In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.

A Graph-Theoretical Clustering Method for Detecting Clusters of Micro-calcifications in Mammographic Images

PERCANNELLA, Gennaro;VENTO, Mario
2005-01-01

Abstract

In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.
2005
0-7695-2355-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1632308
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact