The objective of this paper is to replicate two previous studies that compared at least three techniques for Web effort estimation in order to identify the one that provides best prediction accuracy. We employed the three effort estimation techniques that were mutual to the two studies being replicated, namely Forward Stepwise Regression (SWR), Case-Based Reasoning (CBR) and Classification & Regression Trees (CART). We used a cross-company data set of 150 Web projects from the Tukutuku data set. This is the first time such large number of Web projects is used to compare effort estimation techniques. Results showed that all techniques presented similar predictions, and these predictions were significantly better than those using the mean effort. Thus, all the techniques can be exploited for effort estimation in the Web domain, also using a cross-company data set that is specially useful when companies do not have their own data on past projects from which to obtain their estimates, or that have data on projects developed in different application domains and/or technologies. © Springer-Verlag Berlin Heidelberg 2007.

A replicated study comparing web effort estimation techniques

FERRUCCI, Filomena;GRAVINO, Carmine
2007

Abstract

The objective of this paper is to replicate two previous studies that compared at least three techniques for Web effort estimation in order to identify the one that provides best prediction accuracy. We employed the three effort estimation techniques that were mutual to the two studies being replicated, namely Forward Stepwise Regression (SWR), Case-Based Reasoning (CBR) and Classification & Regression Trees (CART). We used a cross-company data set of 150 Web projects from the Tukutuku data set. This is the first time such large number of Web projects is used to compare effort estimation techniques. Results showed that all techniques presented similar predictions, and these predictions were significantly better than those using the mean effort. Thus, all the techniques can be exploited for effort estimation in the Web domain, also using a cross-company data set that is specially useful when companies do not have their own data on past projects from which to obtain their estimates, or that have data on projects developed in different application domains and/or technologies. © Springer-Verlag Berlin Heidelberg 2007.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/1656289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact