A method, based on harmonic wavelet decomposition is proposed for the analysis of signals made by a periodic function and by a pulse (bounded function in space domain). It will be shown that, under some general conditions, a function can be represented in terms of harmonic wavelet and Fourier bases, which are orthogonal each other. By a simple projection into each space component we obtain the periodic (or pulse) component of the signal.
Wavelet Extraction of a Pulse from a PeriodicSignal
CATTANI, Carlo
2008-01-01
Abstract
A method, based on harmonic wavelet decomposition is proposed for the analysis of signals made by a periodic function and by a pulse (bounded function in space domain). It will be shown that, under some general conditions, a function can be represented in terms of harmonic wavelet and Fourier bases, which are orthogonal each other. By a simple projection into each space component we obtain the periodic (or pulse) component of the signal.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.