A parallel algorithm is implemented to simulate sample paths of stationary normal processes possessing a Butterworth-type covariance, in order to investigate asymptotic properties of the first passage time probability densities for time-varying boundaries. After a self-contained outline of the simulation procedure, computational results are included to show that for large times and for large boundaries the first passage time probability density through an asymptotically periodic boundary is exponentially distributed to an excellent degree of approximation.

Computer-aided simulations of Gaussian processes and related asymptotic properties

NOBILE, Amelia Giuseppina;
2001-01-01

Abstract

A parallel algorithm is implemented to simulate sample paths of stationary normal processes possessing a Butterworth-type covariance, in order to investigate asymptotic properties of the first passage time probability densities for time-varying boundaries. After a self-contained outline of the simulation procedure, computational results are included to show that for large times and for large boundaries the first passage time probability density through an asymptotically periodic boundary is exponentially distributed to an excellent degree of approximation.
2001
9783540429593
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1737808
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact