In this paper we test the performance of two unsupervised clustering strategies for the analysis of LANDSAT multispectral images of the Temples of Paestum Area in Italy. The classification goal is to identify environmental factors (soils, vegetation types, water) on the images, exploiting the features of the seven LANDSAT spectral bands. The first strategy is a fast migrating means technique based on a Maximum Likelihood Principle (ISOCLUST algorithm), and the second is the Kohoncn Self Organizing Map (SOM) neural network. The advantage of using the SOM algorithm is that both the information on classes and the similarity between the classes are obtained (since proximity corresponds to similarity among neurons). By exploiting the information on class similarity it was possible to automatically colour each cluster identified by the net (assigning a specific colour to each of them) thus facilitating a successive photo-interpretation.

An application of neural and probabilistic unsupervised methods to environmental factor analysis of multi-spectral images

SCARPETTA, Silvia;MARINARO, Maria
2005

Abstract

In this paper we test the performance of two unsupervised clustering strategies for the analysis of LANDSAT multispectral images of the Temples of Paestum Area in Italy. The classification goal is to identify environmental factors (soils, vegetation types, water) on the images, exploiting the features of the seven LANDSAT spectral bands. The first strategy is a fast migrating means technique based on a Maximum Likelihood Principle (ISOCLUST algorithm), and the second is the Kohoncn Self Organizing Map (SOM) neural network. The advantage of using the SOM algorithm is that both the information on classes and the similarity between the classes are obtained (since proximity corresponds to similarity among neurons). By exploiting the information on class similarity it was possible to automatically colour each cluster identified by the net (assigning a specific colour to each of them) thus facilitating a successive photo-interpretation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1062675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact