In this paper we have demonstrated that the accuracy of a text retrieval system can be improved if we employ a query expansion method based on explicit relevance feedback that expands the initial query with a structured representation instead of a simple list of words. This representation, named a mixed Graph of Terms, is composed of a directed and an a-directed subgraph and can be automatically extracted from a set of documents using a method for term extraction based on the probabilistic Topic Model. The evaluation of the method has been conducted on a web repository collected by crawling a huge number of web pages from the website ThomasNet.com. We have considered several topics and performed a comparison with a baseline and a less complex structure that is a simple list of words.

Improving Text Retrieval Accuracy by Using a Minimal Relevance Feedback

COLACE, Francesco;DE SANTO, Massimo;GRECO, LUCA;NAPOLETANO, PAOLO
2013-01-01

Abstract

In this paper we have demonstrated that the accuracy of a text retrieval system can be improved if we employ a query expansion method based on explicit relevance feedback that expands the initial query with a structured representation instead of a simple list of words. This representation, named a mixed Graph of Terms, is composed of a directed and an a-directed subgraph and can be automatically extracted from a set of documents using a method for term extraction based on the probabilistic Topic Model. The evaluation of the method has been conducted on a web repository collected by crawling a huge number of web pages from the website ThomasNet.com. We have considered several topics and performed a comparison with a baseline and a less complex structure that is a simple list of words.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4208054
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact