In this talk we investigate the linear stability properties of the new family of General Linear Nystrom methods (GLNs), which is an extension of General Linear Methods to special second order ODEs y'' = f (x, y). We present the extension of the classical notions of stability matrix, stability polynomial, stability and periodicity interval, A-stability and P-stability to the family of GLNs. We next focus our interest on the derivation of highly stable GLNs inheriting the same stability properties of highly stable numerical methods existing in literature, i.e. Runge-Kutta-Nystrom methods based on indirect collocation on Gauss-Legendre points: this property, in analogy to a similar feature introduced for General Linear Methods solving first order ODEs, is called Runge-Kutta-Nystrom stability. The stability properties of GLNs with Runge-Kutta-Nystrom stability depend on a quadratic polynomial, which is exactly the stability polynomial of the best Runge-Kutta-Nystrom assumed as reference. We also provide examples of GLNs with Runge-Kutta-Nystrom stability.

STABILITY ANALYSIS OF GENERAL LINEAR NYSTROM METHODS

D'AMBROSIO, RAFFAELE;ESPOSITO, ELENA;PATERNOSTER, Beatrice
2011

Abstract

In this talk we investigate the linear stability properties of the new family of General Linear Nystrom methods (GLNs), which is an extension of General Linear Methods to special second order ODEs y'' = f (x, y). We present the extension of the classical notions of stability matrix, stability polynomial, stability and periodicity interval, A-stability and P-stability to the family of GLNs. We next focus our interest on the derivation of highly stable GLNs inheriting the same stability properties of highly stable numerical methods existing in literature, i.e. Runge-Kutta-Nystrom methods based on indirect collocation on Gauss-Legendre points: this property, in analogy to a similar feature introduced for General Linear Methods solving first order ODEs, is called Runge-Kutta-Nystrom stability. The stability properties of GLNs with Runge-Kutta-Nystrom stability depend on a quadratic polynomial, which is exactly the stability polynomial of the best Runge-Kutta-Nystrom assumed as reference. We also provide examples of GLNs with Runge-Kutta-Nystrom stability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4419062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact