We consider a general family of two step nonlinear methods for the numerical integration of Ordinary Differential Equations of type y"=f(x,y). By applying a collocation technique, linear systems with a Vandermonde-type matrix arise during the construction of the methods. The computation of its determinant reduces to the computation of a recurrence formula depending on the collocation abscissas.

Vandermonde-type matrices in two step collocation methods for special second order Ordinary Differential Equations

PATERNOSTER, Beatrice
2004-01-01

Abstract

We consider a general family of two step nonlinear methods for the numerical integration of Ordinary Differential Equations of type y"=f(x,y). By applying a collocation technique, linear systems with a Vandermonde-type matrix arise during the construction of the methods. The computation of its determinant reduces to the computation of a recurrence formula depending on the collocation abscissas.
2004
3540221298
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3574077
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact