This paper investigates the use of feed forward neural networks for testing the weak form market efficiency. In contrast to approaches that compare out-of-sample predictions of non-linear models to those generated by the random walk model, we directly focus on testing for unpredictability by considering the null hypothesis that a given set of past lags has no effect on current returns. To avoid the data-snooping problem the testing procedure is based on the StepM approach in order to control the familiwise error rate. The procedure is used to test for predictive power in FTSE-MIB index of the italian stock market.

Testing the weak form market efficiency: empirical evidence from the Italian stock exchange

ALBANO, GIUSEPPINA;LA ROCCA, Michele;PERNA, Cira
2013-01-01

Abstract

This paper investigates the use of feed forward neural networks for testing the weak form market efficiency. In contrast to approaches that compare out-of-sample predictions of non-linear models to those generated by the random walk model, we directly focus on testing for unpredictability by considering the null hypothesis that a given set of past lags has no effect on current returns. To avoid the data-snooping problem the testing procedure is based on the StepM approach in order to control the familiwise error rate. The procedure is used to test for predictive power in FTSE-MIB index of the italian stock market.
2013
978-3-642-35467-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3879948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact