In this paper we develop statistical models for bankruptcy prediction of Italian firms in the limited liability sector, using annual balance sheet information. Several issues involved in default risk analysis are investigated, such as the structure of the data-base, the sampling procedure and the influence of predictors. In particular we focus on the variable selection problem, comparing innovative techniques based on shrinkage with traditional stepwise methods. The predictive performance of the proposed default risk model has been evaluated by means of different accuracy measures. The results of the analysis, carried out on a data-set of financial ratios expressly created from a sample of industrial firms annual reports, give evidence in favor of the proposed model over traditional ones.
Variable selection in forecasting models for corporate bankruptcy
AMENDOLA, Alessandra;RESTAINO, MARIALUISA;SENSINI, LUCA
2010-01-01
Abstract
In this paper we develop statistical models for bankruptcy prediction of Italian firms in the limited liability sector, using annual balance sheet information. Several issues involved in default risk analysis are investigated, such as the structure of the data-base, the sampling procedure and the influence of predictors. In particular we focus on the variable selection problem, comparing innovative techniques based on shrinkage with traditional stepwise methods. The predictive performance of the proposed default risk model has been evaluated by means of different accuracy measures. The results of the analysis, carried out on a data-set of financial ratios expressly created from a sample of industrial firms annual reports, give evidence in favor of the proposed model over traditional ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.