its variants,” in Proc. 34th
MFCS, vol. 5734. 2009, pp. 247–257.

[7] P. D’Arco, A. De Santis, A. L. Ferrara, and B. Masucci, “Variations on
a theme by Akl and Taylor: Security and tradeoffs,” Theoretical Comp.
Sci., vol. 411, no. 1, pp. 213–227, 2010.

[8] A. De Santis, A. L. Ferrara, and B. Masucci, “Efficient provably-
secure hierarchical key assignment schemes,” Theoretical Comput. Sci.,
vol. 412, no. 41, pp. 5684–5699, 2011.

[9] A. De Santis, A. L. Ferrara, and B. Masucci, “New constructions
for provably-secure time-bound hierarchical key assignment schemes,”
Theoretical Comput. Sci., vol. 407, nos. 1–3, pp. 213–230, 2008.

[10] G. Ateniese, A. De Santis, A. L. Ferrara, and B. Masucci, “Provably-
secure time-bound hierarchical key assignment schemes,” J. Cryptol.,
vol. 25, no. 2, pp. 243–270, 2012.

[11] E. S. V. Freire and K. G. Paterson, “Provably secure key assignment
schemes from factoring,” in Proc. 16th Australasian Conf. Inf. Secur.
Privacy (ACISP), Melbourne, Vic., Australia, Jul. 2011, pp. 292–309.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-22497-3_19

[12] Y. Zhang, J. Chen, R. Du, L. Deng, Y. Xiang, and Q. Zhou, “FEACS:
A flexible and efficient access control scheme for cloud computing,”
in Proc. IEEE 13th Int. Conf. Trust, Secur., Privacy Comput. Com-
mun. (TrustCom), Beijing, China, Sep. 2014, pp. 310–319. [Online].
Available: http://dx.doi.org/10.1109/TrustCom.2014.42

[13] E. S. V. Freire, K. G. Paterson, and B. Poettering, “Simple, efficient
and strongly KI-secure hierarchical key assignment schemes,” in Top-
ics in Cryptology (Lecture Notes in Computer Science), vol. 7779.
E. Dawson, Ed. San Francisco, CA, USA: Springer, Feb./Mar. 2013,
pp. 101–114. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
36095-4_7

[14] A. Castiglione, A. De Santis, and B. Masucci, “Key indistinguisha-
bility vs. strong key indistinguishability for hierarchical key assign-
ment schemes,” IEEE Trans. Dependable Secure Comput., to be
published. [Online]. Available: http://dx.doi.org/10.1109/TDSC.2015.
2413415

[15] M. Cafaro, R. Civino, and B. Masucci, “On the equivalence of
two security notions for hierarchical key assignment schemes in
the unconditional setting,” IEEE Trans. Dependable Secure Comput.,
vol. 12, no. 4, pp. 485–490, Jul./Aug. 2015. [Online]. Available:
http://dx.doi.org/10.1109/TDSC.2014.2355841

[16] A. De Santis, A. L. Ferrara, and B. Masucci, “New constructions for
provably-secure time-bound hierarchical key assignment schemes,” in
Proc. 12th ACM Symp. Access Control Models Technol. (SACMAT),
Sophia Antipolis, France, Jun. 2007, pp. 133–138. [Online]. Available:
http://doi.acm.org/10.1145/1266840.1266861

[17] E. Bertino, N. Shang, and S. S. Wagstaff, Jr., “An efficient time-bound
hierarchical key management scheme for secure broadcasting,” IEEE
Trans. Dependable Secure Comput., vol. 5, no. 2, pp. 65–70,
Apr./Jun. 2008. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/TDSC.2007.70241

[18] B. Toxen, “The NSA and Snowden: Securing the all-seeing eye,”
Commun. ACM, vol. 57, no. 5, pp. 44–51, 2014.

[19] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R. Mahajan,
“Trusted computer system evaluation criteria,” Nat. Comput. Secur.
Center. vol. DoD 5200.28-STD, Dec. 1985. [Online]. Available:
http://csrc.nist.gov/publications/history/dod85.pdf

[20] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis,
The KeyNote Trust Management System, Version 2, document IETF
RFC 2704, Sep. 1999. [Online]. Available: https://tools.ietf.org/html/
rfc2704

[21] D. E. Denning and M. Smid, “Key escrowing today,” IEEE Commun.
Mag., vol. 32, no. 9, pp. 58–68, Sep. 1994.

[22] A. Castiglione, L. Catuogno, A. D. Sorbo, U. Fiore, and F. Palmieri,
“A secure file sharing service for distributed computing environments,”
J. Supercomput., vol. 67, no. 3, pp. 691–710, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11227-013-0975-y

[23] A. De Santis, A. L. Ferrara, and B. Masucci, “Unconditionally
secure key assignment schemes,” Discrete Appl. Math., vol. 154, no. 2,
pp. 234–252, 2006.

[24] G. Ateniese, A. De Santis, A. L. Ferrara, and B. Masucci, “A note on
time-bound hierarchical key assignment schemes,” Inf. Process. Lett.,
vol. 113, nos. 5–6, pp. 151–155, 2013.

[25] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comp. System
Sci., vol. 28, no. 2, pp. 270–299, 1984.

[26] J. Katz and M. Yung, “Characterization of security notions for proba-
bilistic private-key encryption,” J. Cryptol., vol. 19, no. 1, pp. 67–95,
2006.

[27] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, Aug. 1986.

[28] M. Blum and S. Micali, “How to generate cryptographically strong
sequences of pseudorandom bits,” SIAM J. Comput., vol. 13, no. 4,
pp. 850–864, 1984.

[29] J. HÅstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom
generator from any one-way function,” SIAM J. Comput., vol. 28, no. 4,
pp. 1364–1396, 1999.

[30] M. Naor and O. Reingold, “Number-theoretic constructions of efficient
pseudo-random functions,” J. ACM, vol. 51, no. 2, pp. 231–262, 2004.

[31] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” in Proc. IEEE 38th Annu. Symp.
Found. Comp. Sci., Oct. 1997, pp. 394–403.

[32] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in Proc. 16th CRYPTO, vol. 1109. 1996,
pp. 1–15.

[33] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[34] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. AFIPS Nat.
Comput. Conf., 1979, pp. 313–317.

[35] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realiz-
ing general access structure,” in Proc. IEEE Globecom, Nov. 1987,
pp. 99–102.

[36] J. Benaloh and J. Leichter, “Generalized secret sharing and monotone
functions,” in Proc. CRYPTO, vol. 403. 1990, pp. 27–35.

[37] D. R. Stinson, “An explication of secret sharing schemes,” Design, Codes
Cryptogr., vol. 2, no. 4, pp. 357–390, 1992.

[38] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, “On the
size of shares for secret sharing schemes,” J. Cryptol., vol. 6, no. 3,
pp. 157–167, 1993.

[39] C. Blundo, A. De Santis, and A. G. Gaggia, “Probability of shares
in secret sharing schemes,” Inf. Process. Lett., vol. 72, nos. 5–6,
pp. 169–175, 1999.

[40] V. Daza, J. Herranz, P. Morillo, and C. Ràfols, “CCA2-secure threshold
broadcast encryption with shorter ciphertexts,” in Provable Security
(Lecture Notes in Computer Science), vol. 4784, W. Susilo, J. K. Liu,
and Y. Mu, Eds. Wollongong, N.S.W., Australia: Springer, Nov. 2007,
pp. 35–50. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
75670-5_3

[41] M. Bellare, A. Boldyreva, and S. Micali, “Public-key encryption in
a multi-user setting: Security proofs and improvements,” in Advances
Cryptology. Berlin, Germany: Springer, 2000, pp. 259–274.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

