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Abstract 9 

The use of blood components and their functions as prognostic and diagnostic tools, 10 

both in environmental studies and in aquaculture, are so important in order to 11 

understand which are the normal and pathological conditions that fish could present to 12 

a certain factors. This can allow fish health specialists to intervene before large losses 13 

occur. However, there are several factors to consider when performing a blood test, 14 

because a major limitation for field researchers is that the "rules" for animal or human 15 

hematology do not always apply to wildlife. Hence, the main of this review is to show 16 

some environmental and xenobiotic factors capable to modify the haematic cells so 17 

that it is possible to visualize the strengths and limitations of a haematological 18 

analysis underscore the problems associated with efforts to assess fish health on the 19 

basis of hematological data. Finally, we point out the importance of the use of 20 

bioenergy tools as part of haematological evaluations associated to environment or 21 

aquaculture stress. 22 
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Keywords: teleost; haematology analysis; environment; xenobiotic; aquaculture; 23 

bioenergetics. 24 

1. Introduction 25 

Evaluation of fish blood through hematological indices has been done for 26 

more than 70 years as a health status assessment tool and the alterations that may 27 

occur (Katz 1951; Hesser 1960; Blaxhall and Diasley, 1973). Notwithstanding, for a 28 

correct interpretation of hematological analysis is necessary to contemplate a sum of 29 

variants such as reproductive cycle, age, sex, stress, nutritional status, and water 30 

quality as well as the habitat of species, since being poikilothermic animals are under 31 

the influence of environmental changes (Bastardo and Diaz-Barberan 2005; Gabriel et 32 

al., 2004, 2007). In aquaculture as a diagnostic tool, in addition to considering the 33 

above-mentioned factors, it is necessary to consider also the sampling technique, 34 

transportation, type of culture system, acclimation procedure, and water quality (Ezeri 35 

et al., 2004; Gabriel et al., 2004, 2007, 2011; Rey Vázquez and Guerrero, 2007; 36 

Correa-Negrete et al., 2009; Faggio et al., 2014a,b,c). On the other hand, factors such 37 

as blood collection, handling and storage time of blood samples can strongly 38 

influence the results obtained from a hematological analysis, recommending carrying 39 

out the hematological evaluations immediately after blood collection because long-40 

term storage can modifies the results of the analyses, probably due to storage-related 41 

degenerative changes that may occur (Faggio et al. 2013; Fazio et al., 2014).  42 

A hematological study may include quantitative determinations of hematocrit 43 

(Hct), hemoglobin concentration (3Hb), Red Blood Cell (RBC) and White Blood Cell 44 

(WBC) account, platelet count (PLT), and sedimentation rate, among others. 45 

Differential blood cells (DBC) account, including RBC and WBC concentration, is 46 
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one of the best hematological indicators of fish health because it can indicate the 47 

presence of an infectious disease (Blaxhall and Daisley, 1973) and provide data for 48 

studies of defense mechanisms disease and pathogenesis (Fijan 2002a,b). This 49 

approach has been employed in monitoring the response of fish under conditions of 50 

reproduction, nutrition, and density (Palíková et al. 1999; Pavlidis et al. 2007; Zexia 51 

et al. 2007; Burgos-Aceves et al., 2010, 2012; El-Naggar et al., 2017), or after drug 52 

administration, parasite infestations, and environmental stress (Ranzani-Paiva et al. 53 

2008; Dias et al. 2011; Seriani et al., 2015a,b; Ventura et al., 2015; Corrêa et al. 2017; 54 

Grzelak et al. 2017; Valero et al., 2018), and thus their health status under such 55 

adverse conditions (Faggio et al., 2013). Therefore, the application of hematological 56 

indices is inexpensive and rapid to perform, allowing anticipating the clinical 57 

manifestations of diseases by monitoring the physiological, nutritional and health 58 

status of fish (Burgos-Aceves et al. 2010). Then, to have a basic knowledge of 59 

hematology represents a valuable guide to assess the condition of aquatic organisms 60 

(Rey Vázquez and Guerrero, 2007), once reference values are established under 61 

standardized conditions (Faggio et al., 2013). 62 

2. Hematological indices as biomarker of environmental variations and stress 63 

Hematological parameters are closely related to the susceptibility of animals to 64 

environment changes (Gabriel et al., 2004). Then, use of hematic tools to study fish 65 

blood composition in environmental and toxicological stress studies, as a possible 66 

indicator of physiological and pathological changes, is more recurrent (Zutshi et al., 67 

2010; Rodrigues et al., 2018). Due to this high blood sensitivity, several blood studies 68 

have been carried out in order to understand the possible influence of seasonal 69 

changes that may have on these parameters (Folmar, 1993; Faggio et al., 2014a). A 70 
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study conducted by Faggio et al. (2014a) showed that gilthead seabream Sparus 71 

aurata and sea bream Dicentrarchus labrax presented similar monthly variations 72 

trends in RBC and WBC account, Htc, and Hb, being mainly photoperiod and 73 

temperature-dependent. Both species showed an increase in values of RBC and Htc 74 

during cold-water season, which may be associated with water dissolved oxygen 75 

concentration disposal (Pascoli et al., 2011). Significant monthly fluctuations of Hb, 76 

Hct, RBC, WBC, MVC, MCH and MCHC were also reported in the Nile tilapia 77 

Oreochromis niloticus in an lake that experiences two seasonal period: the rainy and 78 

dry seasons (Kefas et al., 2015). The highest level of Hb, RBC, and WBC were 79 

associated to dry season, which mighty be as a result of low volume of water during 80 

this period. Whereas, MVC, MCH, and MCHC fluctuated in both rainy and dry 81 

seasons probably as consequence of agriculture activity in the area (Kefas et al., 82 

2015). While a study done by Örün et al. (2003) in three cyprinid fish species 83 

(Alburnoides bipunctatus F., Chalcalburnus mossulensis, Cyprinion macrostomus) 84 

indicates that, in addition to temperature and photoperiod, factors such as gender and 85 

water quality can influence the levels of blood parameters RBC, WBC, Hct, and Hb, 86 

adding to species factor. The three species presented the hematological indices 87 

significantly higher in the warm months that those measured in cold seasons. While 88 

the hematic values of A. bipunctatus F. were higher compared to those of C. 89 

mossulensis, C. macrostomus, that were similar among them. Finally, the values of 90 

RBC, Hct, ctHb, were higher in males, while a higher WBC index was reported in 91 

females, expressly during the reproductive stage. This same behavior, higher RBC 92 

values in male and higher WBC values in female, was observed in adult individuals of 93 

marine species Mycteroperca rocasea during the reproductive season (Burgos-Aceves 94 

et al., 2010). This increment in WBC quantity or Leukophilia in females coincided 95 
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with high plasma concentrations of oestradiol (E2) and testosterone (T), while the 96 

RBC increment or erythropoietic activity in males can be associated with an increased 97 

levels of 11-ketotestosterone (11-kt) in plasma, which suggests a coordination of 98 

endocrine-immune activity (Pottinger and Pickering, 1987). In addition, it has been 99 

postulated that leukocytes can infiltrate the gonad tissue from the peripheral blood to 100 

aid with immune surveillance and phagocyte activity and, may also aid in gonad 101 

reabsorption during post-spawning. Moreover, both mature male and female 102 

presented lower levels of RBC and Hct compared to the levels reported in immature 103 

individuals, demonstrating that age is another factor that can modulate the blood 104 

parameters (Burgos-Aceves et al., 2012). While, Fazio et al. (2015) report that both 105 

haematological parameters RBC and WBC were higher in male than female of Salmo 106 

trutta macrostigma postulating that the reason for having higher haematological and 107 

even biochemical values in males is due to the high energy cost that females present 108 

in ovary development (Vijayakumari and Murali, 2012). Otherwise for Nile Green 109 

Tilapia Tilapia zilli, the nest mates presented lower levels in RBC, WBC, and Hct but 110 

without becoming significant compared with nest females (El-Naggar et al., 2017). In 111 

a comparative study, the seawater flathead grey mullet Mugil cephalus and the 112 

freshwater goldfish Carassius auratus presented significant hematological variations. 113 

Higher values of RBC and Hct, associated with reduced mean cell volume (MCV), 114 

mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) 115 

was reported in the grey mullet in respect to goldfish. Whereas, values of WBC and 116 

Thrombocytes (TC) count were lower in the grey mullet with respect to goldfish 117 

(Fazio et al., 2012). According to previous works, high RBC values are usually 118 

associated with species of fast movement and high activity (Fazio et al., 2013a). 119 

Moreover, a high value of Hct and concomitant reduction in their volume is due to an 120 
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adaptive process to salinity of seawater habitat. While, the lower levels of WBC in the 121 

seawater species could be associated to feeding habits (Satheeshkumar et al., 2012a,b; 122 

Romano et al. 2017). Thereupon, divergent environmental conditions and feeding 123 

habits may influence on fish blood parameters (Fazio et al., 2012). This means that 124 

physicochemical differences in each environment may influence the haematological 125 

parameters, which makes them suitable for monitoring the effects of habitat changes 126 

on fish biology and fish culture practices (Fazio et al., 2012). 127 

3. Hematological indices as biomarker of contaminated environments 128 

Alterations in blood parameters associated to environmental pollutants have 129 

been received growing attention in assessing the health of fish (Zutshi et al., 2010; 130 

Corredor-Santamaría et al., 2016). The variation of haematological features could 131 

serve as a biomarker of sub-lethal environmental stress (Bridges et al., 1976), since on 132 

the one hand it reflects the relative health of the aquatic ecosystem (Cazenave et al., 133 

2005), and on the other at it can help to infer with the toxicity mode of potentially 134 

dangerous chemicals (Zutshi et al., 2010). In a report carried out by 135 

Corredor- Santamaría et al. (2016) it is emphasized that during the rain season, when 136 

industrial and domestic wastewater discharges increase, the two native species 137 

Astyanax gr. bimaculatus and Aequidens metae of a Colombian river presented 138 

alteration in the haematical parameters Hb, Hct, and RBC with a rise in WBC mainly 139 

thrombocytes and neutrophils. According to Cazenave et al. (2005), individual of 140 

neotropical freshwater fish Corydoras paleatus from polluted environments presented 141 

significantly higher values of RBC, Htc, ctHb, MCV, MCH and MCHC compared 142 

with individual of same species present in pristine places. Additionally, these hematic 143 

parameters did not change according to maturation stages, sex or seasons. Instead, 144 
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they established that Hb could be a key parameter to point out differences between 145 

populations exposed to different environmental conditions, because an increment in 146 

Hb concentration could be an especially reliable first indicator of an adaptive 147 

improvement in blood oxygen transporting capacity (Saint-Paul, 1984). In other 148 

study, the freshwater fish Labeo rohita showed hematological disruptions, erythrocyte 149 

destruction (hemolysis), and leukocytosis (leukopenia) due to a synergetic effect of 150 

various pollutants present in its habitat, affecting the immune system and making the 151 

fish vulnerable to diseases (Zutshi et al., 2010). Alteration on immune system was 152 

also observed in the native Nile tilapia from an area influenced by the discharge of 153 

runoff from agricultural and urban activities. A WBC analysis denoted a high 154 

percentage of eosinophils and monocytes and fewer thrombocytes, factors that 155 

indicate poor environmental quality (Corrêa et al., 2017). The high presence of 156 

eosinophil and monocyte cells can be associates with an inflammatory response 157 

(Clauss et al., 2008; Balla et al. 2010) due to either parasite infestation or chemical 158 

compounds present in effluents (Corrêa et al., 2017). While, a reduction in 159 

thrombocytes or thrombocytopenia may be associated with internal hemorrhagic foci, 160 

which can be detrimental to the fish because these cells may be linked to 161 

inflammatory and phagocytic responses (Burrows et al., 2001; Mazon et al., 2002; 162 

Clauss et al., 2008). The read cells erythrocytes also seem to play a roll in 163 

inflammation, where deformation of these cells caused by pathogen infection or 164 

xenobiotic exposure (Pagano and Faggio, 2015; Santoso et al., 2015; Faggio et al., 165 

2018; Farag and Alagawany, 2018; Guzzetti et al., 2018; Savorelli et al., 2017; 166 

Sehonova et al., 2018; Strungaru et al., 2019 ) seem to alter inflammation process 167 

(Straat et al., 2012). Even more, erythrocytes can play a complementary role in 168 

immune responses in both fish and other vertebrates, since it has been found that RBC 169 
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expresses immunity genes and responses (Shen et al., 2018). Therefore, RBC can be 170 

used as a good indicator to evaluate the cytotoxicity of xenobiotics by membrane 171 

alteration and deformation (Pagano and Faggio, 2015; Farag and Alagawany, 2018) 172 

and could be associated to an important parameter in the study of any inflammatory 173 

response (Silva-Herdade et al., 2016). 174 

Pollution by heavy metal in aquatic environments has been an increasing 175 

ecological and global public health concern because of the risk of toxicity and 176 

bioaccumulation in the food chain (Adeyemo et al. 2010; Aliko et al., 2015; 177 

Tchounwou et al., 2012; Fazio et al., 2014b; Pagano et al., 2017). In a study 178 

conducted by Gaber et al. (2013), individuals of African catfish Clarias gariepinus 179 

presented higher values of RBC, Hb, Htc and WBC in water with elevated 180 

concentration of copper (Cu), iron (Fe), lead (Pb), cadmium (Cd), manganese (Mn) 181 

and zinc (Zn) due the great discharge of wastewater by agricultural, industrial and 182 

domestic activity compared with individual of same species from a water with less 183 

sewage discharge activity. Fish of common carp exposed to Pb, Cu, Cd and Zn also 184 

presented a rise in Htc without significant changes in RBC, and an initial increase in 185 

WBC but subsequently dropped remaining low (Witeska, 2005; Vajargah et al., 186 

2018). The increment in Htc could be translated as alarm reaction and a subsequent 187 

dewdrop as an adaptation to stress (Vosyliene, 1996). Whereas the permanence of low 188 

levels of WBC may be due to the presence of cortisol secreted that shortens the life of 189 

lymphocytes, promoting the apoptosis and reducing their proliferation (Wyets et al. 190 

1998; Verburg van Kemenade et al., 1999; Espelid et al. 1996), The aluminum (Al) is 191 

one of the most abundant metal on earth releasing to the environment both natural or 192 

anthropogenic with no established biological functions (Sjögren et al., 2007). Due the 193 

acidification of surface waters, the aluminum becomes available to organisms that 194 
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make it toxic to fish (Driscoll et al., 1980). In adult tropical freshwater fish Tilapia 195 

zillii the hematological parameters RBC, Hct, ctHb, MCHC, MCH and MCV 196 

increased significantly after aluminum exposure. These parameters increased 197 

progressively according to an increase in concentration of aluminum and time 198 

exposure, which can be a defensive mechanism against aluminum toxicity through 199 

stimulation of erythropoiesis (Alwan et al., 2009). The essential trace metal Mn is 200 

widely used in industry and its waste is dumped into water bodies becoming an 201 

indiscernible toxic metal in aquatic environment altering the physiological 202 

homeostasis of organisms. In the gold fish after an acute exposure of Mn, alterations 203 

in the blood cells were observed. A WBC differential account reveled a significant 204 

decrement of leucocytes thus compromising the immune system, while erythron 205 

profile revealed a significant increasing of cellular and nuclear alteration of red blood 206 

cells leading to eryptosis, compromising the blood oxygen carrying capacity and 207 

therefore the fish health status (Valbona et al., 2018). Mercury (Hg) is a mayor and 208 

common aquatic pollutant and can be converted into more toxic form by microbes 209 

(Schropre, 2001). It has been reported that Hg can penetrate the membrane of 210 

erythrocytes damaging the cells and causing hemorrhages as observed in the tench 211 

fish Tinca tinca, concomitant with elevated values of Hct, ctHb, and RBC in acute 212 

lethal or chronic sub-lethal exposure. These increments could be due a splenic 213 

contraction (a common stress response), and subsequently releases of blood cells 214 

reserve or by simultaneous erythropoiesis in response to a transport demand for O2-215 

CO2 (Shah and Altindag, 2004). Notwithstanding, at lower acute sub-lethal exposure 216 

does not appear have toxic effect both tench fish (Shah and Altindag, 2004), and Nile 217 

tilapia (Ishikawa et al., 2007). The metals Cd and Pb are other two metals that both 218 

can have effects on haematological variables, reducing concentration of RBC, WBC 219 

https://doi.org/10.1016/j.scitotenv.2019.03.275
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and TC in the blood of Striped Mullet M. cephalus (Fazio et al., 2014b). The 220 

reduction in concentration of RBC may be associated with internal bleeding from 221 

damage to the kidney caused by Cd and Pb, in addition to an impaired osmoregulation 222 

triggered by Cd, which may cause a haemodilution (Kori-Siakpere et al. 2006; Fazio 223 

et al., 2014b). While, reduction in WBC in blood of Striped Mullet seems to be 224 

associated to a bioaccumulation of Cd and Pb in kidney and liver (Kori-Siakpere et al. 225 

2006), weakening the immune system and, making the fish susceptible to diseases 226 

(Shah and Altindag, 2005). Similar accumulative effect of Cb in fish tissues was 227 

observed in Nile tilapia. Also, haematological parameters RBC, Hb, and Hct were 228 

reduced in fish exposed to Cd (Al-Asgah et al., 2015). According to Khadre (1988) 229 

reduction in these parameters might be due to destruction of mature RBCs and a 230 

reduction in haemosynthesis or an acute haemolytic crisis resulting in a severe 231 

anemia. Arsenic is cataloged as one of the most alarming chemicals given its high 232 

toxicity mainly in its salt form (ATSDR, 2007). Fish of Indian catfish C. batrachus 233 

exposed to arsenic salt presented a progressive decrease in Hb, RBC, and packed cell 234 

volume (PVC) inducing an anemia in fish (Kumar and Banerjee, 2016). Several 235 

factors may be associated with the progress of anemia, either by reduction in the read 236 

cell rate production or an increasing loss of these cells (Shah and Altindag, 2004). An 237 

accelerated destruction of hemoglobin or reduction in its rate synthesis (Reddy and 238 

Bashamohideen, 1989), a depression/exhaustion of hemopoitic potential of the fish 239 

(Sawhney and Johal, 2000), or may be a suppression of hemopoiticactivity of the 240 

kidney in addition to the increased removal of dysfunctional RBCs what decrease the 241 

PVC value following arsenic exposure (Kumar and Banerjee, 2016). According to 242 

Gill and Epple (1993) the reasons for anemia might be impaired erythropoisis caused 243 

by the direct effect of metal on kidney or spleen, accelerated erythroclasia due to 244 
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altered membrane permeability and/or increased mechanical fragility, and defective 245 

iron metabolism or impaired intestinal uptake of iron due to mucosal lesions. 246 

The use of pesticides is a worldwide practice used for control and eradication 247 

of pest in intensive agricultural production and fish farms (Oruç, 2010; Saravanan et 248 

al., 2011). The phenoxy acid herbicide (MCPA) is widely used in agriculture, forestry 249 

and horticulture (Kudsk and Streibig, 2003) and has been reported present in aquatic 250 

environments, however, little is known about its effects on fish. Lutnicka et al. (2018) 251 

evaluated the effects of this herbicide on common carp Cyprinus carpio juveniles 252 

presented that a chronic exposure of MCAP induces only minor and transient 253 

alterations in red blood parameters but not in leukocytes. A differential WBC count 254 

showed a significant and persistent depletion of mature neutrophils, and monocytes, 255 

indicating a possible inflammatory process and immunosuppression caused by this 256 

herbicide (Lutnicka et al., 2018). Another synthetic pesticide extensively used for 257 

controlling pests in agriculture is the Quinalphos 25EC (QP), a highly toxic 258 

organophosphate classified as a yellow label pesticide, which has become a matter of 259 

concern (Das and Mukherjee, 2000). A chronic exposure to this pesticide caused a 260 

reduction on blood parameters RBC, Htc, MCV, MCH, and MCHC as the 261 

concentration of this toxicant increased in silver barb, Barbonymus gonionotus 262 

(Mostakim et al., 2015). This pesticide like others has the faculty to induce 263 

histological alterations in liver and kidney but the extent of damage varies depending 264 

upon the dose of toxicants, duration of exposure, toxicity of chemical, and 265 

susceptibility of the fish (Magar and Shaikh, 2013; Shanta et al., 2013; Mostakim et 266 

al., 2015). In a previous study with common carp, Qureshi et al. (2016) pointed out 267 

that a sub-acute exposure with the pesticide fipronil and the insecticide buprofezin 268 

can induce biochemical, hematological, histopathological and genotoxic damage. At 269 
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hematic level, both pesticide and insecticide (in combination or along) caused 270 

significant reduction in RBC, TC, Htc and Hb but an increment in WBC. Saravanan et 271 

al. (2011) also reported a similar effect of lindane (gamma-hexachlorocyclohexane) 272 

on haematological parameters in the same species as well as Ramesh et al. (2015) for 273 

exposure to Furadan; a carbamate pesticide is widely used in paddy fields. The levels 274 

of Hb, Hct, RBC, MCV, MCH and MCHC were decreased, whereas WBC increased 275 

in the treated fish. Such decrement in haematological parameters indicated an anemia 276 

probably due to hemosynthesis, and osmoregulatory dysfunction, erythrocyte 277 

destruction along with the damage in the gill tissues causing a reduction in oxygen 278 

carrying capacity of blood and inefficient exchange of gases (Jenkins et al., 2003; 279 

Seth and Saxena, 2003; El-Murr et al., 2015). The phenolic compound Bisphenol A 280 

(BPA), classified as potent endocrine disruptors, has detected in water environments 281 

by sewage discharges (Kamaraj et al., 2013), and has been shown to have also toxic 282 

effects in fish physiology (Liu et al., 2011; Faheem and Lone, 2013; Gentilcoreet al., 283 

2013; Liu et al., 2014). Recently, in a work done by Krishnapriya et al. (2017), the 284 

BPA caused a significant drop in the hematological parameters Hb, Hct, MCV, and 285 

MCH with a significant increment in WBC value. The RCB value, on the contrary, 286 

presented an initial increase with a subsequent decrement. The observed reduction in 287 

hematological values may be due to a reduction in the rate of formation of 288 

erythrocytes, destruction of them and/or an anemic condition of the fish due BPA 289 

toxicity (Jenkins et al., 2003; Seth and Saxena, 2003; El-Murr et al., 2015). The 290 

increase in WBC count indicates a stimulation of the immune system against the 291 

toxicity of BPA as was also observed in yellow perch Perca flavescens (Rogers and 292 

Mirza, 2013). Cuesta et al. (2008) also reported a non-negative effect on the gilthead 293 

seabream head-kidney leucocytes viability with an up-regulation of some immune-294 
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related genes after exposure to the organochlorines 1,1-dichloro-2,2-bis(p-295 

chlorophenyl)ethylene (p,p’-DDE) and lindane, exhibiting mostly a genetic effect. By 296 

contrast, it seems that in early life-history stages the Dichlorodiphenyltrichloroethane 297 

(DDT) metabolite o,p-DDE can compromise the viability of lymphocytes triggering 298 

long-term humoral immunosuppression in the Chinook salmon Oncoryhnchus 299 

tshawytscha (Milston et al., 2003). Same reduction in lymphocyte-granulocyte 300 

viability associated to an increasing apoptotic cells was observed in both spleen and 301 

head-kidney of Chinook salmon (Misumi et al., 2005). Notwithstanding, any 302 

information exists regarding the direct effect of DDT and/or its metabolites on fish 303 

hematology. 304 

Despite the clear evidence of the effects of pollutants on fish hematology, it is 305 

limited to data focusing on the effects of the residual pesticides/metals on the blood 306 

system of fish, especially on the correlations between different parameters and 307 

influencing the extent of environmental factors such as pollutant concentrations 308 

or/and exposure time in each parameter (Li et al., 2011) 309 

4. Hematological indices as biomarkers in fish farm aquaculture 310 

The study of haematological characteristics in cultured fish species is an 311 

important tool in the development of aquaculture system (O’Neal and Weirich, 2001; 312 

Percin and Konyalioglu, 2008; Mauri et al., 2011). It is necessary to know the basic 313 

environmental factors that influence on fish health (Bosisio et al., 2017), which they 314 

are traditionally been based on the conditions found in its natural habitat (Deacon and 315 

Hecht, 1996). Temperature has consistently been identified as the primary abiotic 316 

factor controlling key physiological, biochemical and life-history processes in fish 317 

(Beitinger and Fitzpatrick 1979). Therefore, knowledge of fish-thermal interaction is 318 
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of fundamental importance to aquaculturist (Deacon and Hecht, 1996). How fish 319 

respond to changes in temperature can be evaluated through haematological 320 

parameters since cell number, maturation grade, etc. are factors that restrict the 321 

hematic cell responses (Houston et al., 1996). The rainbow trout Oncorhynchus 322 

mykiss during warm periods haematological parameters Hb, Hct, and RBC are slightly 323 

lower than in cold season, which can be linked to an elevate O2-carrying capacity, and 324 

02 demand. These responses appear to be anti-adaptive or, at best, neutral (Tun and 325 

Houston 1986; Houston et al., 1996). Meanwhile, leucocyte population increased 326 

significantly during the warm period, and decreased for cold period as was also 327 

observed in common carp (Engelsma et al., 2003) and in the channel catfish Ictalurus 328 

punctatus (Martins et al., 2011). This would indicate that temperature could have an 329 

effect on the hematology of fish modifying the kinetic of hematic cells (Martins et al., 330 

2011; Engelsma et al., 2003) 331 

Photoperiod is a key factor for maintaining the physiological balance of fish, 332 

since several organs participate in receiving external light signals (Li et al., 2016). 333 

Consequently, photoperiod manipulation is another common technique employed in 334 

fish aquaculture in order to optimize the production of a species (Boeuf and Le Baile, 335 

1999; Bromage et al., 2001; Guerrero-Tortolero et al., 2010; Stuart and Drawbridge, 336 

2011; Gunnarsson et al., 2012; Aragón-Flores et al., 2017). Effects of stress induced 337 

by photoperiod manipulation on hematology in captive fish have been assessed 338 

(Solomon and Okomoda, 2012a,b). However, few studies have been carried out with 339 

variable hematological responses (Srivastava and Sanjeev, 2010). In the African 340 

catfish haematological parameters PCV, MCHC, MCH, WBC, RBC, Hb, Hct, and 341 

PLT presented variations according to photoperiod exposed (Solomon and Okomoda, 342 

2012b). Fish submitted in a photoperiod of 24 hours of light (24L:00D) presented the 343 
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lowest value of WBC, Hb, Hct, RBC, and PCV compared to fish submitted to a 344 

photoperiod of 24 hour dark (24D:00L) or 12 hours light (12L:12D). According to 345 

Solomon and Okomoda (2012b), the low level of PCV, Hct and Hb appears to be 346 

linked to a reduction in RBC, which seems to be associated to a depletion of ATP 347 

(Emelike et al., 2008), inability to transport excess sodium out of the cell membrane 348 

and a consequent haemolysis (Guyton and Hall, 2005). Whereas, individuals of Indian 349 

catfish exposed to artificial photoperiod of 24L:00D and 00L:24D, the haematological 350 

parameters RCB and WBC did not presented differences in both artificial photoperiod 351 

regimes. Nevertheless, a differential leukocyte count showed a lymphopenia and 352 

neutrophilia in fish submitted to 24L:00D (Srivastava and Choudhary, 2010), which 353 

seems to be a characteristic of fish under stress as a direct cytolytic effect of cortisol 354 

on lymphocytes or as a distribution of immunological cells in lymphoid tissues 355 

(Espelid et al., 1996; Grzelak et al., 2017). In the great sturgeon Huso huso, changes 356 

in haematological parameters was observed due to the stress caused by photoperiod 357 

manipulation. An increment in Hct accompanied by a reduction in Hb and 358 

erythrocytes was found in fish under extreme 24L:00D and 00L:24D light regimes, 359 

what denotes the development of a possible anemia (Bani et al., 2009). 360 

Salinity is also extensively studied because it is considered a determining 361 

growth and survival factor in fish farming (Lisboa et al., 2015; Baliarsingh et al., 362 

2018). There is also a relationship between salinity stresses associated with 363 

hematological alterations, which can have a physiological impact on the immune 364 

system (Choi et al., 2013). In Nile tilapia, the haematological parameter Hct and Hb 365 

presented a decreasing tendency accompanied by a drop in RBC, probably as a 366 

consequence of changes in the water content in the blood due to exposure to an 367 

increasing hyperosmotic environments (Bosisio et al., 2017; Elarabany et al., 2017). 368 

https://doi.org/10.1016/j.scitotenv.2019.03.275



 16 

Meanwhile, WBC does not present significant differences in increasing salinity 369 

environments (Bosisio et al., 2017), but not so for environments with declining 370 

salinity, where a lymphopenia, neutrophilia and monocytosis can be observed leading 371 

to immune dysregulation (Choi et al., 2013). Whereas, the euryhaline species M. 372 

cephalus submitted to salinity of 25 and 45‰ reported also lowest levels of RBC, Hb, 373 

Hct compared to fish at salinity of 35‰, while WBC level was highest in fish at 25‰ 374 

and lower at 45‰ (Fazio et al., 2013c). The reduction in RCB, Hb, and Hct 375 

parameters may be attributed to salinity-induced osmoregulatory dysfunction (Girling 376 

et al. 2003), and decrement in WBC indicates an immunosuppressive effect some 377 

hemorrhagic injury caused by variation in salinity (Anyanwu et al., 2007). For the 378 

freshwater fish Notopterus notopterus, the haematological parameters Hb, Hct, RBC, 379 

WBC along with other blood index were raised after exposure to an increasing saline 380 

medium, this as response of fish trying to cope up with the changing salinity condition 381 

of the water (Kavya et al., 2016). Through induction of splenetic contractions and the 382 

subsequent mobilization of stored erythrocytes, in addition to an increase in muscle 383 

activity and the concomitant movement of water from plasma to muscle (Kavya et al., 384 

2016). Then, understanding how seasonal variations can influence haemotological 385 

parameters can help to optimize husbandry practices (Faggio et al., 2014a). 386 

The characteristics of farming system also seem to influence the 387 

haematological characteristics of cultured fish species. According to a study conduced 388 

by Fazio et al. (2013b) with the gilthead sea bream, the fish rearing with different 389 

aquaculture system have different baseline haematological value. Fish in onshore 390 

farming system tend to present lower value of RBC, Hct and WBC and higher value 391 

of MCV, MCH, MCHC, and Hb than fish in offshore farming system. The increase in 392 

MCV and Hb reported in onshore system could be due to compensatory mechanism to 393 
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balance the low value of RBC; likewise the low value of WBC indicates a weakened 394 

defense in the fish due to a much lower present water quality than in an offshore 395 

system (Fazio et al., 2013a). However, fish in recirculating systems tend to present 396 

lower levels of hematological variables than fish in tidal systems probably to the 397 

relatively high physical and metabolic activity in fish, which are known to elicit a 398 

higher erythrocyte to plasma ratio in response to tidal shifts (Akinrotimi et al., 2010, 399 

2011). Then, water quality in aquaculture is an important factor to consider since it 400 

directly influences the evaluation of haematological parameters as well as fish health 401 

(Kucuk, 2010; Fazio et al., 2013b; Gorjipour, 2014).  Additionally, acclimation to 402 

captivity, a procedure commonly used in aquaculture, is a stressing factor able to alter 403 

the physiology of fish that in extreme cases results in mortality (Akinrotimi et al., 404 

2007, 2009). Acclimation procedure (method and period) appears to exert an effect on 405 

fish haematology (Gabriel et al., 2004, 2011; Ezeri et al., 2004; Akinrotimi et al., 406 

2007, 2010). In most of these studies a significant decline in the blood parameters 407 

RBC, Hct, and Hb is observed after a period of acclimation as reported for African 408 

catfish (Gabriel et al., 2011), Sarotherodon melanotheron (Akinrotimi et al., 2007), 409 

Tilapia guineensis (Akinrotimi et al., 2010), Nile Tilapia (Gabriel et al., 2011), and 410 

M. cephalus (Faggio et al., 2014b). This significant reduction in these parameters can 411 

be an indicator of severe anemia caused by acclimation stress effect (Akinrotimi et al., 412 

2010; Faggio et al., 2014b). Notwithstanding, fish may be able to recover from an 413 

anemia caused by various adverse environmental and/or aquaculture factors as 414 

demonstrated in M. cephalus (Fazio et al., 2015). After a reduction in RBC, Hct, Hb, 415 

and WBC due to a bleeding period, fish prepare themselves for the persistence of the 416 

stress, reorganizing the haematopoietic response in the kidney to contrast the injury 417 

from anemia (Kondera, 2011; Fazio et al., 2015). On the other hand, an increase in 418 
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WBC is reported in most cases, which may be as a result of recruitment of more cells 419 

to combat the effect of acclimation in an attempt to maintain external homeostasis 420 

(Gabriel et al., 2011). Hence, acclimation-induced stress causes alterations in blood, 421 

which react in response to disturbances in both metabolic and haem activities of fish 422 

exposed to acclimation to captivity (Akinrotimi et al., 2010; Faggio et al., 2014b,c). 423 

Handling and transportation of fish are factors normally employed into aquaculture 424 

that may also lead to metabolic disturbance; enzymatic dysfunction, haematological 425 

variations, and several other malfunction in the fish (Kurovskaya and Osadchaya, 426 

1993). According to a study carried out by Adeyemo et al. (2009) in the African 427 

catfish, handling and transportation stress can cause changes in haematological 428 

parameters Hct, Hb, and RBC, however, in a non-significant way, compared to a non-429 

stressed fish group, but a significant decrease in WBC, which can make the fish 430 

susceptible to disease, parasite infection and even death (Wiik et al., 1989). Thus, 431 

changes in the composition of circulating WBC can be more reliable indicators of 432 

chronic crowding stress (Pickering and Pottinger, 1987) as reported also in the 433 

pejerrey Odontesthes bonariensis with a described lymphopenia and neutrophilia 434 

(Zebral et al., 2015). Presumably glicocorticoid hormones can modulate the 435 

lymphocytes redistribution from blood to another tissues, and stimulate the release of 436 

neutrophils from leucopoetic organs into the blood (Dhabhar et al., 1996; Espelid et 437 

al., 1996; Grzelak et al., 2017). On the other hand, the use of specific substances as 438 

immunostimulant is being introduced into fish farming routine procedures in order to 439 

improve the fish health with significant effect on haematological and biochemical 440 

parameters (Kumari and Sahoo, 2006; Yonar et al., 2012; Carbone and Faggio, 2016; 441 

Hoseinifar et al., 2018). In C. carpio carpio, propolis has a stimulating effect on the 442 

immune system, and a protective action on the haematogical parameters RBC, Ht, Hb 443 
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counteracting the pesticide-induced toxicity such as chlorpyrifos (CPF) or Malathion 444 

(Yonar et al., 2012; Yonar et al., 2014). Both CPF and Malathion are broad-spectrum 445 

organophosphate pesticides for agriculture, domestic and public health purposes (Ali 446 

et al., 2009; Moore at al., 2011). Exposure to these pesticides can affect growth, 447 

swimming ability, and depletion of anti-oxidant system, biochemical and 448 

haematological parameters among other, even at a low concentration (Brewer et al., 449 

2001; Girón-Pérez et al., 2006; Sweilum, 2006; Venkataramana et al., 2006; Huculeci 450 

et al., 2009; Tripathi and Shasmal, 2010; Yonar et al., 2014; Yonar et al., 2012; 451 

Yonar, 2018; Ural, 2013; Narra et al. 2015; Zahran et al., 2018). Another substance 452 

with immunostimulatory, anti-inflammatory, and anti-oxidant effects is the Gum 453 

Arabic (GA) (Cuesta et al., 2005). According to Faggio et al. (2015), fish of M. 454 

cephalus fed with 12% GA-pellets presented an increment only in TC values with no 455 

adverse effects on RBC, Hct, Hgb, WBC, MCV, MCH, MCHC values. Then, a 456 

positive effect on TC value suggests an immunostimulatory action by GA on fish 457 

(Passantino et al., 2005). Finally, hematology is an important tool that can be used as 458 

an effective and sensitive index to monitor physiological and pathological changes in 459 

fishes (Kori-Siakpere et al., 2005; Fazio, 2019) by the variants commonly used in 460 

aquaculture (Valenzuela et al. 2007; Corrêa et al. 2017),  461 

5. Mitochondria as a tool in haematological analyzes 462 

In fish, erythrocytes have been demonstrated to possess complete cellular 463 

machinery with functional ribosomes (Lane and Tharp, 1980), and mitochondria 464 

(Ferguson and Boutilier, 1989; Pica et al., 2001; Moyes et al., 2002; Rey Vázquez and 465 

Guerrero, 2007), thus allowing protein synthesis and full cellular activity (Currie et 466 

al., 1999). The red blood cells are long-living cells with a relatively high level of 467 
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respiratory activity. This determines the importance of the studies on the evaluation of 468 

the energy potential of mitochondria in the erythrocytes (Silkina et al., 2017). 469 

Moreover, due to their sensitivity to xenobiotics, fish erythrocytes are often used to 470 

evaluate xenobiotic-induced damage to different cellular compartment (Tiano et al., 471 

2003; Witeska, 2013). Mitochondria are employed to investigate in great detail the 472 

mechanism of toxicity of xenobiotics, because of the key role of these organelles in 473 

the mechanism of cell death (Petit et al., 1995; Zamzami et al., 1995; Burgos Aceves 474 

et al., 2018a; b;). This may be due to mitochondria being both the source and the final 475 

target of free radicals effects. It seems that mitochondrial susceptibility to xenobiotics 476 

is associated to some factors. One of this is the presence of cytochrome P450s in 477 

mitochondria, which can activate chemicals that are relatively nonreactive prior to 478 

metabolism, such as PAHs and mycotoxins (Dong et al., 2009). On the other hand, the 479 

high lipid content of mitochondrial membranes facilitates accumulation of lipophilic 480 

compounds such as polycyclic aromatic hydrocarbons (PAHs) (Backer and 481 

Weinstein, 1982), some alkylating agents (Wunderlich et al., 1972), and certain 482 

organic chemicals, particularly amphiphilic xenobiotics such as ethidium bromide, 483 

paraquat, 1-methyl-4-phenylpyridinium (MPP+), and others (Cohen, 2010). Cationic 484 

metals, such as Pb, Cd, HG, and Mn, have also been shown to accumulate in 485 

mitochondria preferentially (Atchison and Hare, 1994; Bucio et al., 1999; Gavin et al., 486 

1992; Sokolova et al., 2005; Gomes et al., 2015). A study done by Tiano et al. (2003) 487 

evidenced the toxic effect of tributyltin chloride (TBTC) on erythrocytes and 488 

leukocytes in fish of rainbow trout. The TBTC is able to display a consistent drop in 489 

mitochondrial membrane potential both in erythrocytes and leukocytes, and release of 490 

proapoptotic proteins (cytochrome c, caspase-3), and consequently mitochondrial 491 

pathways are able to trigger apoptosis in these cell type. Effects that can be reversed 492 
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through an increase in antioxidant and detoxifying enzyme activities by supply diets 493 

with low-fat content (Lionetti et al., 2012). 494 

Finally, mitochondria are essential organelles for ATP production, cell life-495 

and-death process (Lee and Wei, 2012), and primary source of reactive oxygen 496 

species (ROS), which can be both cytotoxic and regulatory (Dröge, 2002). Then, the 497 

ability of cells to produce heat due to ATP heat-producing hydrolysis for a long 498 

period of time indicates the importance of the study of the mitochondrial bioenergetic 499 

complex in erythrocytes (Silkina et al., 2017). Then, mitochondria seem to be a 500 

convenient material to study the bioenergetics activities, biogenesis and 501 

disappearance of mitochondria in these cells as well as in red blood cells in general. 502 

6. Perspectives  503 

Unfortunately, the accumulation of various types of xenobiotics in water 504 

bodies is increasing as the amount and types of wastewater generated by a 505 

snowballing human activity. Therefore, it is necessary to carry out more basic studies 506 

for all new pollutants on the fish haematology that allows having a starting point 507 

before any environmental alteration. It is also necessary to consider that wild fish 508 

from natural environments may exhibit different physiological behaviors related to 509 

their survival strategies. In addition, another important point to consider when making 510 

an environmental or aquaculture assessment is to take into account additional sources 511 

such as dietary exposure (Putti et al., 2015; Meador et al., 2017; Lepretti et al., 2018). 512 

A more multidisciplinary framework in field studies is also essential for better 513 

understanding wildlife disease outbreaks and multi-trophic impacts on ecosystems. 514 

Therefore, a complementary bioenergetics and dynamic mitochondrial study would 515 

give greater strength to a hematological analysis both in environmental and 516 
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aquaculture evaluations. Since there is no standardized method to determine the 517 

health of the fish or the environment, it is the combination of indicators of impairment 518 

that will give us the best diagnostic picture (Todgham and Stillman, 2013). 519 

Haematology is still an opaque science for wildlife but promoting its standardization 520 

of pre-analytical procedures plus some suggestions for a more systematic examination 521 

of blood smears to increase the diagnostic value of blood data. Establishing various 522 

hematologic changes that occur in fish is crucial in assessing their health and also 523 

provides the opportunity to expand the use of some fish as models for human disease. 524 
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