The present work focuses on the possibility of conveniently tuning materials in PLA based nanocomposites in order to improve their processability in manufacturing processes where extensional flow is mainly involved. Nanocomposites at a constant silicate loading were produced by melt compounding, using a commercial polylactide grade (PLA 4032D) and two different organo-silicates (Cloisite 30B and Nanofil SE3010). A morphological characterization in solid and molten state, realized by TEM investigations and shear rheological measurements, firstly pointed out the influence of composition on the nanostructure of the hybrid systems. All the samples were then submitted to uniaxial stretching and the rheological response of the different nanocomposites was correlated to the initial nanostructure and the different polymer-clay affinity.
Effect of nanocomposite composition on shear and elongational rheological behavior of PLA/MMT hybrids
GAROFALO, EMILIA;SCARFATO, Paola;DI MAIO, Luciano;INCARNATO, Loredana
2014-01-01
Abstract
The present work focuses on the possibility of conveniently tuning materials in PLA based nanocomposites in order to improve their processability in manufacturing processes where extensional flow is mainly involved. Nanocomposites at a constant silicate loading were produced by melt compounding, using a commercial polylactide grade (PLA 4032D) and two different organo-silicates (Cloisite 30B and Nanofil SE3010). A morphological characterization in solid and molten state, realized by TEM investigations and shear rheological measurements, firstly pointed out the influence of composition on the nanostructure of the hybrid systems. All the samples were then submitted to uniaxial stretching and the rheological response of the different nanocomposites was correlated to the initial nanostructure and the different polymer-clay affinity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.