Recently, the use of Mechanically Fastened Fiber-Reinforced Polymer (MF-FRP) systems has emerged as a viable means for flexural strengthening of reinforced concrete members. The technique is suitable for emergency repairs where constructability and speed of installation are critical requirements. The MF-FRP system consists of pre-cured FRP laminates with enhanced longitudinal bearing strength that are attached to the concrete substrate by means of mechanical steel anchors. The research project reported herein includes an experimental investigation on a series of flexural tests on scaled one-way RC slabs. The test matrix comprises MF-FRP strengthened specimens, a counterpart with the externally bonded (EB) FRP reinforcement, and a control specimen. The effects of fastener layout and laminate length on strength increase and failure mode were studied. It is shown that with proper selection of fastener layout the MF-FRP system results in a significant deformability and strength increase, where the latter is comparable to that attained using EB-FRP sheets. Specific gaps on the existing analytical procedures for flexural strengthening with MFFRP systems are finally discussed.

RC Structures Strengthened with Mechanically Fastened FRP Systems

NAPOLI, ANNALISA;REALFONZO, ROBERTO
2008-01-01

Abstract

Recently, the use of Mechanically Fastened Fiber-Reinforced Polymer (MF-FRP) systems has emerged as a viable means for flexural strengthening of reinforced concrete members. The technique is suitable for emergency repairs where constructability and speed of installation are critical requirements. The MF-FRP system consists of pre-cured FRP laminates with enhanced longitudinal bearing strength that are attached to the concrete substrate by means of mechanical steel anchors. The research project reported herein includes an experimental investigation on a series of flexural tests on scaled one-way RC slabs. The test matrix comprises MF-FRP strengthened specimens, a counterpart with the externally bonded (EB) FRP reinforcement, and a control specimen. The effects of fastener layout and laminate length on strength increase and failure mode were studied. It is shown that with proper selection of fastener layout the MF-FRP system results in a significant deformability and strength increase, where the latter is comparable to that attained using EB-FRP sheets. Specific gaps on the existing analytical procedures for flexural strengthening with MFFRP systems are finally discussed.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3016282
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact