In the present paper we propose a new computationally simpIe, speedy and accurate method to construct first passage time probability density functions, through time-dependent boundaries, both for fixed and for random initial states. The considered processes underlying the neurons model are assumed to be of a rather generally kind, falling however within the class of Gauss-Markov processes.

On some computational methods for single neurons' activity modeling (Abstract)

DI CRESCENZO, Antonio;NOBILE, Amelia Giuseppina;
1999-01-01

Abstract

In the present paper we propose a new computationally simpIe, speedy and accurate method to construct first passage time probability density functions, through time-dependent boundaries, both for fixed and for random initial states. The considered processes underlying the neurons model are assumed to be of a rather generally kind, falling however within the class of Gauss-Markov processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3449077
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact