The research work outlined in the present note highlights the essential role played by the simulation procedures implemented by us on CINECA supercomputers to complement the mathematical investigations concerning neuronal activity modeling, carried within our group over the past several years. The ultimate target of our research is the understanding of certain crucial features of the information processing and transmission by single neurons embedded in complex networks. More specifically, here we provide a bird’s eye look of some analytical, numerical and simulation results on the asymptotic behavior of first passage time densities for Gaussian processes, both of a Markov and of a non-Markov type. Significant similarities or diversities between computational and simulated results are pointed out
Gaussian Processes and Neuronal Modeling
NOBILE, Amelia Giuseppina;
2005
Abstract
The research work outlined in the present note highlights the essential role played by the simulation procedures implemented by us on CINECA supercomputers to complement the mathematical investigations concerning neuronal activity modeling, carried within our group over the past several years. The ultimate target of our research is the understanding of certain crucial features of the information processing and transmission by single neurons embedded in complex networks. More specifically, here we provide a bird’s eye look of some analytical, numerical and simulation results on the asymptotic behavior of first passage time densities for Gaussian processes, both of a Markov and of a non-Markov type. Significant similarities or diversities between computational and simulated results are pointed outI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.