Purpose: The aim of this work is to explain the work of Design Methods’ research group of Department of Mechanical Engineering of Salerno University, in the field of research regarding vehicles pedestrian safety problem, taking care to finite element methods and models used and developed for vehicle design and optimization. Design/methodology/approach: Our developed models show a very good Numeric/Experimental correlation, and we’ve numerically certified our virtual impactors, designed following EEVC-WG17 specification. These impactors have been tested also at higher speed and we have obtained a good correlation with some problems because of the critical behavior of the foam solved following different model-design optimization methods. Findings: Best results obtained and explained in this paper are concerning impactors modeling and certification, and Experimental/Numerical correlation of full impact tests. Research limitations/implications: The achievement of the maximum possible pedestrian safety performance, compatibly with the others, sometimes conflicting, performances, is one of the main objectives to reach, for the automotive industry by now and, above all, for the future. Practical implications: According to a surveying by European Community research committee, the risk of die for pedestrians and cyclists because of street incidents is eight/nine times higher than one of the occupants of motor vehicles. From statistics we’ve found that the greatest part of these accidents is due to the collision of the pedestrian on the front part of motor vehicles, and that fact affects the considerations on the passive safety. Originality/value: The most Important Automotive industries had understood the impact of new regulations about homologation and began to study the problem and particularly how to introduce new Homologation parameters in their Product development cycles, today based on Virtual Prototyping of the Whole Vehicle and final Physical testing of few physical prototypes.

State of the art on Pedestrian Safety Simulation

PAPPALARDO, Michele;NADDEO, ALESSANDRO;ANNARUMMA, MARINA
2008-01-01

Abstract

Purpose: The aim of this work is to explain the work of Design Methods’ research group of Department of Mechanical Engineering of Salerno University, in the field of research regarding vehicles pedestrian safety problem, taking care to finite element methods and models used and developed for vehicle design and optimization. Design/methodology/approach: Our developed models show a very good Numeric/Experimental correlation, and we’ve numerically certified our virtual impactors, designed following EEVC-WG17 specification. These impactors have been tested also at higher speed and we have obtained a good correlation with some problems because of the critical behavior of the foam solved following different model-design optimization methods. Findings: Best results obtained and explained in this paper are concerning impactors modeling and certification, and Experimental/Numerical correlation of full impact tests. Research limitations/implications: The achievement of the maximum possible pedestrian safety performance, compatibly with the others, sometimes conflicting, performances, is one of the main objectives to reach, for the automotive industry by now and, above all, for the future. Practical implications: According to a surveying by European Community research committee, the risk of die for pedestrians and cyclists because of street incidents is eight/nine times higher than one of the occupants of motor vehicles. From statistics we’ve found that the greatest part of these accidents is due to the collision of the pedestrian on the front part of motor vehicles, and that fact affects the considerations on the passive safety. Originality/value: The most Important Automotive industries had understood the impact of new regulations about homologation and began to study the problem and particularly how to introduce new Homologation parameters in their Product development cycles, today based on Virtual Prototyping of the Whole Vehicle and final Physical testing of few physical prototypes.
2008
9788389728470
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/2500840
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact