It is well known that one way to improve the accuracy of a text retrieval system is to expand the original query with additional knowledge coded through topic-related terms. In the case of an interactive environment, the expansion, which is usually represented as a list of words, is extracted from documents whose relevance is known thanks to the feedback of the user. In this paper we argue that the accuracy of a text retrieval system can be improved if we employ a query expansion method based on a mixed Graph of Terms representation instead of a method based on a simple list of words. The graph, that is composed of a directed and an undirected subgraph, can be automatically extracted from a small set of only relevant documents (namely the user feedback) using a method for term extraction based on the probabilistic Topic Model. The evaluation of the proposed method has been carried out by performing a comparison with two less complex structures: one represented as a set of pairs of words and another that is a simple list of words.

A novel supervised text classifier from a small training set

F. Clarizia;COLACE, Francesco;DE SANTO, Massimo;GRECO, LUCA;NAPOLETANO, PAOLO
2011-01-01

Abstract

It is well known that one way to improve the accuracy of a text retrieval system is to expand the original query with additional knowledge coded through topic-related terms. In the case of an interactive environment, the expansion, which is usually represented as a list of words, is extracted from documents whose relevance is known thanks to the feedback of the user. In this paper we argue that the accuracy of a text retrieval system can be improved if we employ a query expansion method based on a mixed Graph of Terms representation instead of a method based on a simple list of words. The graph, that is composed of a directed and an undirected subgraph, can be automatically extracted from a small set of only relevant documents (namely the user feedback) using a method for term extraction based on the probabilistic Topic Model. The evaluation of the proposed method has been carried out by performing a comparison with two less complex structures: one represented as a set of pairs of words and another that is a simple list of words.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3093929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact