Abstract. We consider the positive mu-calculus with successors PmS, namely a variant of Kozen's modal mu-calculus L, [9] where negation is suppressed and where the basic modalities are a sequence of successor operators. In particular we are interested in the sublanguages of PmS determined by the value of the Emerson-Lei alternation depth [6]. For every n E N we exhibit a formula r whose expression in PmS requires at least alternation depth n. In particular our result gives a new proof of the strict hierarchy theorem for PmS which follows from [1].

A hierarchy theorem for the mu-calculus

LENZI, Giacomo
1996

Abstract

Abstract. We consider the positive mu-calculus with successors PmS, namely a variant of Kozen's modal mu-calculus L, [9] where negation is suppressed and where the basic modalities are a sequence of successor operators. In particular we are interested in the sublanguages of PmS determined by the value of the Emerson-Lei alternation depth [6]. For every n E N we exhibit a formula r whose expression in PmS requires at least alternation depth n. In particular our result gives a new proof of the strict hierarchy theorem for PmS which follows from [1].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/3136937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact