This paper deals with the topological-metric structure of a network made by a family of self-similar hierarchical regular lattices. We derive the basic properties and give a suitable definition of self-similarity on lattices. This concept of self-similarity is shown on some classical (omothety) and more recent models (Sierpinski tesselations and Husimi cacti). Both the metric and the geometric properties of the lattice will be intrinsically defined.
Self-Similar Hierarchical Regular Lattices
CATTANI, Carlo;LASERRA, Ettore
2010
Abstract
This paper deals with the topological-metric structure of a network made by a family of self-similar hierarchical regular lattices. We derive the basic properties and give a suitable definition of self-similarity on lattices. This concept of self-similarity is shown on some classical (omothety) and more recent models (Sierpinski tesselations and Husimi cacti). Both the metric and the geometric properties of the lattice will be intrinsically defined.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.