The paper deals with the operator $u ightarrow gu$ defined in the Sobolev space $W^{r,p}(Omega)$ and which takes values in $L^p(Omega)$ when $Omega$ is an unbounded open subset in $R^n$. The functions $g$ belong to Morrey type spaces which provide an intermediate space between $L ^infty(Omega)$ and $L^p_{loc}(Omega)$ . The main result is an embedding result from which we can deduce a Fefferman type inequality. $L^p$ estimates and a compactness result are also stated.

Embedding and compactness results for multiplication operators in Sobolev spaces

CANALE, Anna;TARANTINO, CIRO
2014

Abstract

The paper deals with the operator $u ightarrow gu$ defined in the Sobolev space $W^{r,p}(Omega)$ and which takes values in $L^p(Omega)$ when $Omega$ is an unbounded open subset in $R^n$. The functions $g$ belong to Morrey type spaces which provide an intermediate space between $L ^infty(Omega)$ and $L^p_{loc}(Omega)$ . The main result is an embedding result from which we can deduce a Fefferman type inequality. $L^p$ estimates and a compactness result are also stated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4526265
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact