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ABSTRACT

The Indirect Immunofluorescence (IIF) protocol applied on Human Epithelial type 2 (HEp-2) cells is
the current gold standard for the Antinuclear Antibody (ANA) test. The formulation of the diagnosis
requires the visual analysis of a patient’s specimen under a fluorescence microscope in order to rec-
ognize the cells’ staining pattern which could be related to a connective tissue disease. This analysis
is time consuming and error prone, thus in the recent past we have witnessed a growing interest in the
pattern recognition scientific community directed at the development of methods for supporting this
complex task. The main driver of the interest towards this problem is represented by the set of interna-
tional benchmarking initiatives organized in the last four years that allowed dozens of research groups
to propose innovative methodologies for HEp-2 cells’ staining pattern recognition. In this paper we
update the state of the art on HEp-2 cells and specimens classification, by analyzing the performance
achieved by the methods participating the contest on Performance Evaluation of IIF Image Analysis
Systems, hosted by the 22nd edition of the International Conference on Pattern Recognition ICPR
2014, and to the Executable Thematic Special Issue of Pattern Recognition Letters on Pattern Recog-
nition Techniques for IIF Images Analysis, and by highlighting the trends in the design of the best
performing methods.

c� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Anti-Nuclear Antibody (ANA) test is commonly used
for screening connective tissue diseases, ranging from Systemic
Lupus Erythematosus to Sjorgrens syndrome and Rheumatoid
Arthritis (Meroni and Schur (2010); Wiik et al.). Among the
methods available to detect ANA, the Indirect Immunofluo-
rescence (IIF) protocol using human epithelial type 2 (HEp-2)
cells is nowadays considered the gold standard (Wiik et al.).

In this framework, the activity typically performed by sci-
entists consists of the following steps: each slide is examined
under a fluorescent microscope so as to determine the speci-
men positivity (among positive, intermediate, negative). Then,
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intermediate and positive specimens are further analyzed and
mitotic cells are recognized. If the number of mitotic cells is
su�ciently high (typically at least two per field), the scientist
has to determine the staining pattern to which the cells belong
to. Indeed, the presence of a positive pattern may be associated
with a particular autoimmune disease. Unfortunately, despite
the e�cacy of the IIF protocol, the process is still labour in-
tensive, time consuming and expensive. Henceforth, there is a
strong need for the definition and adoption of computer aided
diagnosis (CAD) solutions.

A critical analysis of the state of the art of all the steps re-
quired for this kind of CAD system goes beyond the scope of
this paper; the reader can refer to Hobson et al. (2016) for a
detailed analysis of the literature and of the open challenges
in this research area. In this paper we focus on the staining
recognition step: indeed, this task has attracted an increasing
number of scientists working in the Pattern Recognition field,
mainly due to the competitions organized in the last four years
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(Foggia et al. (2013, 2014); Hobson et al. (2015)), where the
participants were required to design and implement a pattern
recognition system able to classify a single cell belonging to
HEp-2 images.

The aim of this paper is to update the state of the art in
staining pattern recognition, by focusing on both the meth-
ods participating to the last Performance Evaluation of Indi-

rect Immunofluorescence Image Analysis Systems competition,
hosted by the International Conference on Pattern Recognition

2014, and to the Executable Thematic Special Issue of Pattern

Recognition Letters on Pattern Recognition Techniques for In-

direct Immunofluorescence Images Analysis. The main di↵er-
ence with respect to the previous initiatives lies in the problem
that researchers had to deal with: in addition to the traditional
cell-level classification task, a new and more challenging task
was proposed to the participants, namely the classification of
the whole specimen image (and not only of the single cell im-
age). Overall, fifteen research groups joined the above two ini-
tiatives.

The paper is organized as follows: a short summary of each
method is provided in Section 2; a critical analysis of the ob-
tained results is reported in Section 3; conclusions and future
directions are delineated in Section 4.

2. The methods

In this Section we provide a short summary of each of the
methods considered for the benchmarking described in the ex-
perimental section. For the sake of conciseness, for each
method we delineate the overall architecture with few details
on the pre-processing, the adopted description and the classifi-
cation paradigm, while we refer to the associated literature for
more details. Hereinafter, we will refer to each method by using
the surname of the first author of the associated paper.

Codrescu - The method by Codrescu (2014) is based on
quadratic recurrent finite impulse response multilayer percep-
tron (QR-FIRMLP), a class of temporal processing neural net-
works where the static weights are replaced by finite impulse
response filters, characterized by a quadratic neurons transfer
function and a recurrent connection. Cell images are rescaled
according to the following two strategies: in the first one each
image is scaled from the original size to 32 ⇥ 32 pixels with-
out preserving aspect ratio; in the second approach, the largest
square centered into the image is rescaled to 32 ⇥ 32 pixels.
The train set is also augmented by applying mirror and rotate
operations.

Ensafi - The method by Ensafi et al. (2016) operates accord-
ing to four stages: cell extraction, super pixel extraction, dic-
tionary learning and cell classification. The first stage is aimed
at providing an initial segmentation of the cells using a priori
information on their average size and shape. Then in the sec-
ond stage the method extracts the superpixels based on the Sim-
ple Linear Iterative Clustering (SLIC), modified so that besides
the color and spatial proximities, it is also considered the gra-
dient information for modeling texture. From each superpixel
overlapping the segmentation mask, SIFT and SURF features
are extracted. Then, the sparse coding with the BoW model is

applied to learn the optimal dictionary and codes. The sparse
code of the image represents the feature vector that is given
for final cell level classification as input to a multi-class linear
SVM based with one-versus-all learning strategy. Specimen
level classification is obtained through majority voting on the
cell labels.

Gao - Gao et al. (2014) propose to face HEp-2 cells classi-
fication adopting a deep learning approach based on convolu-
tional neural networks (CNNs), in order to extract features di-
rectly from the pixels values of the cell image in a hierarchical
way without the need of resorting to hand-crafted features. Cell
images are first normalized to enhance the contrast and then
resized to a fixed size of 78 ⇥ 78 pixels. Rotation invariance
is achieved by rotating the original image in 20 angles equally
spaced with step 18.

Gragnaniello - The method by Gragnaniello et al. (2016)
uses the Scale-Invariant Descriptor (SID) defined in Kokkinos
et al. (2012) which is able to guarantee scale and rotation in-
variance through the following steps: log-polar transformation,
multi scale smoothing, computation of directional derivatives,
Fourier transform along the angular direction. The features are
calculated only on the pixels from the area of the foreground us-
ing the segmentation masks provided with the sample images.
Features are encoded using the Bag of Words model with soft
assignment through Gaussian weights. Then final classification
of the cells is carried out by a linear SVM classifier. The authors
also propose a method for specimen level classification; the lat-
ter is performed by dividing the specimen in five sub-images
and applying the method described before on each sub-image.
Final decision is taken by majority voting.

Han - The authors propose to recognize the HEp-2 cell pat-
terns using texture information. To this aim they originally pro-
pose and then use a modification of the local ternary pattern, by
introducing the Rotation Invariant Co-occurrence Weber-based
Local Ternary Pattern (RICWLTP). In particular, they extend
Local Ternary Patterns (LTPs) in the Weber-based LTPs that
use adaptive thresholds inspiring to the Webers law, a princi-
ple according to which the human perception of a distinguished
pattern depends not only on the absolute intensity of the stim-
ulus but also on the relative variance of the stimulus. The final
RICWLTP descriptor incorporates the contexts of spatial and
orientation co-occurrences among adjacent Weber-based local
ternary patterns (WLTPs) for texture representation. Classifi-
cation is carried out using a linear SVM fed with histograms
values of the selected features.

Liu - The authors focused only on image classification at
specimen level. The proposed method densely extracts 200 ⇥
200 pixel regions from each specimen image. Features are cal-
culated over each regions and are sent to a linear SVM for re-
gion classification. The image category is estimated via the ma-
jority voting on the decision of each region classifier. The re-
gion level representation is obtained by densely extracting the
SURF descriptor over the region and then using the VLAD en-
coding defined in Jegou et al. (2012).

Manivannan - The method by Manivannan et al. (2014a) re-
alizes a first pixel intensity normalization, then four types of lo-
cal features are extracted: multi-resolution local pattern that is a

Alessia Saggese
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI:https://doi.org/10.1016/j.patrec.2016.07.013, Pattern Recognition Letters



3

multi-resolution non-binarized version of the local binary pat-
tern; root-SIFT, a variant of the well known SIFT descriptor;
random projections, which are projections of patch intensity
vectors from the original patch-vector space to a compressed
space using randomly chosen projection vectors; intensity his-
tograms. All features are densely extracted from the images
and a dictionary was learned for each feature type. Feature are
encoded using local linear coding, an e�cient variant of sparse
coding and max-pooling is used to aggregate the local linear
codes; moreover, for each feature type, a 2-level cell pyramid
is used to capture spatial structure, as in Wiliem et al. (2013).
Classification is done through an ensemble of multi-class linear
SVM using the one-versus-all approach. The ensemble con-
tains four SVMs trained respectively on 0�, 90�, 180�, 270� ro-
tated versions of the original image. At test time each image is
rotated as before and provided as input to the ensemble produc-
ing 16 classification scores for each class. Scores are treated
as probabilities using Platt rescaling. The final classification
decision is made by averaging these rescaled scores. Manivan-
nan et al. (2014b) address the specimen classification problem
by adopting a similar approach already used for cell classifi-
cation, but relying only on multi-resolution local patterns and
root-SIFT. These features are extracted from patches densely
extracted from images; the size of such patches varies from
12x12 to 64x64, capturing both local properties of the cells and
information concerning groups of cells.

Paci - Nanni et al. (2016) propose a method for image clas-
sification at cell level. The method employs a preprocessing
stage with two filters: the contraharmonic mean filter (Banerjee
and Maji (2013)), for the removal of impulse noise, and the
contrast limited adaptive histogram equalization (Zuiderveld
(1994)) to improve the local contrast. The method uses a com-
bination of both global features extracted from the whole im-
age and local SIFT features densely extracted from the image
and then combined using a bag of feature approach. As global
descriptor the authors adopts both textural features (the Lo-
cal Configuration Pattern (LCP) by Yimo Guo and Pietikinen
(2011), the rotation invariant co-occurrence among adjacent
LBP (RIC-LBP) by Nosaka and Fukui (2014), the extended
LBP (ELBP) by Liu et al. (2012), the multiscale Pyramid LBP
(PLBP) by Qian et al. (2011)) and the Strandmark morpholog-
ical features (STR) Strandmark et al. (2012). For each image
a set of eight images is obtained by resizing and rotating the
original one. Then each image is described using the above set
of features and then classified using SVM; a radial basis func-
tion kernel is used for the global features, a histogram kernel
for the local features. SVM multi classification is done through
the one-versus-all approach. The scores obtained using the lo-
cal features are combined with those obtained using the global
features over each of the eight images by the sum rule in one
global score per class. The class achieving the highest global
score is assigned to the sample under evaluation.

Paisitkriangkrai - The image is first preprocessed by equal-
izing the histogram. The description of each image is obtained
by using several sets of features and specifically: the covari-
ance of the intensity values, of the first and of the second order
derivative in the vertical and horizontal directions, of the mag-

nitude of the gradients; the Co-Occurrence of Adjacent Local
Binary Patterns (CoALBPs) Nosaka et al. (2012); the local pro-
jection coe�cients from raw pixel values from which it is learnt
a multi-codebook based visual set of features; the morpholog-
ical features (STR) defined by Strandmark et al. (2012). The
dataset is augmented by rotating images at every ⇡/4 in order
to increase robustness of the classifier. Then, for cell classifica-
tion it is adopted the multi-class boosting algorithm in Paisitkri-
angkrai et al. (2014), while for specimen level classification it
is used a sliding window for selecting patches of the image to
be classified and majority voting is applied over them.

Ponomarev - The method by Ponomarev and Kazanov
(2016) relies on two groups of features: the first one comprises
features extracted from the binary image obtained using Otsu
thresholding (as number, average, variance and maximum area
of the connected components and of the holes, etc), while the
second group contains features that account for the local inten-
sity peaks and valleys obtained through region growing. Clas-
sification is done through SVM with the linear kernel. Two dif-
ferent SVM models are trained for handling intermediate and
positive fluorescence intensity images. The authors also pro-
pose to perform specimen level classification by combining the
outputs obtained at the cell levels using weighted voting, where
di↵erent weights are used according to the fact that the consid-
ered cell is isolated or not into the segmentation mask.

Qi - The method by Qi et al. (2016) is based on the Local
Orientation Adaptive Descriptor (LOAD) by Qi et al. (2015),
which is suited to describe the regional texture in an image.
LOAD is obtained by aggregating on circular patches a binary
sequence descriptor able to describe the relationships between
selected points in the patch and their neighbors. The descriptor
is based on an adaptive coordinate system that guarantees rota-
tion invariance. In order to capture multi-resolution information
the original image is Gaussian convoluted at seven scales. Then
LOAD feature is calculated on round patches densely extracted
from the eigth images (the original plus the seven in di↵erent
scales). The Improved Fisher Vector (IFV) by Perronnin et al.
(2010) is used to encode the features to preserve its discrimina-
tive power. Then, classification is performed through a linear
SVM.

Roberts - In the preprocessing phase the pixels of the back-
ground are set to 0 using the provided cell mask, then the image
is resized to 128⇥128 pixels. The feature vector is composed by
aggregation of the modulus of the coe�cients of the dual-tree
complex wavelet transform. The classification is carried out by
a multi-class SVM using the one versus all scheme.

Sarrafzadeh - The method proposed by Sarrafzadeh et al.
(2016) proceeds to an initial image normalization, after which
di↵erent groups of features are calculated and specifically: bi-
nary, intensity, statistical, spectral and texture features. In the
last group they are considered the Haralick features, the Com-
pleted Local Binary Pattern (CLBP), wavelet based features and
Gabor features. The most representative features are then se-
lected using step-wise linear discriminant analysis, while clas-
sification is done through the Gaussian mixture model.

Taormina - The method proposed by Cascio et al. (2016) is
based on the adoption of 15 di↵erent pattern recognition sys-
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tems where each system is designed and optimized ad hoc for
the discrimination between two specific HEp-2 cells staining
patterns (i.e. homogeneous versus speckled, homogeneous ver-
sus nucleolar, etc), according to the one-versus-one approach.
Each pattern recognition system is organized in three stages:
preprocessing, feature extraction, classification. Several combi-
nations of di↵erent types of preprocessing are analyzed (as con-
trast normalization, equalization, median and Gaussian filter-
ing, morphological operators, etc) and for each class it is iden-
tified the preprocessing giving the best performance in terms
of final class accuracy. For image description four classes of
features are considered, respectively, based on intensity, geom-
etry, morphology and entropy descriptors (specifically entropy
of the histogram of oriented gradients and of amplitude gra-
dients). From each cell image, all the features were densely
extracted from image patches and from the circular crown ob-
tained by mask dilation, using for both images four quantiza-
tion levels. An SVM with radial basis function kernel is used
for each of the 15 binary classifiers; final class label is attributed
by majority voting.

Theodorakopoulos - In Theodorakopoulos et al. (2014) me-
dian filtering is first applied to eliminate isolated intensity val-
ues, then followed by pixel values normalization. Successively,
a further noise reduction step is performed: the image is di-
vided in patches that are encoded through sparse representation
using a dictionary learned on low-noise images. Then the im-
ages are reconstructed and normalized again. Images are clas-
sified using a multi class SVM with linear kernel fed with a
vector including both morphological and textural features as
in Theodorakopoulos et al. (2012). In order to extract the for-
mer, the image is thresholded using 14 equally spaced values.
From the connected components extracted from each of the so
obtained binary images the following set of features is calcu-
lated: number of detected objects, density in binary image and
mean objects solidity, complexity of cells contour. Texture is
represented through both the distribution of the SIFT descrip-
tor, calculated on a dense grid over the cell image and encoded
according to the VLAD scheme as in Kastaniotis et al. (2013),
and the histograms of three variants of local binary patterns, i.e.
the uniform, the four patches and the center-symmetric ones.

3. Perfomance evaluation

In this section we overview the results achieved by the dif-
ferent methods participating to the Performance Evaluation of
Indirect Immunofluorescence Image Analysis Systems compe-
tition held at ICPR2014 and to the Executable Thematic Spe-
cial Issue of Pattern Recognition Letters on Pattern Recogni-
tion Techniques for Indirect Immunofluorescence Images Anal-
ysis. In particular, in Subsection 3.1 we detail the two pattern
recognition tasks the participants were given; Subsection 3.2
describes the datasets used for the experimentations and finally
in Subsections 3.3 and 3.4 we report and analyze the results
over both tasks.

3.1. The classification tasks

Two di↵erent image classification tasks have been proposed
to the participants. Both tasks refer to the automatic recognition

Pattern Abbr. Task 1 Task 2
Train Test Train Test

Homogeneous H 2.494 10.611 53 157
Speckled S 2.831 10.667 52 158
Nucleolar N 2.598 10.187 50 150
Centromere C 2.741 10.392 51 152
Golgi G 724 3.041 10 26
Nuclear Mem-
brane

M 2.208 9.935 21 62

Mitotic Spindle MS - - 15 44
TOTAL 13.596 54.833 252 749

Table 1: Composition of the datasets used for the benchmarking expressed in
terms of the number of cell images (for Task 1) and specimen images (for Task
2) for each class for the train and test sets.

of the staining pattern of the HEp-2 cells, although in the first
case the samples to be classified are the single cells, while in
the second case the classifiers are requested to operate on the
whole specimen which typically contains dozens to hundreds
HEp-2 cells. In the following we will refer to the first problem
as Task 1 or cell level classification and to the second problem
as Task 2 or specimen level classification.

Formally speaking, for both tasks the participants were re-
quired to develop a classifier C able to recognize the class of
a given image Y , belonging to the true class y. Thus, given a
set S of images, each one provided with the original image I,
the corresponding binary segmentation mask image M and the
fluorescence intensity level � 2 {intermediate, positive}

S = {(I,M, �)1, ..., (I,M, �)|S |}, (1)

the aim of the classifier is to predict the class ŷ to which Y

belongs:

C : Y ⇥G 7! ŷ, (2)

where ideally ŷ = y, with the di↵erence that in the Task 1 the
generic input image I is a single cell, while for the Task 2 it
is the whole specimen image (see Figure 1 for some example
input images of the two tasks).

3.2. The datasets

Two datasets have been made available to the participants,
one for each task1. The dataset for Task 1 has been collected at
Sullivan Nicolaides Pathology (SNP) laboratory from 2011 to
2013 by evaluating 419 patient positive sera. Each serum was
prepared on the 18-well slide of HEp-2 IIF assay from Immuno
Concepts N.A. Ltd. using a screening dilution of 1:80 and the
related images were automatically acquired by a monochrome
high dynamic range cooled microscopy camera, fitted on a mi-
croscope with a plan-Apochromat 20x/0.8 objective lens and an
LED illumination source. For each patient serum, a number of
cell images ranging from 100 to 200 was extracted, so resulting

1The train sets of both datasets are publicly available and can be downloaded
by registering at the following URL: http://i3a2014.unisa.it/
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(a) Task 1

(b) Task 2

Fig. 1: (a) Example cell images for the six staining patterns from the dataset of the Task 1. (b) Example specimen images for the seven patterns from the dataset of
the Task 2.

in 68.429 images composing this dataset: approximately 20%
of the dataset was used for the train set (in particular, 13.596 im-
ages) and the remaining 80% for the test set (54.833 images).
The test set has not been released by the organizers during the
benchmarking, so as to guarantee a fair comparison among the
participants in the competition.

For each image contained in the dataset, the following infor-
mation has been provided:

• cell staining pattern, among the six included in the dataset
(homogeneous, speckled, nucleolar, centromere, nuclear
membrane and mitotic spindle);

• cell mask, automatically obtained by segmenting the spec-
imen using the DAPI channel;

• cell fluorescence intensity level, namely positive or inter-
mediate;

• identifier of the specimen image to which the cell belongs
to.

In order to attribute the staining pattern and the intensity of the
cells used as the ground truth, each specimen was analyzed un-
der a microscope by at least two scientists. In case of a dis-
agreement between the two opinions, a third expert was in-
volved in the specimen labeling procedure. Then, all the cells
were labeled according to the class of the specimen they belong
to. Furthermore, secondary tests, such as ENA or anti-ds-DNA

have been employed so as to confirm the presence of the pattern
identified by the scientists.

The dataset for Task 2 comprised by 1.001 images acquired
in 2013 at SNP, using the same tools already used for the acqui-
sition of the images of Task 1: approximately 25% are used for
training (in particular, 252 images) while the remaining 75%
for testing (749 images). Each specimen was photographed in
four di↵erent locations rendering, so resulting in four di↵erent
images.

For each specimen image, the following information has
been provided:

• specimen pattern, among the seven included in the dataset
(homogeneous, speckled, nucleolar, centromere, golgi,
nuclear membrane and mitotic spindle);

• cell mask, automatically obtained by segmenting the spec-
imen using the DAPI channel; it is important to highlight
that the mask does not contain only the cells in interphase,
but also those cells in mitosis as well as artifact potentially
present in the specimen (such as air bubbles);

• cell intensity level, namely positive or intermediate.

More detailed information about the dataset for Task 2 can be
found in Hobson et al. (2014).

The composition of the datasets is detailed in Table 1, and
some example images are shown in Figure 1. The number of
cells for each class is variable, ranging from 3.765 cells exhibit-
ing the Golgi pattern to 13.498 images with speckled staining
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Method Reference Task1 Task2
Train set Test set Train set Test set

Codrescu Codrescu (2014) 98.94 74.60 - -
Gao Gao et al. (2014) 99.95 83.23 - -
Liu Lovell et al. (2014) - - 97.14 86.09

Manivannan Manivannan et al. (2014a) 98.04 (98.93) 84.24 (87.10 ) 100.00 88.48Manivannan et al. (2014b)
Paisitkriangkrai Lovell et al. (2014) 100.00 81.55 99.05 79.26

Roberts Lovell et al. (2014) 72.99 67.00 - -
Theodorakopoulos Theodorakopoulos et al. (2014) 93.82 83.33 - -

Ensafi Ensafi et al. (2016) 98.07 80.82 100.00 80.77
Gragnaniello Gragnaniello et al. (2016) 95.47 83.64 100.00 87.07

Han Han et al. (2016) 94.68 64.30 - -
Paci Nanni et al. (2016) 100.00 79.85 - -

Ponomarev Ponomarev and Kazanov (2016) 95.85 75.46 75.14 74.29
Qi Qi et al. (2016) 99.91 84.63 - -

Sarrafzadeh Sarrafzadeh et al. (2016) 88.59 73.33 - -
Taormina Cascio et al. (2016) 90.25 80.12 82.11 59.78

Table 2: Results expressed in terms of MCA achieved by the participants to both the ICPR2014 contest (first seven rows of the table) and this journal special issue
(remaining eight rows of the table) over the Tasks 1 and 2 .

witihn the dataset of Task 1 and from 36 specimen images be-
longing to Golgi class to the 210 images of homogeneous and
speckled patterns. The skewness of the class distributions of
the two datasets resembles the real clinical evidence with some
very common patterns (such as homogenous, speckled, cen-
tromere, nucleolar) and rare patterns (such as Golgi and mitotic
spindle). The train and the test sets for the two tasks preserve
the overall class distribution of the respective original datasets.

3.3. Experimental results

The performance index adopted for scoring and comparing
the methods is the Mean Class Cccuracy (MCA). For each class
k, we compute the Ccorrect Classification Rate (CCR

k

), as:

CCR

k

=
1

N

k

(T P

k

+ T N

k

) (3)

being T P

k

and T N

k

the number of true positive and true nega-
tives for the class k, respectively, and N

k

the number of images
belonging to the kth class. Thus, the MCA is computed as the
average value of CCR

k

:

MCA =
1
K

KX

k=1

CCR

k

. (4)

The results achieved by the participants are shown in Table
2 for both Tasks 1 and 2. All the results reported in the table
are obtained by the participating research teams using the same
experimental protocol, i.e. by training their pattern recognition
system on the public train set of the respective task, and then
providing their executable to the organizers of the two bench-
marking initiatives, who independently tested such systems on
the test sets. It is worth pointing out that there was an exception,
represented by the contribution from Mannivannan; in fact for
the Task 1, they provided two systems: the former trained using

only images from the respective train set, while for the second
submission they augmented the train set with images extracted
from the Task 2 dataset. We decide to report both results in
Table 2, namely MCA = 84.24% using the basic train set and
MCA = 87.10% using the augmented set; in fact, the first result
is useful to make a fair comparison of all the methods allowing
us to make considerations over the proposed approaches; the
second one draws attention over the role of the train set size for
the specific classification problem.

Furthermore, in order to assess the statistical significance of
the achieved performance, we applied the Student’s t-tests over
all the couples of methods. This analysis has shown that each
improvement is significant with a probability of 100%.

Finally, we report the confusion matrix of each method, in
Tables 3-15 and 17-23 for Task 1 and Task 2, respectively. For
each confusion matrix, the generic element c(i, j) indicates the
number of samples belonging to the class i and classified as
belonging to the class j.

3.4. Discussion

We note that all methods achieve highest accuracy over the
centromere, nucleolar and nuclear membrane classes, and in
particular the centromere class results to be the most accurate
one in Task 1 for all the methods. Furthermore, we can note
that the reduced number of training samples of the Golgi class
has a very negative impact over the accuracy of some methods,
namely Paci (Table 9), Sarrafzadeh (Table 14), Han (Table 7)
and Roberts (Table 13), where the accuracy for this pattern is
lower than 50%. Conversely, the remaining methods are able to
cope with the limited number of samples achieving a good gen-
eralization that guarantees an accuracy over such class com-
parable to that obtained on more common classes. It is also
interesting to note that, independently of the features used and
classifier, the cells belonging to the class Golgi are typically
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confused as belonging to the nuclear membrane and nucleolar
classes, while the errors over the speckled cells are typically due
to confusion with the centromere and homogeneous classes.
We also note that homogeneous samples are often misclassi-
fied as nuclear membrane or speckled. This common behavior
is mainly due to the high similarity, both in terms of shape and
texture, among such classes.

In the following we analyze the behavior described above
in light of the design choices made by the participants for the
di↵erent stages of their method, namely the low level represen-
tation, the high level representation and the classification meth-
ods.

Low level representation. The authors explored a very wide
range of di↵erent low level representations, both based on local
and global descriptors. Although it is not possible to find out in
absolute terms the best descriptor for HEp-2 cell classification,
some general findings can be delineated. The discriminant be-
tween the methods achieving very promising performance and
the others lies in the adoption of descriptors which are both in-
variant to scale and rotation: to this concern we can refer to the
SIFT (or SURF)-based approach by Ensafi and Manivannan as
well as to the SID descriptors proposed by Gragnaniello. We
also note that when these properties are not intrinsically guar-
anteed by the descriptor, a common approach is to extract the
descriptor not only on the original image, but also over a set
of derived images (rotated and/or scaled), as in Gao, Paci and
Qi. It is worth pointing out that often even those methods based
on scale and rotation invariant descriptors prefer to evaluate the
cells not only on the original image, but on a set of derived
images as well, as in Manivannan.

The importance of accounting for the scale and the rotation
invariance is also confirmed by the analysis of Qi et al. (2016),
where the authors study the impact on the accuracy achieved
by their method based on the LOAD descriptor while varying
parameters related to scale and rotation showing that the MCA

degrades up to 7% if these factors are not taken into account.
Similarly, Gao et al. (2014) evaluated the performance of their
method in two di↵erent situations, namely by adding rotated
images to the train set and with no data augmentation. Inter-
estingly, also in this case an improvement of 7% was observed,
that further confirms the above observation.

High level representation. Most methods for HEp-2 cell
classification typically do not perform classification using di-
rectly the extracted features; in fact, they often resort to dif-
ferent strategies for feature encoding or aggregation in order to
derive a more compact and representative high level representa-
tion. As confirmed by Hobson et al. (2015), a typical approach
is based on the bag of words paradigm. We also note that the
introduction of techniques exploiting enhanced versions of bag
of words, such as those based on Fisher vector (Qi), on the
the soft assignment (Gragnaniello), as well as on the VLAD
(Theodorakopoulos): these approaches appear very promising,
scoring among the best four, due to their ability to enrich infor-
mation conveyed in the high level representation with respect to
traditional bag of words, thus allowing a better discrimination
among the di↵erent classes.

Classification. The SVM is the most widely used classifier

for HEp-2 image classification, as well as the most promising
one; indeed, it is used by ten methods over fourteen analyzed
in this review, including most of the methods with an accuracy
higher than 80%.

Specimen level classification: from Task 1 to Task 2. Two
main strategies can be identified for the classification of spec-
imen images. The former is based on cell level classification:
cells are first detected in the image and then classified inde-
pendently from the others. Then, a majority voting strategy is
applied, as in Ensafi, Ponomarev and Taormina. The second
group of methods (composed by Liu, Manivannan, Paisitkri-
angkrai and Gragnaniello) partitions the image into a set of re-
gions and extracts the features directly from each region, with-
out previously detecting the single cells). The regions are typi-
cally obtained by using sliding patches densely extracted from
the image, with the only exception of Gragnaniello, which par-
titions the image into five non overlapped regions.

It is interesting to note that in general the methods belonging
to the second class outperform those belonging to the first class.
This suggests that analyzing the image in the whole, without
extracting the single cells, makes the system more robust with
respect to the analysis of multiple cells, which may produce
inconsistent results if analyzed with traditional cell recognition
systems.

Where are we now? The experimental protocol adopted by
the various HEp-2 image classification competitions with the
test set privately held by the organizers had the merit of guar-
anteeing a true advancement of the state of the art and a fair
comparison of the methods proposed so far. From Table 2, we
can note that 57% of the methods reported in this review (8 over
14) achieve a mean class accuracy higher than 80% on the Task
1. This result is very encouraging, especially when it is com-
pared with performance achieved by the methods participating
in the previous HEp-2 Cells Classification contest organized in
2013 (Hobson et al. (2015)). Indeed, in that competition only
2 methods over 14 submissions achieved an MCA above 80%
on the same dataset. The advancement in the state of the art in
the last two years can be also noted by analyzing the accuracy
of the top performing methods: 81.22% in 2013 vs 84.63% in
2015.

Nevertheless, it can be expected that in the next years it will
become more and more di�cult to significantly increase the ac-
curacy with the pattern recognition systems adopted so far, by
just using di↵erent texture and/or shape descriptors calculated
either at a local or at a global level. We deem that the future
adoption of deep architectures might be a viable way for doing a
step forward, due to their ability to learn the discriminant prop-
erties of the cells without requiring any features engineering.
Although deep learning methods have not been widely used for
this task, it is worth mentioning the methods by the team of
Malon et al. as reported in Foggia et al. (2013) and by Gao
et al. (2014), both based on convolutional neural networks. On
the one hand, the method by Malon reached an accuracy of 60%
over a small dataset, the MIVIA HEp-2 Images Dataset (Foggia
et al. (2013)), comprised approximatively 720 cells images for
the training and 730 for the test set. Over the same dataset, the
highest score was achieved by Nosaka (69%), while the scien-
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tist achieved an accuracy of approximatively 73%. On the other
hand, the method by Gao, over a significantly larger dataset re-
ported a promising accuracy (83%), which allows the method
to score within the first five positions, only 1.5% less than the
best performing method. The results achieved by Gao highlight
the potential of deep architectures and suggests further investi-
gation in this direction.

However, it is well known that the accuracy of this kind of
method is strongly dependent on the amount of data available
for training: the larger the size of the training set, the higher
the possibility to better represent the data and thus to achieve
good results. Of course, this is true even with traditional pat-
tern recognition systems, as confirmed by the results achieved
by Manivannan, with an improvement of 3% when the train
dataset was augmented with data from an external dataset. The
exploitation of new classification architecture, as those based
on deep learning, and more importantly the availability of larger
datasets might pave the way for significant advances in this area
and the possibility of adopting such systems in real computer
aided diagnosis.

4. Conclusions

The international benchmarking initiatives organized in the
last years for the recognition of the staining pattern of the HEp-
2 cells received significant attention from the scientific com-
munity with several dozens of research groups that proposed
original methods. In this paper we have reported and analyzed
the results achieved by 15 methods submitted to the last two
initiatives of this series, namely the Performance Evaluation of

Indirect Immunofluorescence Image Analysis Systems competi-
tion, hosted by the International Conference on Pattern Recog-

nition 2014, and to the Executable Thematic Special Issue of

Pattern Recognition Letters on Pattern Recognition Techniques

for Indirect Immunofluorescence Images Analysis.
We had confirmation of results and also some new findings

which are both summarized in the following in the form of the
key ingredients that are shared by the best methods:

• modeling texture: best performing methods typically
model features using various derivations of the basic LBP
descriptor;

• rotation invariance: taking into account in the description
stage the rotation invariance explicitily, by augmenting the
train set with rotated versions of the patterns, or implicitily,
by adopting a rotation invariant descriptor, may guarantee
significant improvements with respect to the case when ro-
tation invariance is not accounted for;

• feature encoding: the bag of words approach with its en-
hanced versions seems to guarantee a better discrimination
among the di↵erent classes;

• SVM for classification: the support vector machine is the
most commonly used and probably most e↵ective tool for
final classification;

• specimen level classification: methods that partition the
whole specimen image in sub-regions and extract features
on them typically outperforms approaches that simply ag-
gregate the classification outputs obtained on the single
cells.

We note a general performance improvement with respect to
methods from previous initiatives confirming the fact that there
was, and probably still is, room for improvements in accuracy.
On one side we deem that this might be achieved by exploit-
ing a larger dataset, as confirmed by some experiments done
by a contest participant giving insights on this point. On the
other side we notice that the deep learning strategies have not
yet been su�ciently explored in this applicative area, thus we
might expect new relevant results using such approaches. In our
opinion the latter two points will guide next research e↵orts.

Acknowledgements

This work has been partly funded by Sullivan Nicolaides
Pathology, Australia and the Australian Research Council
(ARC) Linkage Projects Grant LP130100230.

References

Banerjee, A., Maji, P., 2013. Computer Analysis of Images and Patterns: 15th
International Conference, CAIP 2013, York, UK, August 27-29, 2013, Pro-
ceedings, Part I. Springer Berlin Heidelberg, Berlin, Heidelberg. chapter
Contraharmonic Mean Based Bias Field Correction in MR Images. pp. 523–
530. doi:10.1007/978-3-642-40261-6_63.

Cascio, D., Taormina, V., Cipolla, M., Bruno, S., Fauci, F., Raso, G., 2016. A
multi-process systems for HEp-2 cells classification based on svm. Pattern
Recognition Letters this issue.

Codrescu, C., 2014. Quadratic recurrent finite impulse response mlp for indirect
immunofluorescence image recognition, in: Pattern Recognition Techniques
for Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on, pp.
49–52. doi:10.1109/I3A.2014.14.

Ensafi, S., Lu, S., Kassim, A.A., Tan, C.L., 2016. Accurate HEp-2 cell classi-
fication based on sparse coding of superpixels. Pattern Recognition Letters
this issue.

Foggia, P., Percannella, G., Saggese, A., Vento, M., 2014. Pattern recognition
in stained HEp-2 cells: Where are we now? Pattern Recognition 47, 2305 –
2314. doi:http://dx.doi.org/10.1016/j.patcog.2014.01.010.

Foggia, P., Percannella, G., Soda, P., Vento, M., 2013. Benchmarking HEp-2
cells classification methods. Medical Imaging, IEEE Transactions on 32,
1878–1889. doi:10.1109/TMI.2013.2268163.

Gao, Z., Zhang, J., Zhou, L., Wang, L., 2014. HEp-2 cell image classification
with convolutional neural networks, in: Pattern Recognition Techniques for
Indirect Immunofluorescence Images (I3A), 2014 1st Workshop on, pp. 24–
28. doi:10.1109/I3A.2014.15.

Gragnaniello, D., Sansone, C., Verdoliva, L., 2016. Cell image classification
by a scale and rotation invariant dense local descriptor. Pattern Recognition
Letters this issue.

Han, X.H., Chen, Y.W., Xu, G., 2016. Integration of spatial and orientation con-
texts in local ternary patterns for HEp-2 cell classification. Pattern Recogni-
tion Letters this issue.

Hobson, P., Lovell, B., Percannella, G., Vento, M., Wiliem, A., 2014. Classi-
fying anti-nuclear antibodies HEp-2 images: A benchmarking platform, in:
IEEE ICPR 2014, pp. 3233–3238. doi:10.1109/ICPR.2014.557.

Hobson, P., Lovell, B.C., Percannella, G., Saggese, A., Vento, M., Wiliem, A.,
2016. Computer aided diagnosis for anti-nuclear antibodies HEp-2 images:
Progress and challenges. Pattern Recognition Letters this issue.

Hobson, P., Lovell, B.C., Percannella, G., Vento, M., Wiliem, A., 2015. Bench-
marking human epithelial type 2 interphase cells classification methods on
a very large dataset. Artificial Intelligence in Medicine 65, 239 – 250.
doi:http://dx.doi.org/10.1016/j.artmed.2015.08.001.

Alessia Saggese
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI:https://doi.org/10.1016/j.patrec.2016.07.013, Pattern Recognition Letters



9

C G H N M S
C 91.81 0.51 0.06 3.59 0.60 3.44
G 0.95 55.21 10.65 17.00 13.45 2.73
H 1.00 0.79 66.53 4.18 7.58 19.91
N 4.27 1.17 1.26 86.12 1.17 6.02
M 0.22 1.60 5.99 3.25 82.80 6.14
S 14.07 0.46 12.94 4.88 2.54 65.11

Table 3: Codrescu Task1: Confusion Matrix, MCA = 74.60

C G H N M S
C 94.44 0.69 0.90 1.91 0.64 1.40
G 0.36 70.80 5.13 9.04 12.76 1.91
H 0.38 0.72 74.04 5.00 7.84 12.03
N 2.51 1.85 1.57 90.18 2.01 1.87
M 0.14 0.60 7.25 0.61 89.41 1.98
S 16.54 0.95 11.33 2.84 2.30 66.04

Table 4: Ensafi Task1: Confusion Matrix, MCA = 80.82

C G H N M S
C 96.03 0.18 0.05 1.50 0.48 1.76
G 0.03 73.20 5.75 10.42 9.14 1.45
H 0.19 0.84 78.29 5.97 7.52 7.20
N 0.72 1.33 1.86 93.72 1.17 1.22
M 0.08 0.83 4.22 0.73 91.27 2.87
S 11.31 0.59 14.61 4.80 1.85 66.85

Table 5: Gao Task1: Confusion Matrix, MCA = 83.23

C G H N M S
C 95.52 0.42 0.21 1.15 0.05 2.66
G 0.03 71.82 4.74 7.27 14.60 1.55
H 0.05 0.80 78.57 4.94 8.07 7.58
N 0.75 1.58 1.96 92.55 1.70 1.46
M 0.05 0.76 3.14 0.85 93.39 1.81
S 13.35 0.71 11.11 2.65 2.17 70.01

Table 6: Gragnaniello Task 1: Confusion Matrix, MCA = 83.64

C G H N M S
C 92.73 1.95 0.17 1.05 0.14 3.95
G 0.16 31.57 12.89 26.60 25.91 2.86
H 0.92 1.38 65.71 3.09 20.45 8.44
N 1.17 10.17 3.84 70.92 7.09 6.81
M 0.67 4.05 14.02 5.60 69.55 6.11
S 16.39 0.97 18.84 2.61 5.89 55.30

Table 7: Han Task1: Confusion Matrix, MCA = 64.30

C G H N M S
C 96.75 0.09 0.51 1.15 0.19 1.31
G 0.20 72.94 3.68 6.12 16.18 0.89
H 0.17 0.60 77.33 7.40 6.40 8.10
N 0.75 0.35 1.51 94.25 1.79 1.35
M 0.06 0.52 6.13 0.92 91.07 1.30
S 11.09 0.49 10.75 2.57 2.02 73.09

Table 8: Manivannan Task 1: Confusion Matrix, MCA = 84.24

C G H N M S
C 95.17 0.02 0.90 2.16 0.09 1.66
G 0.62 46.20 10.65 14.17 27.95 0.39
H 0.07 0.05 75.89 4.21 11.53 8.26
N 0.76 0.40 1.96 94.25 2.09 0.54
M 0.26 0.17 3.30 0.60 95.03 0.63
S 11.88 0.09 11.31 2.04 2.14 72.54

Table 9: Paci Task1: Confusion Matrix, MCA = 79.85

C G H N M S
C 94.96 0.12 0.18 1.63 0.61 2.51
G 0.92 65.11 4.21 15.13 11.97 2.66
H 0.13 0.21 76.83 6.61 7.56 8.67
N 1.02 0.51 1.17 92.92 2.56 1.82
M 0.15 0.65 4.89 1.42 91.08 1.80
S 13.59 0.23 11.91 3.25 2.60 68.42

Table 10: Paisitkriangkrai Task1: Confusion Matrix, MCA = 81.55

C G H N M S
C 93.29 0.54 0.17 2.18 0.62 3.19
G 0.95 51.56 6.18 9.93 28.05 3.32
H 0.64 2.33 63.34 4.24 17.03 12.42
N 2.30 2.70 1.57 86.09 4.97 2.38
M 0.40 2.84 5.41 2.32 85.59 3.45
S 15.03 2.01 12.52 3.49 5.64 61.31

Table 11: Ponomarev Task 1: Confusion Matrix, MCA = 75.46

C G H N M S
C 96.95 0.14 0.16 1.13 0.17 1.44
G 0.20 70.73 9.08 9.08 9.83 1.09
H 0.23 0.46 78.94 4.67 7.18 8.52
N 0.87 0.47 1.55 94.05 1.74 1.32
M 0.09 0.30 5.28 0.69 91.49 2.13
S 7.74 0.44 12.70 1.94 1.57 75.60

Table 12: Qi Task 1: Confusion Matrix, MCA = 84.63

C G H N M S
C 90.70 1.41 0.53 4.21 0.39 2.75
G 0.85 49.49 8.25 11.48 25.49 4.44
H 0.99 3.10 58.53 6.16 15.48 15.73
N 2.84 7.21 2.15 72.89 7.63 7.29
M 1.17 10.47 7.03 2.86 76.50 1.98
S 11.30 2.71 15.56 11.74 4.83 53.87

Table 13: Roberts Task 1: Confusion Matrix, MCA = 67.00

C G H N M S
C 95.14 0.72 0.47 1.94 0.20 1.52
G 0.10 48.11 5.82 3.52 41.73 0.72
H 0.06 2.61 73.75 1.21 15.36 7.01
N 4.40 6.66 1.50 78.95 5.43 3.06
M 0.05 6.93 4.95 1.16 86.02 0.90
S 16.72 0.64 17.09 2.14 5.41 58.00

Table 14: Sarrafzadeh Task 1: Confusion Matrix, MCA = 73.33
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C G H N M S
C 93.65 0.16 0.70 2.29 0.27 2.93
G 0.03 76.39 1.97 8.06 11.31 2.24
H 0.02 0.72 73.81 4.43 13.05 7.97
N 1.58 0.73 2.20 85.05 2.62 7.82
M 0.14 2.25 5.20 4.26 86.65 1.49
S 14.99 0.47 13.30 2.17 3.90 65.17

Table 15: Taormina Task 1: Confusion Matrix, MCA = 80.12

C G H N M S
C 94.74 0.25 1.31 1.68 0.15 1.87
G 0.30 71.03 5.03 7.53 15.65 0.46
H 0.00 0.98 74.31 3.36 13.21 8.14
N 0.84 0.92 1.60 92.85 2.24 1.54
M 0.17 1.46 3.64 1.11 91.99 1.63
S 8.18 0.59 12.16 1.69 2.30 75.08

Table 16: Theodorakopoulos Task 1: Confusion Matrix, MCA = 83.33

C G H MS N M S
C 94.74 0.00 0.66 0.00 0.00 0.00 4.61
G 0.00 80.77 7.69 3.85 0.00 0.00 7.69
H 0.00 0.00 82.17 2.55 0.00 1.91 13.38

MS 0.00 4.55 36.36 43.18 4.55 6.82 4.55
N 0.00 0.00 0.67 0.00 98.67 0.67 0.00
M 0.00 1.61 11.29 0.00 0.00 85.48 1.61
S 5.06 0.00 14.56 0.00 0.00 0.00 80.38

Table 17: Ensafi Task 2: Confusion Matrix, MCA = 80.77

C G H MS N M S
C 97.37 0.00 0.66 0.00 0.00 0.00 1.97
G 0.00 73.08 0.00 23.08 0.00 0.00 3.85
H 0.00 0.00 86.62 7.01 0.00 1.27 5.10

MS 0.00 0.00 20.45 75.00 0.00 2.27 2.27
N 0.00 0.00 0.00 1.33 98.00 0.00 0.67
M 0.00 0.00 1.61 0.00 0.00 98.39 0.00
S 0.63 0.00 16.46 1.90 0.00 0.00 81.01

Table 18: Gragnaniello Task 2: Confusion Matrix, MCA = 87.07

C G H MS N M S
C 98.68 0.66 0.00 0.00 0.00 0.00 0.66
G 0.00 80.77 7.69 3.85 3.85 3.85 0.00
H 0.00 0.00 92.99 0.00 0.00 1.27 5.73

MS 0.00 2.27 34.09 52.27 2.27 6.82 2.27
N 0.00 0.00 0.67 0.67 98.00 0.67 0.00
M 0.00 0.00 6.45 0.00 0.00 91.94 1.61
S 0.00 0.00 11.39 0.63 0.00 0.00 87.97

Table 19: Liu Task 2: Confusion Matrix, MCA = 86.09

C G H MS N M S
C 98.68 0.00 0.00 0.66 0.00 0.00 0.66
G 0.00 80.77 0.00 3.85 3.85 11.54 0.00
H 0.00 0.00 92.99 0.00 0.00 1.91 5.10

MS 0.00 0.00 18.18 61.36 2.27 11.36 6.82
N 0.00 1.33 0.67 0.67 96.00 0.67 0.67
M 0.00 0.00 1.61 0.00 0.00 98.39 0.00
S 0.00 0.00 6.96 0.63 0.00 1.27 91.14

Table 20: Manivannan Task 2: Confusion Matrix, MCA = 88.48

C G H MS N M S
C 98.68 0.00 0.00 0.66 0.00 0.00 0.66
G 0.00 80.77 0.00 3.85 3.85 11.54 0.00
H 0.00 0.00 92.99 0.00 0.00 1.91 5.10

MS 0.00 0.00 18.18 61.36 2.27 11.36 6.82
N 0.00 1.33 0.67 0.67 96.00 0.67 0.67
M 0.00 0.00 1.61 0.00 0.00 98.39 0.00
S 0.00 0.00 6.96 0.63 0.00 1.27 91.14

Table 21: Paisitkriangkrai Task 2: Confusion Matrix, MCA = 87.07

C G H MS N M S
C 96.05 0.00 0.00 0.00 0.00 0.00 3.95
G 0.00 80.77 0.00 0.00 0.00 19.23 0.00
H 0.00 0.00 74.52 0.00 0.00 5.73 19.75

MS 0.00 0.00 34.09 0.00 4.55 59.09 2.27
N 0.00 1.33 0.00 0.00 94.67 2.00 2.00
M 0.00 0.00 3.23 0.00 0.00 96.77 0.00
S 8.86 0.00 12.03 0.00 0.00 1.90 77.22

Table 22: Ponomarev Task 2: Confusion Matrix, MCA = 74.29

C G H MS N M S
C 94.08 0.00 0.00 0.00 1.97 0.00 3.95
G 0.00 38.46 15.38 19.23 11.54 11.54 3.85
H 0.00 0.00 87.26 0.64 0.00 0.64 11.46

MS 0.00 4.55 38.64 20.45 4.55 25.00 6.82
N 4.00 1.33 1.33 0.67 80.00 2.67 10.00
M 0.00 0.00 41.94 4.84 12.90 38.71 1.61
S 9.49 0.00 26.58 0.00 4.43 0.00 59.49

Table 23: Taormina Task 2: Confusion Matrix, MCA = 59.78

Alessia Saggese
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI:https://doi.org/10.1016/j.patrec.2016.07.013, Pattern Recognition Letters



11

Jegou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C., 2012.
Aggregating local image descriptors into compact codes. IEEE Trans. Pat-
tern Anal. Mach. Intell. 34, 1704–1716. doi:10.1109/TPAMI.2011.235.

Kastaniotis, D., Theodorakopoulos, I., Economou, G., Fotopoulos, S., 2013.
HEp-2 cells classification using locally aggregated features mapped in the
dissimilarity space, in: Bioinformatics and Bioengineering (BIBE), 2013
IEEE 13th International Conference on, pp. 1–4. doi:10.1109/BIBE.
2013.6701591.

Kokkinos, I., Bronstein, M., Yuille, A., 2012. Dense Scale Invariant Descriptors
for Images and Surfaces. Research Report RR-7914. INRIA. URL: https:
//hal.inria.fr/hal-00682775.

Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P., 2012. Extended local binary
patterns for texture classification. Image and Vision Computing 30, 86 – 99.
doi:http://dx.doi.org/10.1016/j.imavis.2012.01.001.

Lovell, B.C., Percannella, G., Vento, M., Wiliem, A., 2014. Performance eval-
uation of indirect immunofluorescence image analysis systems, in: Report
on the contest. URL: http://i3a2014.unisa.it/.

Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., McKenna, S., 2014a.
HEp-2 cell classification using multi-resolution local patterns and ensemble
svms, in: Pattern Recognition Techniques for Indirect Immunofluorescence
Images (I3A), 2014 1st Workshop on, pp. 37–40. doi:10.1109/I3A.2014.
18.

Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., McKenna, S., 2014b.
HEp-2 specimen classification using multi-resolution local patterns and
svm, in: Pattern Recognition Techniques for Indirect Immunofluorescence
Images (I3A), 2014 1st Workshop on, pp. 41–44. doi:10.1109/I3A.2014.
20.

Meroni, P.L., Schur, P.H., 2010. ANA screening: an old test with new recom-
mendations. Annals of the Rheumatic Diseases 69, 1420 –1422.

Nanni, L., Lumini, A., dos Santos, F.L.C., Paci, M., Hyttinen, J., 2016. Ensem-
bles of dense and dense sampling descriptors for the HEp-2 cells classifica-
tion problem. Pattern Recognition Letters this issue.

Nosaka, R., Fukui, K., 2014. HEp-2 cell classification using rotation invariant
co-occurrence among local binary patterns. Pattern Recognition 47, 2428–
2436. doi:10.1016/j.patcog.2013.09.018.

Nosaka, R., Ohkawa, Y., Fukui, K., 2012. Feature extraction based on
co-occurrence of adjacent local binary patterns, in: Ho, Y.S. (Ed.), Ad-
vances in Image and Video Technology. Springer Berlin Heidelberg. vol-
ume 7088 of Lecture Notes in Computer Science, pp. 82–91. doi:10.1007/
978-3-642-25346-1_8.

Paisitkriangkrai, S., Shen, C., van den Hengel, A., 2014. A scalable stage-
wise approach to large-margin multiclass loss-based boosting. Neural
Networks and Learning Systems, IEEE Transactions on 25, 1002–1013.
doi:10.1109/TNNLS.2013.2282369.

Perronnin, F., Sánchez, J., Mensink, T., 2010. Improving the fisher kernel for
large-scale image classification, in: Proceedings of the 11th European Con-
ference on Computer Vision: Part IV, Springer-Verlag, Berlin, Heidelberg.
pp. 143–156.

Ponomarev, G.V., Kazanov, M.D., 2016. Classification of ana HEp-2 slide im-
ages using morphological features of stained patterns. Pattern Recognition
Letters this issue.

Qi, X., Zhao, G., Chen, J., Pietikainen, M., 2016. HEp-2 cell classification: The
role of gaussian scale space theory as a pre-processing approach. Pattern
Recognition Letters this issue.

Qi, X., Zhao, G., Shen, L., Li, Q., Pietikäinen, M., 2015. LOAD: local ori-
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