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Abstract—Recent studies have proved that sustainable satura-
tion operation of Ferrite Power Inductors (FPIs) allows reducing
the inductor size and increasing the power density in Switch-Mode
Power Supply (SMPS) applications. This paper discusses a new be-
havioral model for reliable prediction of ac power loss in FPIs, in-
cluding the effects of saturation. The new model has been identified
by means of the Genetic Programming (GP) algorithm combined
with a Multi-Objective Optimization (MOQ) technique, starting
from large sets of power loss experimental measurements. The pro-
posed ac power loss model uses as input variables the voltage and
switching frequency imposed to the inductor by the SMPS opera-
tion, while the dc inductor current is used as a parameter expressing
the impact of saturation. Such quantities can be easily determined
for whatever converter topology and in real-world switching op-
eration, thus confirming the readiness and the easiness-to-use of
the proposed behavioral model. The results of experimental tests
presented in this paper prove the reliability of the power loss pre-
dictions, also by correctly accounting for the impact of inductors
saturation.

Index Terms—Ferrite Power Inductors, Genetic Programming,
Multi-Objective Optimization, Modeling, Power Loss, Saturation.

ABBREVIATIONS
FPI Ferrite Power Inductor.
SMPS Switch-Mode Power Supply.
GP Genetic Programming.
MOO Multi-Objective Optimization.
SE Steinmetz Equation.
i-GSE improved Generalized Steinmetz Equation.
NLLS Non-Linear Least Squares.
RMSE Root Mean Square Error,

I. INTRODUCTION

ATURATION represents an important characteristic of all
magnetic components. In power inductors, such nonlinear
phenomenon yields a progressive inductance decrease while the
average inductor current increases [1]. Ferrite Power Inductors
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(FPIs) are conventionally adopted in Switch-Mode Power Sup-
ply {(SMPS) design when high efficiency and high power density
are required. FPIs exhibit a rapid transition to saturation when
the current exceeds a certain threshold. In SMPS design, it is
commonly considered a good practice to select FPIs operating
in the region of weak saturation (within about 20% inductance
drop) [2]. Nevertheless, saturation is not a real issue, neither for
the inductor nor for the entire converter, if the current ripple, the
power loss and the temperature rise fall within limits suitable
both for the device and for the application [3]. Recent stud-
ies have highlighted that the sustainable saturation operation of
FPIs allows to achieve a reduction of the inductor size and an
increase of the SMPS power density [1], [3]-[6]. However, ap-
propriate saturation models and power loss models are needed
for reliable current ripple and power loss prediction in partial
saturation conditions.

The FPIs power loss is determined by magnetic core loss and
winding loss, which depend on:

1) core volume and geometry, characterized by sharp edges

and not allowing easy analytical modeling;

2) core materials, whose characteristics are not disclosed by
inductors manufacturers;

3) winding arrangement, where skin and proximity effects
can occur since Litz wires are not usually adopted for
commercial parts.

Howeyver, the core and winding losses cannot be easily mea-
sured as separate contributions in SMPS applications. FPIs
power loss can also be evaluated as the sum of a dc term and
an ac term. The dc loss is only due to the dc current flowing
through the winding. The ac loss includes the contributions of
both winding and magnetic core. Since the de loss can be easily
estimated from the dc winding resistance, the major challenge
still remains how to determine the total ac loss in FPIs.

This paper discusses a new behavioral ac loss model for FPIs
in SMPS applications, including the effects of saturation. The
model uses as input variables the voltage and switching fre-
quency imposed to the inductor by the SMPS operation, while
the dc inductor current is used as a parameter expressing the
impact of saturation. The proposed model has been generated
by means of a Genetic Programming (GP) algorithm combined
with a Multi-Objective Optimization (MOO) technique. The
GP algorithm is often used in scientific investigations aimed at
generating behavioral models of systems and devices, whose
physical behavior is unknown or too complicated to describe
with physical laws [7]. The GP approach allows to identify
both the model structure and relevant parameters, given a set of
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experimental data and the list of variables adopted in the model.
In this paper, the GP-MOQ approach has been adopted to iden-
tify the ac loss model of FPIs ensuring an optimal trade-off
between accuracy and complexity.

The paper is organized as follows. In Section II, a brief State-
of-the-Art on inductors power loss modeling is provided. In
Section II, the main elements of the GP-MOO approach
adopted for the identification of the FPIs ac loss models are
illustrated. In Section IV, the ac loss model generated by using
the GP-MOO approach is presented, and its reliability and ac-
curacy are discussed and confirmed by comparison with experi-
mental results. In Appendix A, the coefficients determination for
classical FPIs core loss models is comprehensively discussed. In
Appendix B, details about the GP-MQQ approach are eventually
provided.

II. INDucTOR POWER LOSS

Several literature contributions have been presented on high-
frequency loss measurement techniques for magnetic compo-
nents [8]-[14]. In the classical four-wire two-winding method,
the core under test is wound as a transformer [8][9]: excita-
tion is inseried on the core through one winding, and voltage is
measured on the other sensing winding. The core loss is then
evaluated by integrating the product of the voltage on sensing
winding and the current through the excitation winding. A third
winding can be possibly considered to test a given dc premag-
netization condition [10]. The two-winding methods have no
significant drawbacks in principle. They allow to measure the
core loss and exclude the winding loss, but are sensitive to phase
discrepancy mainly due to current sensing, probe mismatch and
oscilloscope time resolution limit. New compensation methods
consider capacitive cancellation for core loss measurement at
very high frequencies [11][12]. A capacitor is connected in se-
ries with the inductor of the core under test and finely tuned
to resonate with it at the test frequency. The core loss can
be measured after compensating the parasitic resistances. These
compensation methods automatically exclude the loss of the
excitation winding and greatly reduce the sensitivity to phase
discrepancy. However, in certain conditions, it could be difficult
to realize an exact compensation at the excitation frequency: the
value of the cancellation capacitor is quite critical, and a small
variation can induce a big measurement error [13]. Finally, en-
hanced compensation methods rely on an inductive cancellation
approach [14], to further reduce the phase sensitivity problem.
It also enables accurate core loss measurement for arbitrary
waveform excitation without the requirement to fine-tune the
cancellation component value,

All the aforementioned studies usually consider experimental
test conditions performed on laboratory magnetic component
prototypes, built or modified according o established mea-
surement procedures. In principle, methods like [12][14] are
applicable also for inductor loss measurement. However, for
commercial preassembled shielded-core power inductors in
real-world switching operating conditions, it could be more
difficult to separate core (ac contribution only) and winding
(dc+ac contributions) losses, mainly because the winding

arrangement of commercial inductors can be quite irregular,
and error sources cannot be prevented or attenuated [13]. Direct
measurement of the de and ac loss contributions for commercial
power inductors is definitely more straightforward than the
measurement of separate contributions for core and winding
losses, It is worth noting that when high-frequency ac winding
loss is negligible, the ac loss is due to core loss contribution
only, whereas the dc loss is due to the dc winding resistance.

The inductor average total power loss P, is by definition the
mean value of the instant power absorbed by the device over the
switching period 7; = 1/ f;. The total power loss P, can be
separated in two contributions in two different ways: winding
and core losses (see Section II-A), or dc and ac losses (see
Section II-B).

A. Winding and Core Losses
The total inductor power loss can be split as in (1):
P, fot — (1)

Winding loss B,;,q can be seen as the sum of dc and ac
winding losses:

wind el Pcane

Poagn =Ry} 2
Pwina',ac = Rac ’ Izc,rms (3)

where R, is the dc winding resistance, B, is the ac winding
resistance including high-frequency effects, and I, and I, s
are the average and rms values of the de and ac inductor current
components, respectively. The dc loss can be easily evaluated
from the dc winding resistance. The high-frequency winding
loss can be predicted by using several methods [15]-[20], if
the winding cross-sectional area and the layers distribution are
known. Unfortunately, the manufacturers of commercial com-
ponents do not disclose winding geometry data. The datasheets
only provide the nominal value of R;. resistance, obtained un-
der dc test conditions. Therefore, since the exact R, resistance
value is not available, the use of the Ry, resistance value to
estimate the high-frequency ac winding loss can result in poor
accuracy during the calculation of the total inductor loss.

Core loss P, is investigated in several studies by consider-
ing the separation of hysteresis, eddy currents and excess loss
contributions [21]-[23]. Unfortunately, the parameters of such
models are not easy to obtain, since sophisticated experimen-
tal measurements are needed to evaluate separately the different
loss terms. The Steinmetz Equation (SE), introduced in [24] and
given in (4), represents de facto the empirical behavioral core
loss formula mostly used in the SMPS design:

Pcom,SE = Cm ffBaﬁ;(Aclc) (4)

where f, is the excitation frequency, B, is the ac magnetic
flux density magnitude, and A, and [, are the equivalent cross-
sectional area and magnetic path length of the magnetic core.
The coefficients C};,, & and 3 depend on core material, magnetic
induction and switching frequency operating range, and are usu-
ally given in the datasheets of magnetic cores [25][26]. Since
the peak-to-peak current ripple Aiy,, is easier to measure than
the ac magnetic flux density B,., the SE can be reformulated as



a function of Adg,y:
Prorese = Ky X (Ko Nigpp)* (5}

where the coefficients K, Ko, X and ¥ depend on material and
switching frequency range, and K also depends on the core
volume. Some power inductors manufacturers adopt the formu-
lation given in (5) and provide relevant core loss coefficients
[27]. More details on how to get coefficients {K7, K3, X, Y}
from coefficients {C,, o, 3} are provided in Appendix A.

Both models (4) and (5) are given for sinusoidal operating
conditions. Several papers show how to extend the validity of the
SE to nonsinusoidal conditions. In [28]-[32], enhanced versions
of the SE have been proposed, namely the modified SE, the
generalized SE, the improved Generalized Steinmetz Equation
(-GSE), the natural SE and the improved SE, valid for both
sinusoidal and nonsinusoidal operating conditions and requiring
no more parameters than the basic SE. In particular, Appendix A
also describes how the i-GSE formula can be used for core loss
calculation, given inductor voltage, duty-cycle, frequency and
manufacturer’s core loss coefficients.

However, all these formulations neglect the dependence of
core loss on dc bias, thus yielding inaccurate core loss estima-
tion in partial saturation conditions. Enhanced discussions on
magnetic core loss models accounting for dc bias have been
specifically proposed. In [33], Muhlethaler ez al. have presented
a study about the influence of premagnetization on magnetic
material power loss. However, no analytical formulations have
been given to model the SE parameters dependence on dc bias.
In [34], Kosai et al. have proposed a correction to the SE for
partial saturation operating conditions, based on a multiplica-
tive exponential term depending on the ratio g /p. This ratio
represents the saturation level of the core material, yy being
the magnetic permeability value at zero bias and g being the
effective magnetic permeability in partial saturation condition.
However, neither yg nor p are easily measurable quantities for
commercial magnetic devices. In [35], a core loss model has
been proposed based on the use of a multiplicative bias factor
as a function of the dc magnetic field Hy,. A quadratic term and
a square root term of Hy, have been introduced to model the
dc bias dependence for different magnetic materials. Finally, in
[36], Scokalski ef al. have suggested that the core loss function
obeys the scaling law. Accordingly, a quite involved expression
has been proposed, including the dc bias influence on core loss.
Such formulation can be more accurate, yet too complicated for
the SMPS designers. In fact, it involves a high number of model
parameters not provided by magnetic components manufactur-
ers, and requires magnetic quantities measurements, like the ac
magnetic flux density B, and the de magnetic field Hy,.

The main limitation of core loss models like [33]-{36] lies in
the use of the magnetic quantities, which are not easy to measure
for the commercial inductors operated in SMPS. In principle,
some of such quantities can be estimated starting from the induc-
tor voltage and current measurements, if the inductor winding
turn number, the magnetic path length and cross-sectional area
are known. Unfortunately, such data are not disclosed by the
inductors manufacturers in their datasheets. For this reason, it is
impossible to determine the parameters of the mentioned mod-

els by applying curve fitting techniques to the experimental core
loss.

B. DC and AC Losses
The total inductor power loss can also be split as in (6):

Rat=Pdc+Pac (6)

The dc loss Py depends on the dec components of inductor
voltage V7, and current I7, and can be evaluated as given in (7):

Pio= Vi - Fi = Rae ~I% = Pussiic (7

which corresponds to (2). The ac loss F,. depends on the ac
components of the inductor voltage vy, 4.(t) and current iz, 4.(t),
and is given by (8):

T,
Pac=fsf UL .ac (t) ‘éL,ac (t)dt=Pcom+Pm'nd,dc (8)
0

where P, is the magnetic core loss provided in (4) and (5),
and Pyng qc is the ac winding loss contribution given in (3). This
power loss separation (6) has the advantage of allowing the direct
measurement of the two contributions (7) and (8), starting from
the experimental waveforms of inductor voltage and current. In
fact, the de components of the measured waveforms provide the
dc loss Py, given in (7), while their ac components provide the
ac loss P, given in (8).

‘Whatever experimental measurement technique is adopted to
obtain Fyr = Peore + Buind,ac, the measured values of the induc-
tor ac loss can be used to determine an analytical behavieral
maodel expressing the total ac loss as a function of the operating
conditions imposed by the SMPS application. The new ac loss
model proposed in this paper is based on this approach, and
starts from the following assumptions:

1) the ac loss equation is expressed as a function of the
switching frequency f,, the average current [ and the
equivalent voltage V., = D Vg .., where D is the con-
verter duty-cycle and V3, , is the inductor veltage during
the on-time interval I/ f,;

2) f. and V., are the input variables of the ac loss equation,
whereas Iy, is an input parameter determining the value
of the numerical coefficients of the loss equation,

It is worth noting that the inductor current ripple Ay, cannot
be considered as an input of the ac loss equation if partial
saturation conditions are considered. Indeed, the SMPS imposes
Je» Ir, and V,; to the inductor, which responds with certain
current ripple Aiz,, and ac power loss F,. depending on the
saturation level. Therefore, different combinations of f,, V.,
and I7, can result in the same current ripple magnitude, but with
different levels of inductor saturation and ac power loss. The use
of the equivalent voltage V,, reflects the fact that the inductor
ac power loss is only dependent on the volt-seconds applied to
it, regardless of the SMPS topology.

II. GP-MOO APPROACH

In this Section, the GP-MOO approach adopted to identify
the new ac loss model for FPIs is illustrated. The GP algorithm
is an evolutionary algorithm where the population is composed



of models [7]. During its evolution, the GP algorithm transforms
the current population of models into a new population of mod-
els, by applying classical genetic operations, such as selection,
cross-over, mutation, elitism, etc. At the end of its evolution,
the algorithm finds a model with the best-so-far fitness value.
Only the main elements of the GP algorithm are summarized
hereafter, as the GP is a known matter and it is out of the scope
of the paper. The reader is also addressed to Appendix B for
further details on the adopted GP algorithmn.

For a given FPI, a set of m average current conditions I ; has
been considered for the analysis, with j = 1, ..., m. For each
current value, n couples of frequency and voltage conditions
Xi = (fai, Voqi) have been adopted, with ¢ = 1, ..., n. For each
of the n x m test conditions, a data vector has been created,
including the test values x; and the resulting ac power loss
Yij = Pacexp(fsiy Veqi, Ir;). The resulting training dataset 7
is shown in Table 1. The GP algorithm was set to identify a
global behavioral model (9):

Pac,bhv =F (.fan Veq} p(IL )) )]

such that the value of the function ' computed for each test
condition of the training dataset 7 is as close as possible to the
corresponding experimental value y;;, Vi € {1,...,n} and Vj €
{1, ...,m}. The structure of the behavioral power loss function
F'in (9) is the same for all the average current conditions, while
the coefficients p are functions of I;,. To determine the values of
coefficients p, a Non-Linear Least Squares (NLLS) method has
been applied to the 7 data vectors for each experimental current
test condition Iy ;. Then, the interpolating function p(I;) has
been determined. The elements used by the GP algorithm to
evaluate and select the ac loss models are as follows:

1) the accuracy, which can be estimated by means of the Root
Mean Square Error (RMSE) between the experimental
loss and the GP-predicted loss over the whole training
dataset;

2) the complexity, which depends on the complexity of the
elementary functions adopted in the model structure F.
To quantify the global complexity of each GP model, the
term Fpppieniry has been introduced.

A more detailed description of the methods adopted to determine
the coefficients p and of the RMSE and F,ppjeyiry definitions is
provided in Appendix B.

An elitist Nondominated Sorting Genetic Algorithm (NSGA-
) [37] has been used to discover the behavioral power
loss model (9) offering a trade-off between the RMSE and
the Foompreriry values over the whole training dataset. Such
well-known MOO approach returns a Pareto front contain-
ing the non-dominated solutions present in the population,
i.e. the solutions outperforming the other elements of the
front in at least one objective, being worse in some other
objectives. Herein, RMSE and F,pmpixiy have been consid-
ered as objective functions for minimization in the proposed
MOOQO approach. Section IV discusses the GP-MOQ approach
adopted for the identification of the ac loss model for two
FPIs (case studies #1 and #2). The resulting model is then
tested and validated for other two FPIs, one with same mag-
netic material and core type (case study #3), and one with

TABLEI
DATASET 7 OF THE GP ALGORITHM
| \ I \ Iz \ [ Ttm \
(fs1; Veql) {(x1,11) {x1,112) (x1,%1m)
(fs2, Veq2) | (x2,¥21) {x2,y22) (2, yam)
(fon; Vegn) (%, yn1) (%n,yna) (3tn, ynm)
TABLE I
INVESTIGATED INDUCTORS AND THEIR MAIN CHARACTERISTICS
Dimensions L DCR| Isat[A] Toma[A] ‘
Part Number o maL
[rmm3] ‘ [,uH]‘ [me7] ‘ 30% drop | 40°C rise
MS51260-103 12x12x6 10 24 740 4.00
MSS81260-473 12x12x6 47 82 3.30 2.50
MSS1038-273 10.2x10x3.8 27 39 284 235
DO3316T-103 | 13.2x9.9x6.4 10 34 3.80 390

both different magnetic material and different core type (case
study #4).

1IV. GP-MOO-SIMULATED VERSUS EXPERIMENTAL RESULTS

The discussion is herein referred to power inductors with
ferrite magnetic core. Inductors of different ferrite materials and
core types have been considered for the investigation, with both
shielded and unshielded magnetic cores, to obtain a generalized
ac loss model valid for different FPIs.

Four inductors have been assumed for the investigation:
the Coilcraft MSS1260-103 (L, = 10 pH), MSS51260-473
(Luom = 47 pH) and MSS1038-273 (Lyom = 27 pH), all as-
sembled with shielded cores of same ferrite material, and the
Coileraflt DO3316T-103 (Lyom = 10 pH), assembled with an un-
shielded core of a different ferrite material. The main datasheet
characteristics of these FPIs are listed in Table II.

Experimental data of the training dataset T have been col-
lected by using the MADMIX system [38], shown in Fig. 1.
Such automated measurement setup is able to measure the
performance of power inductors under hard-swiiched condi-
tions, reproducing exactly a real SMPS operation. In particu-
lar, the MADMIX allows to emulate the operation of an open-
loop de—dec converter: given the input voltage Vi, the duty-
cycle D, the switching frequency f, and the output current
Toyr, the power inductor is subjected to an equivalent voltage
Veg = Vin x D x (1 — D) and adccurrent Iy, = Ippr. Among
all possible features, the MADMIX allows for imposing the de-
sired SMPS-based operating conditions and makes high-speed
measurements of the inductor voltage and current. Moreover, it
can perform user-programmed tests over wide operating ranges
and collect large series of measurement results, including dc
and ac inductor power losses. Therefore, the training dataset for
each inductor has been herein assembled by using the MAD-
MIX system. Alternative acquisition methods for on-line FPIs
characterization have been recently proposed, like in [39].

Each component has been tested in a wide range of inductor
current, in order to cover both weak-saturation and roll-off re-
gion of the relative L versus I curve and guarantee power loss
characterization also in partial saturation conditions. Maximum
inductance derating of about 50% with respect to the nominal
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Fig. 2. MADMIX-based inductor waveforms: (a) voltage and current;
(b) L versus I curve with relevant operating region.

inductance L., has been achieved for each inductor, As an
example, voltage and current waveforms of a 10 uH Coilcraft
MS81260-103 inductor measured by the MADMIX are shown
in Fig. 2(a). The datasheet L versus I curve of the inductor is
shown in Fig. 2(b). The operating conditions adopted for the
test are Viy = 12 V, duty-cycle D = 0.5, switching frequency
fs =200XkHz and average inductor current I;, = 7.25 A, involv-
ing the operation in the roll-off region (in Fig. 2(b), red portion
of the curve). For this test example, the MADMIX measures
an average inductance of 4.5 pH, a peak-to-peak current rip-
ple of 3.34 A, a dc loss of 1.22 W (0.05% standard deviation),
an ac loss of 175 mW (1.7% standard deviation), inductor and
ambient temperatures of 71 °C and 26 °C, respectively.

The following sections discuss the application of the GP-
MOO approach to the inductors of Table II.

A. Case Study #1: M551260-103 Inductor

To assemble the training dataset for the MSS1260-103 in-
ductor, the operating conditions given in Table IIl have been
fixed by means of the MADMIX system. All the possible
combinations of such values have been tested, with m = 13
average current values and n = 80 operating conditions in terms
of f, and V,;, = Viy X D x (1 — D) for each current, resulting
in a training dataset composed of n x m = 1040 experimental
data vectors. In particular, an inductance derating of 50% has
been obtained at Iy = 7.25 A.

TABLE IIT
TRAINING SET OPERATING CONDITIONS FOR MSS1260-103 INDUCTOR

| Quantity | Units | Values |
7a Kz [200, 300, 400, 500]
VIN v [6,8,10,12]
D - [0.2,0.35, 0.5, 0.65,0.8]
[3,3.5,4,4.5,5,5.5,5.75,
I A
& 6,6.25,6.5,6.75, 7, 7.25]

All the experimental measurements took about 35 h. Then, the
GP-MOQ approach has been applied to the composed training
dataset: 30 independent GP algorithm runs have been executed
to verify the repeatability of the obtained models, lasting about
15 h. Only the non-dominated Pareto-optimal solutions with
the repeatability of at least 8 runs have been selected for a
further comparison. Such solutions are shown as blue markers
in Fig. 3. The two objective functions used during the GP-MOO
routine — namely, the RMSE evaluated over the training dataset
and the corresponding global complexity factor Feompiexy — are
shown on the = and y axes, respectively. The solutions at the
bottom-right side of this plot are characterized by very simple
structures and very high errors with respect to experimental ac
loss. Conversely, the solutions at the top-left side of the plot
present the lowest errors and most complicated structures.

In order to select an optimal ac loss model among all the
obtained Pareto-optimal solutions, several metrics have been
considered to classify each model:

1) Npy,: number of GP runs during which the algorithm has
discovered the model {only models having N, > 8 are
shown in Fig. 3);

2) Ngen: average number of generations during which the
model exists within the population (averaging done over
Noun);

3) perr: mean value of the percent error distribution of the
model over the training dataset;

4) o standard deviation of the percent error distribution of
the model over the training dataset;

5) ertpg,: maximum percent error of the model over the train-
ing dataset;

6) Npon: average number of intervals over which the model
coefficients change their monotonicity with respect to the
dc current Iy .

Such metrics are shown in Fig, 3, next to the respective GP
model expressions, from the more complicated ones (at the top
of the list) to the simplest ones (at the bottom of the list). Among
these solutions, the following model presents an optimal trade-
off among all the six metrics

Poc oy = poexp (—p1 fs) VE? +p3V2, (10)

where the coefficients {pg, ..., 3 } are the elements of the vec-
tor p(I1) given in (9). The behavioral model (10) has a high
repeatability (N, = 19) and age (N, = 186) and shows ex-
cellent performances in terms of the percent fitting errors. It
is characterized by a maximum percent error erry,, = 25%,
with a mean percent emor fi,,, = 1% and a standard deviation
Terr = 5%. Only few models outperform the selected one in
terms of the maximum percent error.
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Fig.3. Repeatable Pareto-optimal solutions for MS§1260-103 inductor.

In particular, the two models at the top of Fig. 3 have lower
percent errors (erryg, = 16%), but a more complicated structure.,
Also the model described by the metrics values [10, 227, 2, 7,
22, 1] has a lower maximum percent error (er7mu,, = 22%), but
higher mean percent error and standard deviation (i, = 2%,
Oer = 1%). Moreover, the proposed ac loss model has
monotonous coefficients with the de current (N, = 1), thus
resulting easier to be modeled with any curve fitting algorithm.
The coefficients {pg, ..., ps} of the model (10) are shown in
Fig. 4 versus the average inductor current I, and can be mod-
eled by means of the law (11):

(11)

A NLLS algorithm has been used to determine the vector
coefficients {ag, ..., a3 }. The resulting fitting curves of the co-
efficients p are shown in Fig. 4, while the relative vector coef-
ficients {ay, ..., ag} are given in Table IV. Fig. 5(a)—(f) shows
the relative percent errors between the predictions of behavioral
model (10) and the experimental ac loss, for the four average
current conditions Iy, = {3, 5, 6, 7.25} A, selected among the
overall 13 current values included in the training dataset. The
red markers correspond to the errors obtained by using the co-
efficients p of the proposed behavioral model, whereas the blue
markers depict the errors obtained by using the NLLS fitting
curves (11) of such coefficients. Each subplot shows the percent
errors for 80 samples corresponding to different values of f,
and V., at a fixed I, value. For all markers, relative power loss
error is within +15% in weak-saturation region (/, < 64), and
within +25% in the roll-off region (I, > 64).

P (IL) = agexp (ar i) + agly + a3.
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Fig.4. Behavioral model coefficients (red) and the relative fitting curves (blue)
for MSS1260-103,

TABLEIV
FITTING CURVES PARAMETERS OF THE BEHAVIORAL MODEL
COEFFICIENTS FOR MSS51260-103

MSS81260-103
coefficients 20 a1 a2 a3

PO ST6E04 | 1.70E+00 | -271E+00 | 3.86E+01

p1L 220E-06 | 1.23E+00 | -4.16E-04 6.78E-03

P2 9.65E-14 | 4.12E+00 | -5.39E-03 2.05E+00

pa 2.36E+01 1.36E-01 | -5.23E+00 | -1.78E+01
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Fig. 5. Errors of Py ppy with the model coefficients (red) and the relative
fitting curves (blue) for MSS81260-103: (a) Ir, = 3A, (b)) Iy = 5A, () I1 =
6A, (d) I, = 7.25A.

For both weak-saturation and roll-off region, Fig. 6(a)-(b)
compares the ac loss prediction errors of the proposed model
FPocphy (red filled markers) with the errors of two benchmark
models, evaluated as

® benchmark model 1 = ac winding loss + SE-based core

loss (green filled markers);

® benchmark model 2 = ac winding loss + i-GSE-based core

loss (green empty markers).

The ac winding loss has been evaluated as shown in (3),
by using measured Rz and I, . values and taking into ac-
count the thermal effects on the winding resistance [3]. The
SE-based core loss has been evaluated as shown in (5). In par-
ticular, the core loss coefficients { K3, Ky, X, Y} have been
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Fig. 6. Ertors of P g, (ted filled) versus benchmark model 1 (green filled)
versus benchmark model 2 (green empty) for MSS1260-103: (a) in weak-
saturation (I, = 3A), (b} in roll-off (I, = 7.25A).

estimated by means of the NLLS curve fitting of the benchmark
model 1 applied to the experimental ac power loss in weak-
satyration region. These coefficients have also been adopted to
evaluate the i-GSE-based core loss, as discussed in detail in
Appendix A.

The two benchmark models provide similar results in weak-
saturation region (see Fig. 6(a)). On the contrary, in roll-off
region the benchmark model 2 underestimates the ac power
loss, whereas the benchmark model 1 hugely overestimates it
(see Fig. 6(b)). Indeed, none of the two models include the
dependence of core 1oss on de bias. As discussed in [40], if Ady,,
value is maintained constant, the hysteresis loop area is expected
to decrease with increasing current, as well as the resulting
core loss. The benchmark model 1 does not include such core
loss correction for de bias and, as a result, overestimates the
ac power loss. Conversely, if B, value is kept constant, the
hysteresis loop area is expected to increase with the current, as
well as the core loss. The benchmark model 2 does not include
such dc bias dependence and underestimates the core loss. The
results of Fig. 6 highlight that the proposed behavioral model
(10) provides reliable ac loss estimation both in weak-saturation
and in roll-off region.

B. Case Study #2: M551260-473 Inductor

In this second case study, the Coilcraft inductor MS51260-
473 of nominal inductance Ly, = 47 uH has been analyzed,
having the same magnetic core of MSS1260-103, but different
winding turn number. In order to reduce both measurements
and execution times needed for the ac loss model identification,
such inductor has been tested on the reduced set of 162 operating
conditions given in Table V, including m = 6 average current
values and n = 27 operating conditions in terms of f, and
Veq for each current. In particular, an inductance derating of
about 40% has been obtained at I;, = 3.1 A. The experimental
measurements of such a reduced training dataset took about 6 h,
whereas the 30 runs of the GP algorithm lasted about 2 h.

The GP-MOQ algorithm has discovered the model (10) also
for the MSS1260-473 inductor, even though the dimensions
of the training dataset have been greatly reduced compared to
the MSS1260-103 inductor (case study #1). Such model has
a repeatability of 8 runs and persists in the population during

TABLE V
TRAINING SET OPERATING CONDITIONS FOR MSS1260-473 INDUCTOR

\ Quantity | Units | Values
fs kHz [200, 300, 400]
Vin v [12,18,24]
D - [0.3,0.5,0.7]
I A [1,1.5,2,2.5,2.8,3.1]
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Fig.7. Behavioral model coefficients (red) and the relative fitting curves (blue)
for MS81260-473,

TABLE VI
FrimiNG CURVES PARAMETERS OF THE BEHAVIORAL MODEL COEFFICIENTS
FOR MSS51260-473
MSS1260-473 & &
coefficients 4o A 2 aa
Do 1.63E-08 | 6.64E+00 | -1.15E-01 | 4.58E+00
p1 1.80E-08 | 4.35B+00 | 8.57E-04 | 4.62E-03
D 4.10E-11 | 7.57B+00 | 7.28E-(2 | 1.99E+00
pa 14SE03 | 1.95E+00 | 1.44E-01 1.07E-01
20 250
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Fig.8. Errors of Fy, ppy (ted filled) versus benchmark model 1 (green filled)
versus benchmark model 2 (green empty) for MSS81260-473: (a) in weak-
saturation (I, = 1A), (b) in roll-off (I;, = 3.1A).

148 generations, presents an average error Y., — 2%, a stan-
dard deviation o, = 5% and a maximum error erry,,, = 20%
over the training dataset, and its parameters are monotonic
with the current I;,. The coefficients p of the model (10) for
the MS8§1260-473 inductor are shown in Fig, 7, together with
their NLLS fitting curves. The values of the vector coefficients
{ay, ..., a3 } of the fitting curves are given in Table VL

Fig. 8(a)~(b) compares the ac loss prediction errors of the
proposed model F,. p5, with the errors of the two benchmark



models, for weak-saturation and roll-off region, respectively.
Also for the MSS1260-473 inductor, the core loss coefficients
{K1, K3, X,Y } have been estimated by means of the NLLS
curve fitting of the benchmark model 1 applied to the experi-
mental ac power loss in weak-saturation region. As expected,
the benchmark model 2 underestimates the ac loss in roll-
off region, whereas the benchmark model 1 overestimates it.

C. Case Study #3: MSS1038-273 Inductor

The GP-MOO approach applied in the previous two case
studies has led to the same ac power loss model for two inductors
of the same family (same magnetic core). In this section, it is
shown that the same model is valid for the devices of a different
inductor family. In particular, the identification of the power
loss model coefficients started directly from the model structure
(10). In this case study, the inductor MSS81038-273 of nominal
inductance L, = 27 4H has been considered, whose core has
the same magnetic material but different size compared to the
components of the MSS51260 family (see Table II). The 162
operating conditions given in Table VII have been considered,
covering mn = 6 average current values and n = 27 combinations
of f, and V,, for each current. In particular, an inductance
derating of about 50% has been obtained at I, =2.9 A.

The coefficients p of the model (10) are shown in Fig. 9,
together with the NLLS fitting curves (11), whose parame-
ters are given in Table VIII. The proposed behavioral model
is characterized by a maximum percent error erry,; = 19%,
with a mean percent error p.,» = 3% and a standard deviation
Terr = 6% over the training dataset.

Fig. 10 (a)(b) compares the ac loss prediction errors of
the proposed model F,; 35, with the errors of the two bench-
mark models, for weak-saturation and roll-off region, respec-
tively. The { K, K, X, Y} coefficients have been estimated as
discussed for the previous case studies. As expected, the be-
havioral model (10} outperforms the two benchmark models,
especially in partial saturation condition.

D. Case Study #4: DO3316T-103 Inducior

In this last case study, it is shown that the findings relevant
to the identification of the ac power loss model have general
validity. In fact, the ac power loss model has also been ap-
plied to inductors with different ferrite material, dimensions and
type of the magnetic core. In particular, the Coileraft inductor
DO3316T-103 (L, = 10 zH) has been considered. This part is
assembled with an unshielded core of different ferrite material
and size with respect to the previously analyzed inductors (see
Table II).

The ac loss formula has been kept unchanged for the
Coilcraft DO3316T part: in fact, the identification of the power
loss model coefficients started directly from the model struc-
ture (10), The 405 operating conditions given in Table TX have
been considered, covering n = 9 average current values and
n = 45 combinations of f; and V,, for each current. In partic-
ular, an inductance derating of about 50% has been obtained at
Ip =4 A,

TABLE VII
TRAINING SET OPERATING CONDITIONS FOR MSS1038-273 INDUCTOR
[ Quantity | Units \ Values
Js kHz [200, 300, 400]
Vin v [8,12,16]
D - [0.3,0.5,0.7]
Ir A [0.9,1.3,1.7,2.1,2.5,2.9]
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Fig.9. Behavioral model coefficients (red) and the relative fitting curves {blue)
for MSS1038-273.

TABLE VIII
FITTING CURVES PARAMETERS OF THE BEHAVIORAL MODEL COEFFICIENTS
FOR MSS1038-273

MSS81038-273
cocfficients a0 a1 a 8
P0 845E+00 | 3.77E-01 | 4.96E+)0 | 251E-14
1 1.75E-12 | 6.58E+00 1.88E-04 4.61E-03
D2 430E-12 | 8.13E+H00 | 5.72E02 2.09E+00
3 4.81E-03 | 1.58E+00 | 7.85E-02 7.48E-01
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Fig, 10.  Errors of Py, gy (red filled) versies benchmark model 1 (green filled)
versus benchmark model 2 {green empty) for MS51038-273: (a) in weak-
saturation ({7, = 0.9A), (b) in roll-off ({7 = 2.9A).

The coefficients p of the model (10) are shown in Fig. 11,
together with the NLLS fitting curves, whose parameters are
given in Table X. The proposed behavioral model is character-
ized by a maximum percent eITOT €77, = 20%, with a mean
percent error pi,., = 1% and a standard deviation o, = 3% over
the training dataset. Fig. 12(a)~(b) compares the ac loss predic-
tion errors of the proposed model P, s, with the errors of the
two benchmark models, for weak-saturation and roll-off region,



TABLE IX
TRAINING SET OPERATING CONDITIONS FOR D0O3316T-103 INDUCTOR
[ Quantity | Units | Values |
fe kHz [300, 400, 500]
Vin v [8,10,12]
D - [0.2,0.35,0.5,0.65, 0.8]
I A [2,2.25,2.5,2.75,3,
L 3.25,3.5,3.75, 4]
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Fig. 11. Behavioral model coefficients (red) and the relative fitting curves

(blue) for DO3316T-103.

TABLE X
FrrTiNG CURVES PARAMETERS OF THE BEHAVIORAL MODEL
COEFFICIENTS FOR DO3316T-103
DO3316T-103
coefficients &o a a3 23
o 2.00B-08 | 559E+00 | -6.21E+00 | 8.28E+01
Fe 161E-09 | 3.75E+00 | 4.39E-04 | 6.32E-03
2 409E-11 | 5.94E+00 | -1.04E-02 1.88E+H00
3 433E07 | 402E+00 | -2.63E-01 | 4.72E+00
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Fig.12.  Errors of Py g, (red filled) versus benchmark model 1 (green filled)

versus benchmark model 2 (green empty) for DO3316T-103: (a) in weak-
sataration (I, = 2A), (b} in roll-off ({7, = 4A),

respectively. The {K;, K5, X, Y} coefficients have been esti-
mated as discussed for the previous case studies. The behavioral
model (10) outperforms the two benchmark models, especially
in the partial saturation condition.

E. Model Discussion and Final Considerations

The behavioral model (10) is the sum of two terms:
poexp (—p1 fs) Vag and p3 V;Zq. The first term contains a power

law dependence on the applied voltage V,,, which reflects the
dependence of B, on the magnetic flux density magnitude
B, Vey being proportional to B,. The second term contains a
square-law dependence on the applied voltage V,,, which re-
flects the dependence of Pz, on the peak-to-peak current
ripple magnitude A, V., being proportional to Aig,,. Such
result is in agreement with the expected loss trend, since the ac
winding loss is proportional to the square of the rms ac current
Tacyms, Which can be well represented by the square of Aipy,in
case of a triangular or cusp-like inductor current waveform.
The proposed model (10) also shows an exponential decay of
the ac power loss with the increasing switching frequency,
which can be explained as follows. For a fixed V., value, the
peak-to-peak current ripple decreases while the frequency
increases, result-inginlower I e value. However, the
winding resistance R,. value increases at higher frequency,
due to the skin and prox-imity effects. Thus, the ac winding
loss Pyingac can increase or decrease with the frequency,
depending on the winding ar-rangement. As for the core loss
FPoore, a smaller peak-to-peak current ripple at higher
frequencies involves a smaller B, mag-nitude and,
consequently, a smaller area of the B — H loop, which yields a
loss reduction. However, the higher frequency involves that the
B — H loop is repeated more [requently, thus causing a
consequent loss increase. As a result, the core loss could as
increase as decrease with the frequency, depending on the
inductor characteristics. For the components analyzed in this
paper, the model (10) reveals that a frequency increase results
in an ac power loss decrease.

Both the proposed ac loss model and the benchmark models
used in this paper require experimental measurements data for
model coefficients extraction. In particular, the GP-MOO algo-
rithm adopted for the identification of model (10) also requires
some extra computation time, when the behavioral models are
generated for the first time. The amount of this additional time
mainly depends on the experimental data used for models iden-
tification: the higher the number of the experimental test con-
ditions, the greater the execution time required. However, the
major benefit descending from the adoption of the GP-MOO
algorithm is that it allows for the identification of a general loss
model, valid for families of FPIs with different materials and/
or core types and size, as proved by the four presented case
studies. The identified model remains unchanged and always
valid, in-dependently of the operating conditions the inductor
is working in. Conversely, the suggested benchmark models
are conserva-tive and can yield inaccurate core loss estimation,
especially in partial saturation conditions. Once the ac loss
model has been identified, only the execution time for the
curve-fitting NLLS algorithm is needed to extract the model
coefficient values. This time is comparable to that one needed
for the extraction of any other benchmark models coefficients.
Hence, the computation time of the GP-MOO algorithm
execution is the unique extra time contribution for the
proposed model.

E Temperature Impact

Temperature is an important factor influencing the induc-
tor power loss. The core loss density is sometimes modeled
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Fig. 13. Behavioral model coefficients at T, =25 °C (red) and T,

(green) for M551260-473.

=37 °C

as a polynomial function of temperature in magnetic cores
datasheets [25], [26]. Unfortunately, few literature studies have
investigated the dependence of the core loss on temperature.
In [33], Mubhlethaler et al. have introduced Steinmetz premag-
netization graphs providing information about the dependence
of the Steinmetz parameters on the dec bias for two differ-
ent temperatures. Herein, the impact of the ambient tempera-
ture T, on the coefficients of the proposed behavioral model
(10) has been investigated for the MSS1260-473 inductor (case
study #2). Experimental measurements of the ac power loss
have been performed at 7, = 25 °C and 7}, = 37 °C. The
higher ambient temperature has been obtained by incapsulating
the inductor into a heated chamber. The TDK B57550G502F
5kQ2+1% NTC thermistor has been used for the experimen-
tal measurements. For the two ambient temperature conditions,
the coefficients of the behavioral model (10) have been iden-
tified by means of the NLLS technique, as shown in Fig. 13.
It can be observed that, with the temperature increase, all the
coefficients decrease in weak-saturation region (at low inductor
currents Iz, < 2.5 A) and increase in roll-off region (beyond
2.5 A inductor current). Indeed, while the ambient temperature
increases, the inductance in weak-saturation region typically in-
creases, thus resulting in the lower inductor current ripple and ac
power loss. In roll-off region, instead, the inductance decreases
with the temperature, thus resulting in higher current ripple and
loss [41].

As future development of this research, more ambient tem-
perature values will be tested to investigate the possibility to
achieve a model with thermal trend of the coefficients p.

CONCLUSIONS

In this paper, a new ac power loss model for FPIs in SMPS
applications is proposed. The model has been obtained by means
of the GP approach, in combination with the MOO technique,
starting from experimental measurements of the component cur-
rent, voltage and power loss in a wide range of SMPS operating
conditions, including the FPI operation in partial saturation. The
main difference of the proposed model with respect to prior art
lies in the use of the applied voltage and switching frequency

as variables of the power loss formula, while the de current
has been used as a parameter influencing the model coefficients
to account for the impact of saturation, The results of the ex-
perimental tests presented in the paper prove that the proposed
behavioral model provides quite reliable loss predictions, with
a much higher accuracy compared to classical Steinmetz-based
models, especially in partial saturation conditions. The proposed
model is flexible and easy to apply to different families of FPIs,
requiring only the use of a standard curve-fitting technique to
identify the formula coefficients, based on the experimental data
of the ac power loss.
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APPENDIX A
CORE L0OsS MODELS AND RELEVANT COEFFICIENTS

A, Steinmetz Equation and Manufacturer’s Coefficients

According to the SE, average core loss is given by (4). Ac-
cording to the manufacturer’s formula, average core loss can
be expressed as given in (5). In order to find the equivalence
relations between the Steinmetz coefficients {C,, o, 8} and
the manufacturer’s coefficients { K, K3, X, Y}, (12) and (13)
can be used

() = Lliz (9] 228

vy, (t) = ﬂ()—n e

(12)

“an)

T (13)

where n is the inductor winding turn number and @ is the
magnetic flux linkage of a single winding turn. From the equality
of (12) and (13), it follows:

DT, diy (t) DT, dB(t) .,
| oo e = [ na 50

IL,m Bm
= / L(iL )diL = f nA.dB (14)
Ty, min B

where It i, and Iy, ., are the minimum and maximum values
of the inductor current waveform iz, (¢), whereas By, and By
are the minimum and maximum values of the magnetic flux
density waveform B(t). In weak saturation, L(iz,) = Lpgm. This
condition is normally adopted by manufacturers. Thus, (14)
implies (15)

LnamAinp = 2nAe Bm_-

L

=>BM2A

A?’LPP = Kg A?,[pp (15)



From (4}, (5) and (15), the following equivalences can be even-

tually derived:
L
K =Cnil.,, K;= ﬁa

X=a, Y=8 (@16

B. Improved Generalized Steinmetz Equation
According to the i-GSE [30], the average core loss is given as

L 5. [4B[* fa
Pcom,iGSE - E \/0- ki E |ABpp| (Aele) dt (17)
where AB,,, = 2B, and
i Con (18)

T (2m)°! [ |cos 8|4 28— d
Itcan be shown that the integral term in (18) can be approximated
as

27
1.7061
*dg=4(027614 1
£ |cos 8|%df (0 76 T S ) (19)

The i-GSE can be reformulated in terms of the applied inductor
voltage, duty-cycle, frequency and manufacturer’s core loss co-
efficients {Ky, Ky, X,Y}. From (13), the following relations
can be obtained:

DT,
_ 7)) L Vies o 2K
AB,, = fo L dt= DT, = 2V DT,  (20)
dB_ul) 2w @1

at  nA, y p—
where Vi, o, is the constant voltage applied to the inductor during
the on-time interval. Hence, from (17), (20) and (21), we have

k, [T 2K,v5(8) || 2K B
ﬂam,ias.',?:fvf EUL()’ ’ 212""“ Hlodt (22)
8 J0 nom ‘nom
where

K
ky = k; (Acl) = - @23
s (AcL) (2m)* ! 02“ lcos 6% 2¥ -X dg
By means of algebra, we obtain
2K, ¥ -
Pcare,iGSE = fsk'u |:L2 [begonDT:s]Y x.
T, Y Y-X
" 2K. VionD
f lvg (t)|th=k,,[ : [ Bl e (28)
0 Lnam fa

+ D|Vponl® + (1 — DY|Vp o™

where V7, o¢ is the constant voltages applied to the inductor dur-
ing the off-time interval of the converter. In such reformulation,
the i-GSE jointly depends on the applied inductor voltages, duty-
cycle and frequency, and manufacturer’s core loss coefficients
{K;,Ky, X,Y}.

APPENDIX B
GP ALGORITHM SPECIFICATIONS

The GP models are generally represented by means of tree
structures. To construct such trees, the GP algorithm makes use
of a given set of elementary functions, constant coefficients and

TABLE XI
NON-TERMINAL AND TERMINAL SETS

#inputs Non-terminal Description Complexity
2 sum F+ 1
2 multiplication f-g 1
2 power Fid 1.5
2 division fle L5
1 logatithm log(f) 15
1 natural exp. exp(f) 15
1 power f* 1.5
1 exponential af 1.5
1 square root Vi 1.5
1 hyperbolic tangent  tanh(f) 1.5
1 inverse tangent tan—1{f) 155
1 reciprocal 1/f 1.5
#inputs Terminal Description Complexity
0 i X = 0.6 (for multiplication)
P {fsVeq} 1.0 (for other operations)
0 coefficient r 1
TABLE X1I

GP ALGORITHM SETTINGS AND PARAMETERS [43]

Description Value
Population size 500
Generation number 300
Maximum tree size 50 nodes
Selection operator binary tournament
Cross-over operator subtree cross-over
Mutation operator subtree & node mutation
Cross-over probability 0.80
Subtree mutation probability 0.18
Node mutation probability 0.02

independent variables or model inputs. By definition, the group
of independent variables and constant coefficients composes the
terminal set, and the group of elementary functions represent
the non-terminal set the GP algorithm works with. Both termi-
nal and non-terminal sets adopted in this paper are shown in
Table XI. The main GP algorithm settings and parameters are
given in Table XIL

A. Complexity Evaluation

In the literature, several methods have been proposed to esti-
mate the global complexity of the GP models [42]. In this paper,
the elements of the terminal and non-terminal sets have been as-
signed different complexity factors, and on their basis the global
complexity of each constructed GP model has been estimated.
EBach element of the terminal set has been assigned a complex-
ity factor equal or lower than one, whereas each element of the
non-terminal set has been assigned a complexity factor equal or
greater than one. The input variables x = {f, V¢, } have been
assigned a unit complexity factor, except for the multiplication
operations between such variables, for which a complexity fac-
tor of 0.6 has been attributed to each input, in order to prevent
an excessive penalization of quadratic and cubic terms, such as

3: V:’;: fo + Vg, ete.

To quantify the global complexity of each GP model, the term
Eeomplerity has been introduced, based on the complexity values
given in Table XI and calculated in the following way:

e if a function (non-terminal element) is the argument of an-

other function, the complexity factors of the two functions
are multiplied;



» if two functions are multiplied or summed, their complex-
ity factors are summed and subsequently multiplied by the
complexity factor of a sum or a product, respectively.

In the first case, a vertical development of the models (i.e., in-
volved functions of functions) is prevented, especially for the
functions with great complexity. In the second case, a horizon-
tal development of the models is prevented, i.e., models com-
posed of many simple functions multiplied or summed among
them, when a single more complicated function (e.g., exponen-
tial or power function) could be sufficient to model the quan-
tity of interest. For instance, using the complexity factors from
Table XI, the global complexity Fiomptxiy of the model
Py = poexp (—p1 fa) Ve + psVz given in (10) can be cal-
culated as follows: Flomplwiy =1-(1.54+1.5)+1-(0.6+
0.6) =42,

B. Accuracy Evaluation

To determine the coefficients p of the GP-based model
(9) for each average inducior current Ir; (j =1,..,m), a
NLLS method has been applied to the n experimental data
vectors relative to Iz ;. In particular, a Levenberg—Marquardt
least square optimization method has been adopted [44]. Such
algorithmn starts from the model structure provided by the
GP algorithm and finds the best coefficients values p for
each average current. The x-squared error criterion has been
applied to the experimental loss g;; and the GP-predicted loss
F (fei Veqi,» P (I1,;)), as follows:

Xt = = S A F (s Viaop (123)) — w3

i=1

(25)

The values of coefficients p for each average current Iy ; have
been determined by minimizing x?. To estimate the global
accuracy of the GP-based model over the whole training dataset,
the RMSE between the experimental and the GP-predicted
losses has been estimated by means of (26):

_ I g
RMSE = ‘/Ezjﬂxf
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