The explosion of "omics" data over the past few decades has generated an increasing need of efficiently analyzing high-dimensional gene expression data in several different and heterogenous contexts, such as for example in information retrieval, knowledge discovery, and data mining. For this reason, biclustering, or simultaneous clustering of both genes and conditions has generated considerable interest over the past few decades. Unfortunately, the problem of locating the most significant bicluster has been shown to be NP-complete. We have designed and implemented a GRASP-like heuristic algorithm to efficiently find good solutions in reasonable running times, and to overcome the inner intractability of the problem from a computational point of view. Experimental results on two datasets of expression data are promising indicating that this algorithm is able to find significant biclusters, especially from a biological point of view.

Solving biclustering with a GRASP-like metaheuristic: two case-study on gene expression analysis

FACCHIANO, Angelo;MARABOTTI, ANNA
Investigation
;
2012-01-01

Abstract

The explosion of "omics" data over the past few decades has generated an increasing need of efficiently analyzing high-dimensional gene expression data in several different and heterogenous contexts, such as for example in information retrieval, knowledge discovery, and data mining. For this reason, biclustering, or simultaneous clustering of both genes and conditions has generated considerable interest over the past few decades. Unfortunately, the problem of locating the most significant bicluster has been shown to be NP-complete. We have designed and implemented a GRASP-like heuristic algorithm to efficiently find good solutions in reasonable running times, and to overcome the inner intractability of the problem from a computational point of view. Experimental results on two datasets of expression data are promising indicating that this algorithm is able to find significant biclusters, especially from a biological point of view.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3878163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact