This paper reports on the unsupervised analysis of seismic signals recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset is composed of earthquakes and false events like thunders, man-made quarry and undersea explosions. The Stromboli dataset consists of explosion-quakes, landslides and volcanic microtremor signals. The aim of this paper is to apply on these datasets three projection methods, the linear Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear Component Analysis (CCA), in order to compare their performance. Since these algorithms are well known to be able to exploit structures and organize data providing a clear framework for understanding and interpreting their relationships, this work examines the category of structural information that they can provide on our specific sets. Moreover, the paper suggests a breakthrough in the application area of the SOM, used here for clustering different seismic signals. The results show that, among the three above techniques, SOM better visualizes the complex set of high-dimensional data discovering their intrinsic structure and eventually appropriately clustering the different signal typologies under examination, discriminating the explosion-quakes from the landslides and microtremo

Models for Identifying Structures in the Data: A Performance Comparison

MARINARO, Maria;SCARPETTA, Silvia
2007-01-01

Abstract

This paper reports on the unsupervised analysis of seismic signals recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset is composed of earthquakes and false events like thunders, man-made quarry and undersea explosions. The Stromboli dataset consists of explosion-quakes, landslides and volcanic microtremor signals. The aim of this paper is to apply on these datasets three projection methods, the linear Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear Component Analysis (CCA), in order to compare their performance. Since these algorithms are well known to be able to exploit structures and organize data providing a clear framework for understanding and interpreting their relationships, this work examines the category of structural information that they can provide on our specific sets. Moreover, the paper suggests a breakthrough in the application area of the SOM, used here for clustering different seismic signals. The results show that, among the three above techniques, SOM better visualizes the complex set of high-dimensional data discovering their intrinsic structure and eventually appropriately clustering the different signal typologies under examination, discriminating the explosion-quakes from the landslides and microtremo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1656451
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact